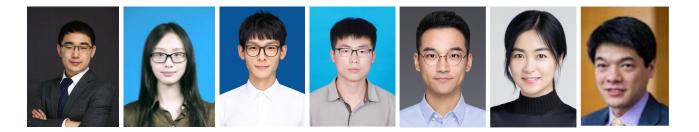
Poltergeist: Acoustic Adversarial Machine Learning against Cameras and Computer Vision

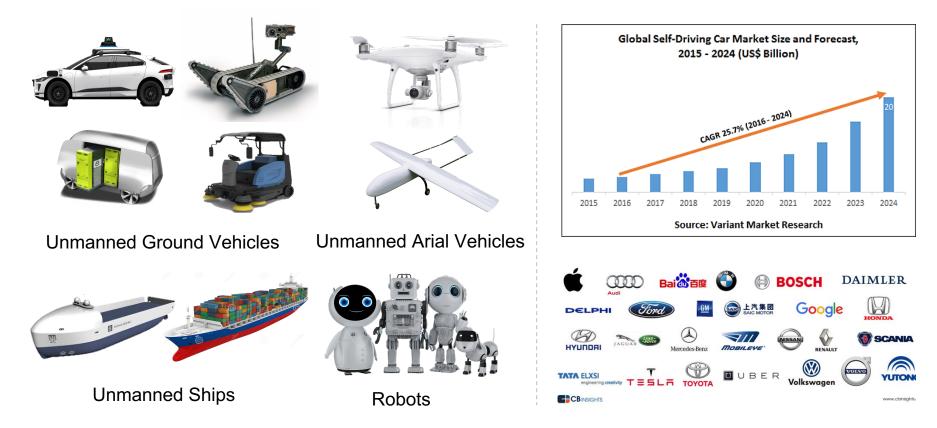
Xiaoyu Ji¹, Yushi Cheng¹, Yuepeng Zhang¹, Kai Wang¹, Chen Yan¹, Wenyuan Xu¹, Kevin Fu²

¹ Ubiquitous System Security Lab (USSLAB), Zhejiang University

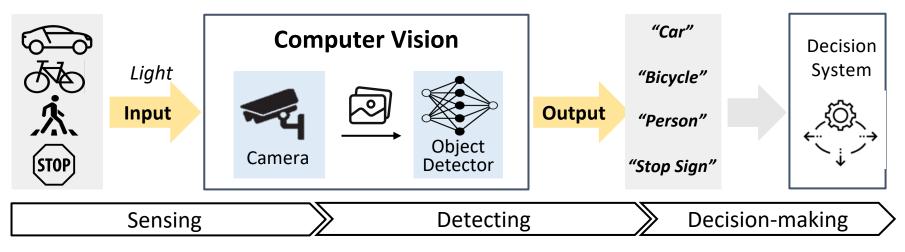
² Security and Privacy Research Group (SPQR), University of Michigan



Autonomous unmanned systems are booming !



