VeriMask: Facilitating Decontamination of N95 Masks

- **Sensor nodes**: One-for-one dense sensing topology, low-power (>1000 hrs), low-cost (<$15.66), scalable, high-temperature-resistant
- **Android App**: Automatic per-mask decontamination verification, throughput-maximization algorithm

VeriMask: Facilitating Decontamination of N95 Masks in the COVID-19 Pandemic
Yan Long - yanlong@umich.edu
VeriMask: Facilitating Decontamination of N95 Masks in the COVID-19 Pandemic: Challenges, Lessons Learned, and Safeguarding the Future

Yan Long (yanlong@umich.edu), Alexander Curtiss, Sara Rampazzi, Josiah Hester, Kevin Fu
Nurses Survey: N95 Mask Shortages Still the Rule

― "Not sure I can do this much longer"

by Cheryl Clark, Contributing Writer, MedPage Today September 2, 2020

3M CEO on N95 Masks: ‘Demand Exceeds Our Production Capacity’

As coronavirus crisis mounts, manufacturers ramp up to meet huge demand for protective equipment.

Column: Why the U.S. still hasn't solved its mask and glove shortages

Doyle McManus
December 16, 2020 5 min read

Remember the N95 mask shortage? It’s still a problem.

“The supply chain problem is not resolved.”

By Lois Parshley Jun 17, 2020, 9:30am EDT

The N95 shortage America can’t seem to fix

Nurses and doctors depend on respirator masks to protect them from covid-19. So why are we still running low on an item that once cost around $1?

Coronavirus: India faces massive shortage of N95 masks, sanitisers
N95 Decontamination Methods

<table>
<thead>
<tr>
<th>Decon Method</th>
<th>SARS-CoV-2 inactivation*</th>
<th>Filtration efficiency & fit</th>
<th>Chemical residue removal required</th>
<th>Operator hazard**</th>
<th>Costs</th>
<th>Max reuse cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Moist-heat</td>
<td>✓</td>
<td>✓</td>
<td>no</td>
<td>no</td>
<td>$</td>
<td>5</td>
</tr>
<tr>
<td>Hydrogen Peroxide</td>
<td>✓</td>
<td>✓</td>
<td>yes</td>
<td>chemical</td>
<td>$$$</td>
<td>10-20</td>
</tr>
<tr>
<td>UV-C</td>
<td>✓</td>
<td>✓</td>
<td>no</td>
<td>Ozone exposure</td>
<td>$</td>
<td>5</td>
</tr>
<tr>
<td>Steam Autoclave</td>
<td>✓</td>
<td>X</td>
<td>no</td>
<td>no</td>
<td>$$$$</td>
<td>1-10</td>
</tr>
<tr>
<td>Alcohol submersion</td>
<td>✓</td>
<td>X</td>
<td>yes</td>
<td>no</td>
<td>$</td>
<td>Not recommended</td>
</tr>
<tr>
<td>Bleach submersion</td>
<td>✓</td>
<td>X</td>
<td>yes</td>
<td>chemical</td>
<td>$</td>
<td>Not recommended</td>
</tr>
<tr>
<td>Ethylene Oxide</td>
<td>✓</td>
<td>✓</td>
<td>yes</td>
<td>chemical</td>
<td>$</td>
<td>Not recommended</td>
</tr>
</tbody>
</table>

* Demonstrated to inactivate SARS-CoV-2 or similarly-resistant viruses by at least 3-log of bioburden reduction
** Assuming standard protection procedures are followed (e.g. wearing mask, gloves, long-sleeved gown, eye protection)

Source: N95Decon.org

VeriMask: Facilitating Decontamination of N95 Masks in the COVID-19 Pandemic
Yan Long - yanlong@umich.edu
Moist-heat Decontamination Challenges

Temperature (70-85°C) and relative humidity (> 50%) suitable for heating devices in hospitals

CHALLENGES:

- Lack of specialized heating equipment:
 - Non-uniform heating, unpredictable humidity leakage, etc.

