Design Automation and Test in Europe 2014

PUFs at a Glance

Ulrich Rührmair Technische Universität München

Daniel E. Holcomb University of Michigan

This work was supported in part by C-FAR, one of six centers of STARnet, a Semiconductor Research Corporation program sponsored by MARCO and DARPA, and NSF CNS-0845874.

DATE 2014

Overview

Context and motivation for remainder of session

1. Brief introduction to PUFs

- 2. Weak PUFs and applications
- 3. Strong PUFs and applications
- 4. Conclusions

Function

- Map challenges to responses
- Physical
 - Mapping depends on physical variations

Function

Challenges

- Map challenges to responses
- Physical
 - Mapping depends on physical variations

- Function
 - Map challenges to responses
- Physical
 - Mapping depends on physical variations

Challenge-Response Pairs (CRPs)

- Function
 - Map challenges to responses
- Physical

Challenges Responses

PUF Characterized by Challenge-Response Pairs (CRPs)

- Mapping depends on physical variations
- Unclonable
 - No compact model exists, and CRP space is too large for dictionary

- Function
 - Map challenges to responses
- * Physical

Challenges Responses

PUF Characterized by Challenge-Response Pairs (CRPs)

- Mapping depends on physical variations
- Unclonable
 - No compact model exists, and CRP space is too large for dictionary
 - Or, responses kept secret

Design Considerations for Silicon PUFs

- Outputs determined by uncorrelated variation
 - Random dopant fluctuations and small devices
 - * Balanced parasitics and wire lengths to avoid bias

Design Considerations for Silicon PUFs

- Outputs determined by uncorrelated variation
 - Random dopant fluctuations and small devices
 - * Balanced parasitics and wire lengths to avoid bias
- Variation and noise hard to separate
 - Mask unreliable outputs
 - Majority voting
 - Error correction

Design Considerations for Silicon PUFs

- Outputs determined by uncorrelated variation
 - Random dopant fluctuations and small devices
 - * Balanced parasitics and wire lengths to avoid bias
- Variation and noise hard to separate
 - Mask unreliable outputs
 - Majority voting
 - Error correction
- * Secure

- * Assumed capabilities of adversary
 - Observe CRPs
 - Measure side channels
 - * Disassemble and probe chip

- * Assumed capabilities of adversary
 - Observe CRPs
 - Measure side channels
 - * Disassemble and probe chip
- Possible results of attacks
 - DOS by increasing error rate of CRPs
 - * Train parametric model to predict responses
 - Clone with another instance of PUF

- * Assumed capabilities of adversary
 - Observe CRPs
 2nd talk of session
 - Measure side channels
 - Disassemble and probe chip
- Possible results of attacks
 - DOS by increasing error rate of CRPs
 - * Train parametric model to predict responses
 - Clone with another instance of PUF

- Assumed capabilities of adversary
 - Observe CRPs
 - * Measure side channels
 - * Disassemble and probe chip
- Possible results of attacks
 - DOS by increasing error rate of CRPs
 - * Train parametric model to predict responses
 - Clone with another instance of PUF

3rd talk of session

- Assumed capabilities of adversary
 - Observe CRPs
 - Measure side channels
 - * Disassemble and probe chip
- Possible results of attacks
 - DOS by increasing error rate of CRPs
 - * Train parametric model to predict responses
 - Clone with another instance of PUF

4th talk of session

Weak PUFs

Strong PUFs

Weak PUFs

Few/one challenges

Strong PUFs

Many challenges

Weak PUFs

- Few/one challenges
- Responses remain internal
 - Perfect internal error correction

Strong PUFs

- Many challenges
- Public CRP interface
 - Error correction outsidePUF is possible

Weak PUFs

- Few/one challenges
- Responses remain internal
 - Perfect internal error correction
- Attacks: Cloning and invasive reading of responses

Strong PUFs

- Many challenges
- Public CRP interface
 - Error correction outside
 PUF is possible
- Attacks: Modeling attacks and protocol attacks

Weak PUFs

- Few/one challenges
- Responses remain internal
 - Perfect internal error correction
- Attacks: Cloning and invasive reading of responses
- Use cases: New form of key storage

Strong PUFs

- Many challenges
- Public CRP interface
 - Error correction outside
 PUF is possible
- Attacks: Modeling attacks and protocol attacks