Computer Version in Autonomous Vehicles

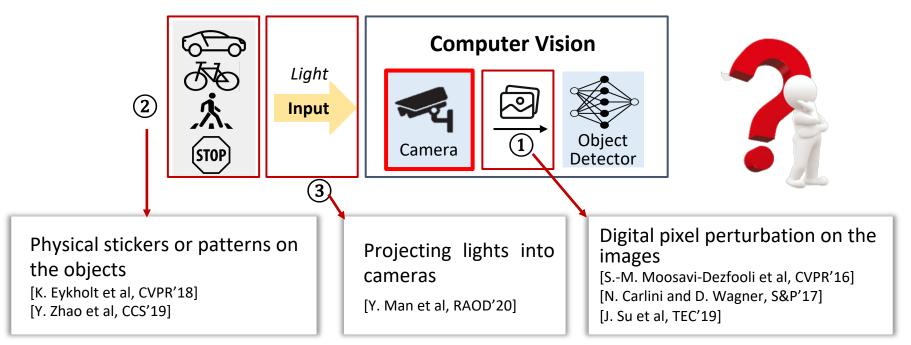


Adversarial Attacks against Computer Vision

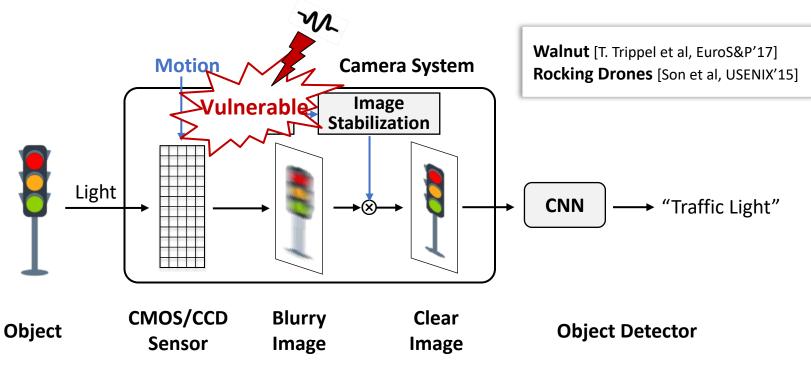
Manipulating computer vision may result in tragic decisions

Existing Work

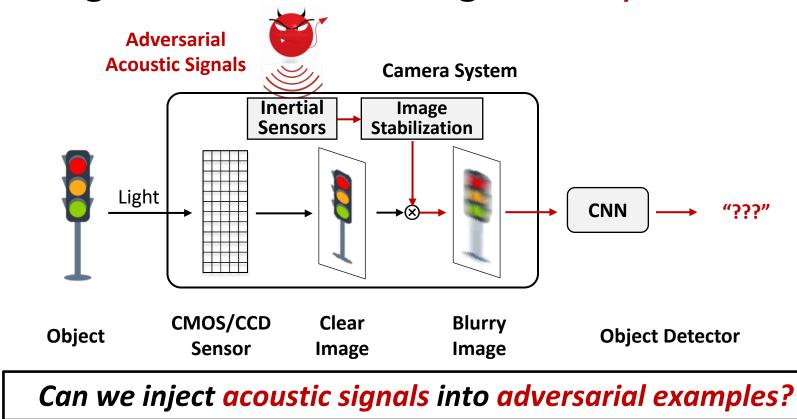
Focus on altering the images, objects and lights



Poltergeist Attacks- Utilizing auxiliary sensors



Poltergeist Attacks- Utilizing auxiliary sensors



Preliminary Analysis- Stimulation

Hiding "A" → None

The blur can change the outline, the size, and even the color of Creation existing object or an image region without any objects, which may lead to hiding, altering an existing object, or

creating a non-existing object.

heavy, horizontal

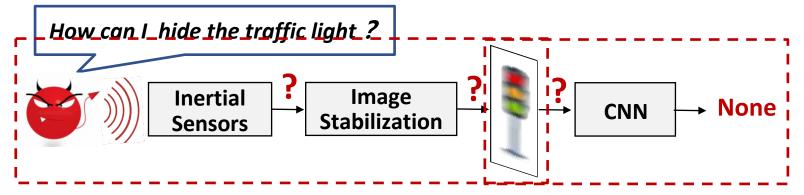
person 0.969

lockwise heavy, anticlo

Challenges

How to quantify the impact of acoustic signals on the level and patterns of the image blur?

How to optimize the blur patterns for an effective and efficient attack against black-box object detectors?



Challenge 1: Acoustic signals \rightarrow Image blur patterns

- \square Acoustic signals \rightarrow Sensor readings
 - > Walnut [T. Trippel et al, EuroS&P'17], Rocking Drones [Yunmok Son et al, USENIX'15]
 - > Accelerometer readings: $\{\vec{a}_x, \vec{a}_y, \vec{a}_z\}$
 - > Gyroscope readings: $\{\vec{\omega}_r, \vec{\omega}_p, \vec{\omega}_y\}$

