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Autonomous unmanned systems are booming !

Unmanned Ships

S&P 2021

Unmanned Arial Vehicles

Global Self-Driving Car Market Size and Forecast,
2015 - 2024 (US$ Billion)
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Computer Version in Autonomous Vehicles
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Adversarial Attacks against Computer Vision

&

m)  “Go ahead!”

Manipulating computer vision may result in tragic decisions
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Existing Work

Focus on altering the images, objects and lights

A Computer Vision
% Light

@ l;.\\ e »‘{I ﬂ Object

LEITEE ®\ Detéctor .

Physical stickers or patterns on Projecting lights into

Digital pixel perturbation on the

_ images
the objects cameras [S.-M. Moosavi-Dezfooli et al, CVPR'16]
[K. Eykholt et al, CVPR’18] [N. Carlini and D. Wagner, S&P’17]

[Y. Man et al, RAOD’20]

[Y. Zhao et al, CCS’19] [J. Suetal, TEC'19]
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Poltergeist Attacks- Utilizing auxiliary sensors
v,

. Walnut [T. Trippel et al, EuroS&P’17]
Moti Camera System

Rocking Drones [Son et al, USENIX’15]
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Poltergeist Attacks- Utilizing auxiliary sensors
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Can we inject acoustic signals into adversarial examples?
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Preliminary Analysis- Stimulation

The blur can change the outline, the size, and even the color of
an existing object or an image region without any objects,
which may lead to hiding, altering an existing object, or
creating a non-existing object.
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Challenges
O How to quantify the impact of acoustic signals on the level
and patterns of the image blur?

O How to optimize the blur patterns for an effective and
efficient attack against black-box object detectors?
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Challenge 1: Acoustic signals = Image blur patterns

O Acoustic signals - Sensor readings
> Walnut [T. Trippel et al, EuroS&P’17], Rocking Drones [Yunmok Son et al, USENIX’15]
» Accelerometer readings: {dz,dy,d.}
> Gyroscope readings: {@r, @y, @y}
O Sensor readings - Compensatory camera motions = Pixel motions

Gy, d G, —ad : Lz L i, d
> {ds,dy} - {—da, _ay} - linear motion: L., = %(% —|—ay)T2, o= arccos< a H(_iy|>
x|y
- - . . = 2
» 4 > —d, > radial motion: p= “;Z
> & > —® - rotational motion: B8=w,T
Inertial ?[ Image
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Challenge 1: Acoustic signals = image blur patterns

O Pixel motions = Four types of adversarial blur patterns
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Challenge 2: Blurry images—> Object misclassification

O Large parameter space
> Four degrees-of-freedom
> Four kinds of motion blur patterns
O Black-box object detector
> Unknown architecture, parameters
> No gradient
O Physical Constraints
> Attack distance
> Attack power

o Inertial R Image ]
w )>>>> Sensors "| Stabilization
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Challenge 2: Blurry images—> Object misclassification

O Objective functions

> Attack effectiveness, Attack cost,
Physical attack capability restriction
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O Bayesian Optimizer

» Gradient-free strategy
» Global optimization for black-box functions

o prior information
required
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Adversarial blurry images
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System Design

o Three key attack building blocks
» Blur Pattern Modeling

» Attack parameter Optimization

> Sensor Output Injection
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Evaluation-Simulation

O Datasets:
» 2 popular self-driving datasets

» BDD10OK, KITTI

0 Object Detectors:
» 5 state-of-the-art object detectors

» Academic: Faster R-CNN, YOLO v3/v4/v5
» Commercial: Apollo

0 Object of Interest (OOI):
» person, car, truck, bus, traffic light,

stop sign
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Attack Effectiveness

O Hiding Attack (HA)
» Targeted: One = None
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Attack Effectiveness

O Creating Attack (CA)

» Untargeted: None = Any

» Scenario-targeted: None - A Set

» Targeted: None - One
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Attack Effectiveness LT

Person
O Altering Attack (AA)
» Untargeted: One = Any
» Scenario-targeted: One = A Set .
> Targeted: One = One Cleandmage
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Evaluation-Real World

[ Target: Samsung S20 smartphone

Uninterrupted .-w-mj

in d mOVing VGhiCle orrzzzziziz Power SUpply ‘;__UZ'!IO Ampllfler

[ Attack device: Ultrasonic Speaker

O Scenes: , ;
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> City Crossroad , ,Gmund T ._—— Smartphone "'/ Al
» Tunnel '

» Campus Road
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Simulation vs. Real-world

Clear Image Simulation Real-world

A

The simulated images are representative of the ones created in the
presence of real attacks.
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Attack Effectiveness

0 Overall Performance O Impact of Attack Distances
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HA shows a good performance in any scenes An attack powerof 10 W suffices to launch an
CA and RA works well in special enviroments attack from 1.1 m away
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Real-world Attack Videos N
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Countermeasures

0 MEMS Inertial Sensors Safeguarding

» Acoustic Isolation

» Secure Low-pass Filter
[0 Image Stabilization Techniques

» Additional Digital Image Stabilization
0 Object Detection Algorithms

» Input Image De-blur

» Detection Model Improvement

[0 Sensor Fusion Techniques
» LiDARs, radars combined with cameras
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Conclusion

[0 Discovered a new class of system-level vulnerabilities, AMpLe attacks,
injecting physics into Adversarial Machine Learning

0 Proposed Poltergeist attacks, acoustic adversarial machine learning
against cameras and computer vision

[ Evaluation showed high performance against 4 academic and 1
commercial object detectors

0 Future work

» Leveraging signal transmission via ultrasound, visible light, infrared, lasers, radio,
magnetic fields, heat, fluid, etc. for AMpLe attacks
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Poltergeist: Acoustic Adversarial Machine Learning
against Cameras and Computer Vision

Contact the authors at: Lab websites:
\ / Xji@zju.edu.cn usslab.org
NP yushicheng@zju.edu.cn spqgr.eecs.umich.edu
'S wyxu@zju.edu.cn Paper websites:
\ o
'\ kevinfu@umich.edu https.//glthgb.com/USSL
ab/PoltergeistAttack

Thank you !
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