Weak PUFs

- Few/one challenges
- Responses remain internal
 - Perfect internal error correction
- Attacks: Cloning and invasive reading of responses
- Use cases: New form of key storage

Strong PUFs

- Many challenges
- Public CRP interface
 - Error correction outside
 PUF is possible
- Attacks: Modeling attacks and protocol attacks
- Use cases: New cryptographic primitive

Weak vs Strong PUFs	
<u>Weak PUFs</u>	Strong PUFs
 Weak and strong are two PUF subclasses among many Controlled PUFs Public PUFs SIMPL, etc 	

R

1

1. Brief introduction to PUFs

2. Weak PUFs and applications

- 3. Strong PUFs and applications
- 4. Conclusions

Examples of Weak PUFs

- Using custom circuits
 - Drain currents [Lofstrom et al. '02]
 - * Capacitive coating PUF [Tuyls et al. '06]
 - * Cross-coupled devices [Su et al. '07]
 - Sense amps [Bhargava et al. '10]
- Using existing circuits
 - * Clock skew [Yao et al.'13]
 - * Flash latency [Prabhu et al. '11]
 - * Power-up SRAM state [Guajardo et al. '07, Holcomb et al. '07]

Examples of Weak PUFs

- Using custom circuits
 - * Drain currents [Lofstrom et al. '02]
 - * Capacitive coating PUF [Tuyls et al. '06]
 - * Cross-coupled devices [Su et al. '07]
 - Sense amps [Bhargava et al. '10]
- Using existing circuits
 - Clock skew [Yao et al.'13]
 - * Flash latency [Prabhu et al. '11]

Power-up SRAM state [Guajardo et al. '07, Holcomb et al. '07]

DATE 2014

Applications of Weak PUFs

- Identification
- Authentication
- Secret key
- Random number generation

Applications of Weak PUFs

- Identification
- Authentication
- * Secret key
- Random number generation

Utilize inherent power-up bias of each SRAM cell

Challenge: c (selects n cells)

- Challenge: c (selects n cells)
- * Responses: $r \in 2^n$ (power-up state of n cells)

- Challenge: c (selects n cells)
- * Responses: $r \in 2^n$ (power-up state of n cells)
- Disorder / randomness: Threshold variation of transistors in SRAM cell

Voltage

- Challenge: c (selects n cells)
- * Responses: $r \in 2^n$ (power-up state of n cells)
- Disorder/randomness: Threshold variation of transistors in SRAM cell

Weak PUF as Secret Key

Enroll PUF

- Learn CRP (c,r)
- Derive public error
 correcting data h for r
- * Key $k = Decode(r \oplus h)$

Enroll PUF

- Learn CRP (c,r)
- Derive public error
 correcting data h for r
- * Key $k = Decode(r \oplus h)$
- * Store h with PUF
- * Disable access to response r

Enroll PUF

- Learn CRP (c,r)
- Derive public error correcting data h for r
- * Key $k = Decode(r \oplus h)$
- * Store h with PUF
- * Disable access to response r

Generate Key in Field

Enroll PUF

- Learn CRP (c,r)
- Derive public error correcting data h for r
- * Key $k = Decode(r \oplus h)$
- * Store h with PUF
- * Disable access to response r

Enroll PUF

- Learn CRP (c,r)
- Derive public error correcting data h for r
- * Key $k = Decode(r \oplus h)$
- * Store h with PUF
- * Disable access to response r

* Reliable unclonable key for crypto

* Assumes that r cannot be read in field

1. Brief introduction to PUFs

2. Weak PUFs and applications

3. Strong PUFs and applications

4. Conclusions

Examples of Strong PUFs

- * Optical PUF [Pappu et al. '02]
- * Arbiter PUF [Gassend et al. '02, Lim et al. '05]
- * Bistable Ring PUF [Chen et al. '11]
- Low-power current-based PUF
 [Majzoobi et al. '11]

Examples of Strong PUFs

- * Optical PUF [Pappu et al. '02]
- * Arbiter PUF [Gassend et al. '02, Lim et al. '05]
- * Bistable Ring PUF [Chen et al. '11]
- Low-power current-based PUF
 [Majzoobi et al. '11]