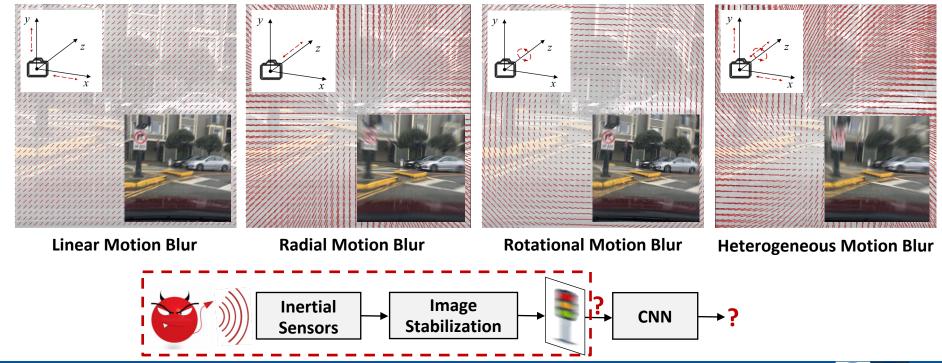
□ Sensor readings \rightarrow Compensatory camera motions \rightarrow Pixel motions

$$\{\vec{a}_x, \vec{a}_y\} \rightarrow \{-\vec{a}_x, -\vec{a}_y\} \rightarrow \text{linear motion:} \quad \vec{L}_{xy} = \frac{f}{2u}(\vec{a}_x + \vec{a}_y)T^2, \quad \alpha = \arccos\left(\frac{\vec{a}_x \cdot \vec{a}_y}{|\vec{a}_x||\vec{a}_y|}\right) \\ \Rightarrow \quad \vec{a}_z \rightarrow -\vec{a}_z \rightarrow \text{radial motion:} \quad p = \frac{\vec{a}_z T^2}{2u}$$

 \succ $\vec{\omega}_r \rightarrow -\vec{\omega}_r \rightarrow$ rotational motion: $\beta = \omega_r T$

Challenge 1: Acoustic signals \rightarrow image blur patterns

\square Pixel motions \rightarrow Four types of adversarial blur patterns



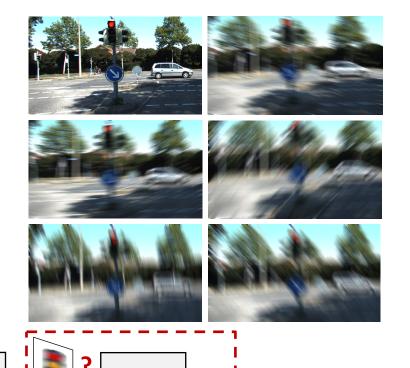
Challenge 2: Blurry images \rightarrow Object misclassification

- □ Large parameter space
 - Four degrees-of-freedom
 - Four kinds of motion blur patterns
- Black-box object detector
 - > Unknown architecture, parameters

Inertial

Sensors

- No gradient
- Physical Constraints
 - Attack distance
 - Attack power



CNN

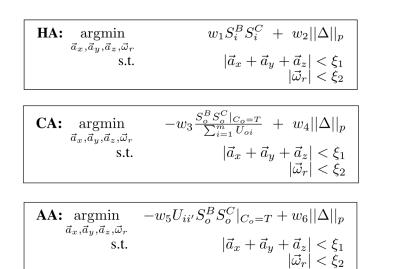
S&P 2021 Poltergeist: Acoustic Adversarial Machine Learning against Cameras and Computer Vision

Image

Stabilization

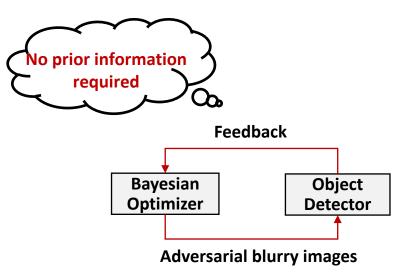
Challenge 2: Blurry images \rightarrow Object misclassification

- □ Objective functions
- Attack effectiveness, Attack cost,
 Physical attack capability restriction



Bayesian Optimizer

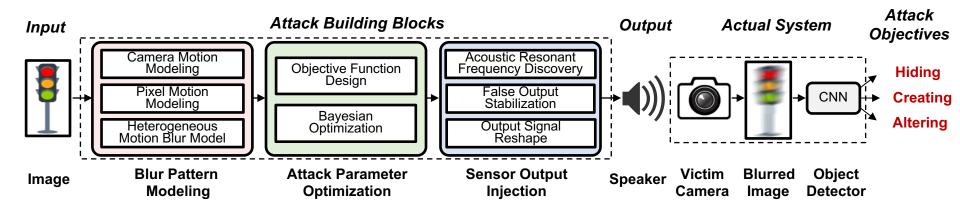
- Gradient-free strategy
- Global optimization for black-box functions



