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ABSTRACT
We introduce the notion of a Physical Random Function
(PUF). We argue that a complex integrated circuit can be
viewed as a silicon PUF and describe a technique to identify
and authenticate individual integrated circuits (ICs).

We describe several possible circuit realizations of differ-
ent PUFs. These circuits have been implemented in com-
modity Field Programmable Gate Arrays (FPGAs). We
present experiments which indicate that reliable authenti-
cation of individual FPGAs can be performed even in the
presence of significant environmental variations.

We describe how secure smart cards can be built, and also
briefly describe how PUFs can be applied to licensing and
certification applications.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Systems]:
Smartcards

General Terms
Measurement, Experimentation, Security

Keywords
Identification, physical random function, physical security,
smartcard, tamper resistance, unclonability

1. INTRODUCTION
We describe the notion of Physical Random Functions

(PUFs) and argue that PUFs can be implemented using
conventional integrated circuit (IC) design techniques. This
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leads us to a method of identifying and authenticating in-
dividual ICs and a means of building secure smartcards. A
host of other applications are also possible.

Many methods are already available to identify and au-
thenticate ICs. One can embed a unique identifier in an IC
to give it a unique identity. This approach can identify the
IC, but cannot authenticate it. To enable authentication,
one needs to embed a secret key onto the IC. Of course, for
the system to work, this key needs to remain secret, which
means that the packaged IC has to be made resistant to at-
tacks that attempt to discover the key. Numerous attacks
are described in the literature. These attacks may be inva-
sive, e.g., removal of the package and layers of the IC, or
non-invasive, e.g., differential power analysis that attempts
to determine the key by stimulating the IC and observing
the power and ground rails. Making an IC tamper-resistant
to all forms of attacks is a challenging problem and is receiv-
ing some attention [1]. IBM’s PCI Cryptographic Coproces-
sor encapsulates a 486-class processing subsystem within a
tamper-sensing and tamper-responding environment where
one can run security-sensitive processes [13]. However, pro-
viding high-grade tamper resistance, which makes it impos-
sible for an attacker to access or modify the secrets held
inside a device, is expensive and difficult [2, 3].

We propose a completely different approach to IC authen-
tication in this paper. Our thesis is that there is enough
manufacturing process variations across ICs with identical
masks to uniquely characterize each IC, and this character-
ization can be performed with a large signal-to-noise ratio
(SNR). The characterization of an IC involves the genera-
tion of a set of challenge-response pairs. To authenticate ICs
we require the set of challenge-response pairs to be charac-
teristic of each IC. For reliable authentication, we require
that environmental variations and measurement errors do
not produce so much noise that they hide inter-IC varia-
tions. We will show in this paper, using experiments and
analysis, that we can perform reliable authentication using
the techniques that we now introduce.

How can we produce a unique set of challenge-response
pairs for each IC, even if the digital IC functionality or
masks of the ICs are exactly the same? We rely on there
being enough statistical delay variation for equivalent wires
and devices across different ICs. Sources of statistical varia-
tion in manufacturing are well documented in the literature
(e.g., [5] and [6]) and statistical variation has been exploited
to create IC identification circuits that generate a single
unique response for each manufactured IC [11]. The tran-
sient response of the IC to a challenge, i.e., input stimulus,
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❖ PUFs are exciting new security primitive based on 
physical disorder!

❖ Desirable properties but also limitations!

❖ Arms race between designing and breaking

1. PUFs at a Glance!

2. Modeling attacks!

3. Modeling attacks using side-channel information!

4. Invasive attacks !

5. Requirements for secure PUF protocols!

6. Forward-looking trends and challenges
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