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Motivation

e PUFs enable authentication of RFID devices
— Low cost and physically random

— Need uniqueness, reliability, security and efficiency
Image from www.verayo.cor
— Numerous recent designs (RFIDSec, CHES, HOST, SECSI, DAC,...) i
e Background:

— Can we leverage intrinsic properties of circuit?

— SRAM provides a convenient read-out mechanism

— SRAM cells are increasingly variable in advanced CMOS

— SRAM cells power-up to 1 or O fairly reliably on each chip.

* Problem: Can we improve success rate of chip ID based on SRAM variations?
* |dea: Rather than just observing power-up state,
observe the voltage at which the decision occurs!
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A Brief History of PUFs

* Physical one-way functions,
— Optical scattering [Pappu et al. Science 02]

* Physical unclonable functions in CMOS

— Arbiter PUF|Gassend et al. ccs 02]
— Additive model attacks [Lim MIT MS Thesis 03]

* Improved Arbiter PUFs [\Vajzoobi et al. ICCAD 08]
— Evolutionary algorithms [Ruhrmair et al. CCS 10]

* Prevent modeling attacks by hiding CRPs

— Errors must be corrected before any hashing

* Helper data for error correction [MVaes et al. CHES 09]

* Index-based syndrome code for arbiter PUFs [vu et al. D&T 10]
— Adapted for SRAM PUFs [Hiller et al. HOST 12]

— Physically obfuscated Keys (weak PUFs)
° Complete Survey [Maes and Verbauwhede, 2010]
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SRAM Characterization

 SRAM power-up fingerprint
— Patented for characterizing circuits [Layman et al. 02]

— Security applications proposed later

* |D and TRNG [Holcomb et al. RFIDSec 07, TrComp 09] *ﬁ! 0
* Physically Obfuscated Key [Guajardo et al. CHES 07], Intrinsic ID

 Data Retention Voltage (DRV)

— SRAM cells can not reliably retain state below a
certain voltage (typically 200-300mV)

— Optimal operation is at low voltage, but DRV failures
prohibit ultra-low voltages [qin et al. 15aED 04]

* Our contribution: DRV fingerprinting
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SRAM Fingerprints — Power-up and DRV
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* DRV fingerprint
— Record highest voltage v, of flip
after each written state

* Approximated using discrete
test voltages (~¥10mV)

— How long to remain at each
voltage v.? (~2ms?)
* Probably a function of

— 0V T temperature
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Experimental Set up

e Texas Instruments MSP430F2131 microcontroller (same
family used in Umass Moo...)

— 256 Bytes of SRAM (240 Bytes tisable)
e Agilent U2541A-series data acquisition (DAQ)
* Thermal chamber.and temperature sensor
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DRV is More Informative than Power-up

 Consider outcomes for test voltages v.%! with step A = 10mV
— 28 test voltages per written state, 282 = 784 total outcomes per cell
— vs. N+1 outcomes for N power-up trials
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— 5.12 bits at 10mV
— Usefulness will depend on repeatability
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— Too small a voltage step just captures noise N ,
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* |ncreases characterization time AmV]
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Repeatability of common DRVs

 |If a cell produces some given DRV, what will a 2" DRV from

same cell produce?
— 2nd DRV sometimes matches target exactly (10mV step size)

— Generally within small distance
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16-bit Fingerprints

e Distance metrics
k—1
- DRV :use dl(Fi7Fj):Z(v?—}—n_vg—i—n)z—l_(U3+n_v;+n)2

n=0

k—1

— Power-up :use hd(Fi,F) = piin®pjin

n=0

e Within class pairings are largely distinguishable from
between class pairings
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Top Match Experiment

. : : . Population (240)
Find top match in Population of 240 16-bit
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Precision and Recall

Distance threshold d selects pairings
— Guess that f,, f, are same device if D(f,,f,)<d

g

As d increases, precision drops and recall I%
increases £

— Sweep d for achievable precision/recall
points
. D(f1, f2) <d N fi==f
Precision(d) =
(@) D f2) < d
D d —_—

Recall(d)z (flaf2)< M fl f2 8
£

Population of 1019 16-bit fingerprints
— 19 match target, 1000 do not match
— Sweep d for each random population
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Impact of Temperature

e Within class pairings taken at different temperatures

* Temperature increases distances of within class pairings

— Can mitigate by increasing fingerprint size
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* If shiftis predictable, can modify the distance metric for
better matching

— Not yet well-understood
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Practical Issues

* Characterization procedure requires:

— Test voltage generation v, = [Vdd, 20 mV], A =10 mV

* On-chip voltage generation, increasingly used in modern
processors... but not at fine granularity

— Techniques exist, with costs associated
* Generate test voltages off-chip for smart cards
* Leverage natural decay of voltage in RFID tags...

— State that is persistent across test voltages

* Write to Flash or other non-volatile memory
* Or power DRV SRAM using separate power supply
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Reliability Considerations

Want to minimize characterization time, without
sacrificing reliability

— Time spent at each voltage contributes to runtime

— But must wait long enough for failures to surface

— Conservatively allowed 5 seconds per test voltage

— Literature hints that 2ms sufficient [nourivand et al. TviSI 12]

Reliability of matching with temperature
— Quantify whether DRV shifts are common-mode
— Better matching algorithms or error correction

Persistence of DRV fingerprints over lifetime of
chip
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Discussion

* Can we generalize this to ANY arbitrary
characterization procedure?
— How to “Challenge” each chip?
e Supply voltage
* Temperature
 Digital challenges

— How to observe “Response”
* SRAM readout
* Arbiter result
e Other?

— Metrics: uniqueness, reliability, security, efficiency



Conclusions

A new SRAM mechanism for ID or Physically
obfuscated key

¢/ Identification with fewer SRAM cells
v/ Softer distance measure

* Could lead to improved matching algorithm
* Lower-cost error correction

X Voltage generation
X Runtime to take fingerprint
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