System Design

Three key attack building blocks

- Blur Pattern Modeling
- Attack parameter Optimization
- Sensor Output Injection



Evaluation-Simulation

Datasets:

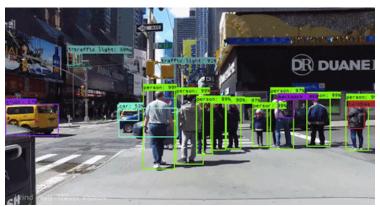
- 2 popular self-driving datasets
- ➢ BDD100K, KITTI

D Object Detectors:

- 5 state-of-the-art object detectors
- Academic: Faster R-CNN, YOLO v3/v4/v5
- Commercial: Apollo

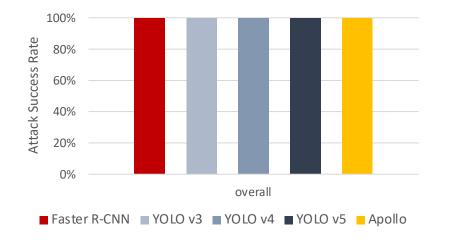
Object of Interest (OOI):

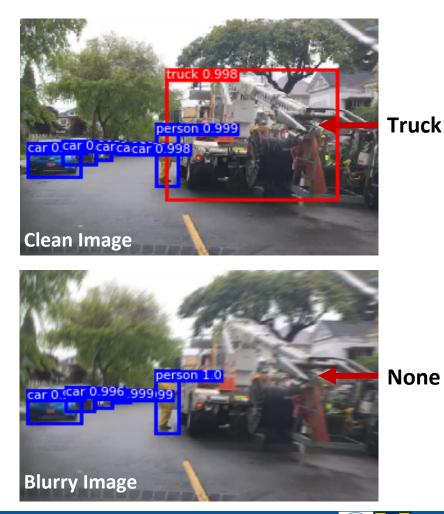
person, car, truck, bus, traffic light, stop sign



□ Hiding Attack (HA)

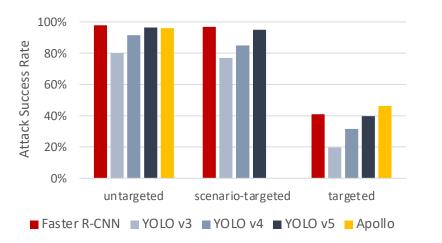
 \succ Targeted: One \rightarrow None

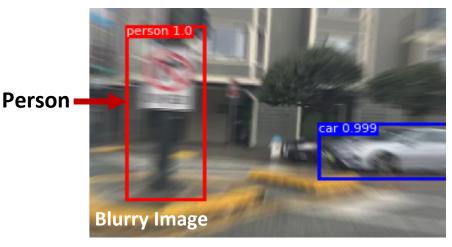




Creating Attack (CA)

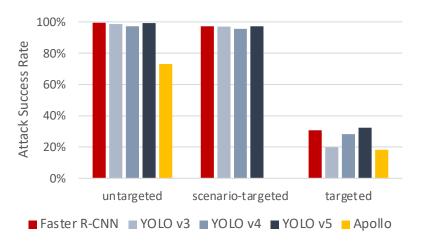
- > Untargeted: None \rightarrow Any
- \succ Scenario-targeted: None \rightarrow A Set
- ➤ Targeted: None → One

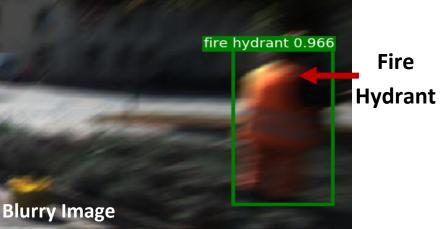




□ Altering Attack (AA)

- > Untargeted: One \rightarrow Any
- \succ Scenario-targeted: One \rightarrow A Set
- ➤ Targeted: $One \rightarrow One$