- Lack of scalable per-mask monitoring & verification methods
 - Wired sensors cannot be deployed in a rapid and scalable way

- Lack of throughput maximization mechanisms
 - Readings in each container are not used for feedback control

VeriMask: Facilitating Decontamination of N95 Masks in the COVID-19 Pandemic
Yan Long - yanlong@umich.edu
Moist-heat Decontamination Challenges

Temperature (70-85°C) and relative humidity (> 50%) suitable for heating devices in hospitals

CHALLENGES:

Need a scalable sensor-based technology to do constant per-mask verification of temperature and humidity level and provide feedback for throughput maximization.
• **Sensor nodes**: One-for-one dense sensing topology, low-power (>1000 hrs), low-cost (<$15.66), scalable, high-temperature-resistant

• **Android App**: Automatic per-mask decontamination verification, throughput-maximization algorithm

• **BLE advertising**: Scalable, safe, low power consumption
Throughput Maximization

Input: selected total working time t_{work}, profiling cycle temperature data matrix D_{prof}, profiling cycle heating device temperature $T_{dev}^{(0)}$, required in-range decon time t_{decon}, decon temperature thresholds $[T_l, T_h]$, optimal heating device temperature (candidate) vector T_{dev}^{optim}, and MH process time (candidate) vector t_{MH}^{optim}

Output: $t_{MH}^{optim}, T_{dev}^{optim}, n_{work}^{optim}$

1. Initialization: $t_{MH}^{optim} \leftarrow 0, T_{dev}^{optim} \leftarrow 0, n_{work}^{optim} \leftarrow 0$

2. for each candidate T_{dev} do

3. $D_{stretched} = stretchTemps(D_{prof}, T_{dev}^{(0)}, T_{dev})$

4. for each candidate t_{MH} do

5. $n_{work} = countTotalSuccessfulMasks(t_{work}, D_{stretched}, t_{MH}, [T_l, T_h])$

6. if $n_{work} > n_{work}^{optim}$ then

7. $n_{work}^{optim} = n_{work}, T_{dev}^{optim} = T_{dev}$

8. else

9. Do Nothing

10. end if

11. end for

12. end for

13. return $t_{MH}^{optim}, T_{dev}^{optim}, n_{work}^{optim}$

VeriMask: Facilitating Decontamination of N95 Masks in the COVID-19 Pandemic
Yan Long - yanlong@umich.edu
Throughput Maximization

- Successfully increased the number of successfully decontaminated masks.
- Counter-intuitively, we find that more masks (containers) in the heating device does not necessarily lead to more successfully decontaminated masks.

VeriMask: Facilitating Decontamination of N95 Masks in the COVID-19 Pandemic
Yan Long - yanlong@umich.edu
Tests in lab and clinical settings show that VeriMask is able to reliably detect various decontamination failures such as unpredictable humidity leakage.
Lessons Learned

• Emergency response designs should be prepared long in advance to avoid need-response mismatch due to supply chain disruptions and clinical access regulations

• Designers should plan for the worst case and design for modularity to avoid out-of-stock components

• Mobile computing researchers should engage early with medical professionals and end users to enable efficient and down-to-earth specifications.
Project links:

Open-source design at https://github.com/longyan97/VeriMask_Designs
Visit the project website: https://spqrlab1.github.io/N95deconProject.html
Please feel free to contact Yan Long: yanlong@umich.edu

This works is supported by NSF under the grants CNS-2031077, CNS-2032408, CNS-2107400, and a gift from Facebook. The authors would also like to thank the reviewers for their incredibly helpful and constructive comments. We thank Weikun Lyu and Connor Bolton for their valuable inputs. We express our sincere gratitude to the N95DECON consortium and the University of Michigan hospital.

Team

Yan Long
PhD Candidate

Alex Curtiss
PhD Student

Josiah Hester
Assistant Professor

Sara Rampazzi
Assistant Professor

Kevin Fu
Associate Professor

VeriMask: Facilitating Decontamination of N95 Masks in the COVID-19 Pandemic
Yan Long - yanlong@umich.edu