Strong PUF Protocols

- Identification / Authentication (1)
- * Key Exchange (2,3)
- * Oblivious transfer (4,3,5,6) enables secure two-party computation
- * Bit commitment (3,5,6,7,8) enables zero-knowledge proofs
- Combined key exchange and authentication (9)
- (1) R. Pappu et al, Science 2002
- (2) M.v.Dijk, US Patent 2,653,197, 2004
- (3) C. Brzuska et al, CRYPTO 2011
- (4) U. Rührmair, TRUST 2010
- (5,6) U. Rührmair, M.v.Dijk, CHES 2012 and JCEN 2013
- (7) U. Rührmair, M.v. Dijk, Cryptology ePrint Archive, 2012
- (8) Ostrovsky et al., EUROCRYPT 2013
- (9) Tuyls and Skoric, Strong Authentication with Physical Unclonable Functions, Springer 2007

Strong PUF Protocols

- Identification / Authentication (1)
- * Key Exchange (2,3)

5th talk of session

- * Oblivious transfer (4,3,5,6) enables secure two-party computation
- * Bit commitment (3,5,6,7,8) enables zero-knowledge proofs
- * Combined key exchange and authentication (9)
- (1) R. Pappu et al, Science 2002
- (2) M.v.Dijk, US Patent 2,653,197, 2004
- (3) C. Brzuska et al, CRYPTO 2011
- (4) U. Rührmair, TRUST 2010
- (5,6) U. Rührmair, M.v.Dijk, CHES 2012 and JCEN 2013
- (7) U. Rührmair, M.v. Dijk, Cryptology ePrint Archive, 2012
- (8) Ostrovsky et al., EUROCRYPT 2013
- (9) Tuyls and Skoric, Strong Authentication with Physical Unclonable Functions, Springer 2007

Strong PUF Protocols

* Identification / Authentication (1)

5th talk of session

- * Key Exchange (2,3)
- * Oblivious transfer (4,3,5,6) enables secure two-party computation
- * Bit commitment (3,5,6,7,8) enables zero-knowledge proofs
- Combined key exchange and authentication (9)
- (1) R. Pappu et al, Science 2002
- (2) M.v.Dijk, US Patent 2,653,197, 2004
- (3) C. Brzuska et al, CRYPTO 2011
- (4) U. Rührmair, TRUST 2010
- (5,6) U. Rührmair, M.v.Dijk, CHES 2012 and JCEN 2013
- (7) U. Rührmair, M.v. Dijk, Cryptology ePrint Archive, 2012
- (8) Ostrovsky et al., EUROCRYPT 2013
- (9) Tuyls and Skoric, Strong Authentication with Physical Unclonable Functions, Springer 2007

[D. Lim et al., '05]

[D. Lim et al., '05]

* Challenges: $c_i \in 2^m$ (m= num stages)

[D. Lim et al., '05]

* Challenges: $c_i \in 2^m$ (m= num stages)

[D. Lim et al., '05]

* Challenges: $c_i \in 2^m$ (m= num stages)

[D. Lim et al., '05]

- * Challenges: $c_i \in 2^m$ (m= num stages)
- * Responses: $r_i \in 2^n$ (n=1 shown)

[D. Lim et al., '05]

[D. Lim et al., '05]

[D. Lim et al., '05]

[D. Lim et al., '05] Q S R Q=1voltage S R * Challenges: $c_i \in 2^m$ (m= num stages) time

[D. Lim et al., '05]

DATE 2014

[D. Lim et al., '05]

DATE 2014

DATE 2014

<u>Enroll PUF</u>
Strong PUF

Enroll PUF

- Choose random challenges
- Apply and store private CRPs

<u>Enroll PUF</u>
 Choose random challenges
* Apply and store private CRPs
(c_0, r_0)
(c_{1},r_{1})
(c_2, r_2)
•••
(c ₂ ,r ₂)

 No need to hide responses if PUF cannot be modeled

1. Brief introduction to PUFs

- 2. Weak PUFs and applications
- 3. Strong PUFs and applications

4. Conclusions

Review

- PUFs are exciting new security primitive based on physical disorder
 - Desirable properties but also limitations
 - * Arms race between designing and breaking

PReview

- PUFs are exciting new security primitive based on physical disorder
- 1. PUFs at a Glance
- 2. Modeling attacks
- 3. Modeling attacks using side-channel information
- 4. Invasive attacks
- 5. Requirements for secure PUF protocols
- 6. Forward-looking trends and challenges