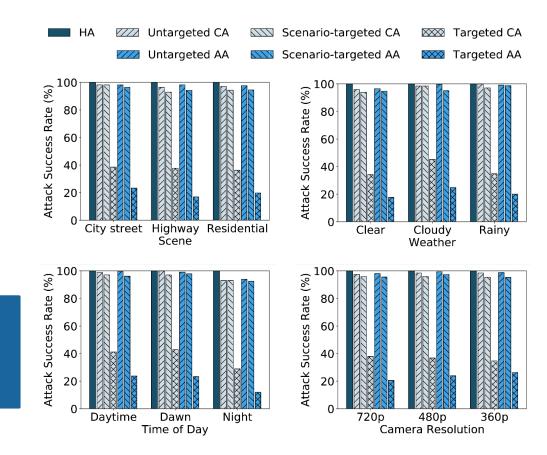




Attack Robustness

- **G** Scene
- **U** Weather
- **D** Time of Day
- Camera Resolution

PG attacks are robust across various scenes, weathers, time periods of a day, and camera resolutions.



Evaluation-Real World

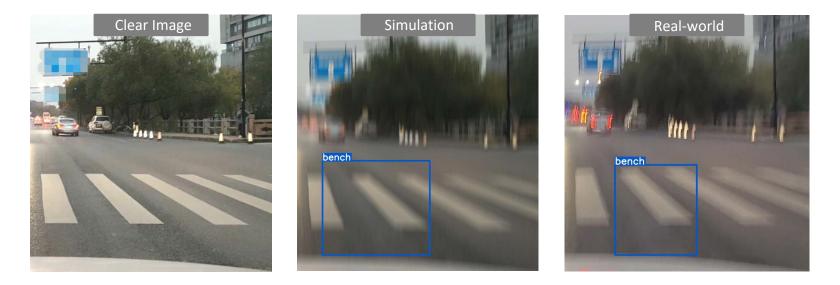
Target: Samsung S20 smartphone in a moving vehicle

□ Attack device: Ultrasonic Speaker

Scenes:

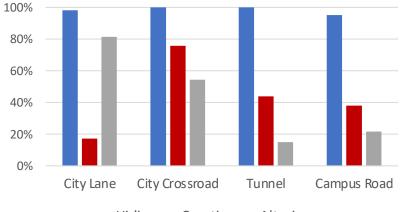
- City Lane
- City Crossroad
- > Tunnel
- Campus Road

Simulation vs. Real-world



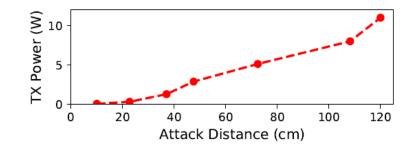
The simulated images are representative of the ones created in the presence of real attacks.

Overall Performance



■ Hiding ■ Creating ■ Altering

□ Impact of Attack Distances



HA shows a good performance in any scenes CA and RA works well in special enviroments An attack powerof 10 W suffices to launch an attack from 1.1 m away

Real-world Attack Videos

Altering car into personeatiding theckar

Ground Truth

Real-World Attack

Hiding the Car

https://github.com/USSLab/PoltergeistAttack

Countermeasures

MEMS Inertial Sensors Safeguarding

- Acoustic Isolation
- Secure Low-pass Filter

Image Stabilization Techniques

Additional Digital Image Stabilization

Object Detection Algorithms

- Input Image De-blur
- Detection Model Improvement

Given Sensor Fusion Techniques

LiDARs, radars combined with cameras

Conclusion

- Discovered a new class of system-level vulnerabilities, AMpLe attacks, injecting physics into Adversarial Machine Learning
- Proposed Poltergeist attacks, acoustic adversarial machine learning against cameras and computer vision
- Evaluation showed high performance against 4 academic and 1 commercial object detectors

D Future work

Leveraging signal transmission via ultrasound, visible light, infrared, lasers, radio, magnetic fields, heat, fluid, etc. for AMpLe attacks

Poltergeist: Acoustic Adversarial Machine Learning against Cameras and Computer Vision

Contact the authors at:

xji@zju.edu.cn

yushicheng@zju.edu.cn

wyxu@zju.edu.cn

kevinfu@umich.edu

Lab websites:

usslab.org

spqr.eecs.umich.edu

Paper websites: https://github.com/USSL ab/PoltergeistAttack

Thank you !

