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Abstract—Physical unclonable functions (PUFs) are circuits
that produce outputs determined by random physical variations
from fabrication. The PUF studied in this paper utilizes the vari-
ation sensitivity of static random access memory (SRAM) data
retention voltage (DRV), the minimum voltage at which each
cell can retain state. Prior work shows that DRV can uniquely
identify circuit instances with 28% greater success than SRAM
power-up states that are used in PUFs [1]. However, DRV is
highly sensitive to temperature, and until now this makes it
unreliable and unsuitable for use in a PUF. In this paper, we
enable DRV PUFs by proposing a DRV-based hash function that
is insensitive to temperature. The new hash function, denoted
DRV-based hashing (DH), is reliable across temperatures because
it utilizes the temperature-insensitive ordering of DRVs across
cells, instead of using the DRVs in absolute terms. To eval-
uate the security and performance of the DRV PUF, we use
DRV measurements from commercially available SRAM chips,
and use data from a novel DRV prediction algorithm. The pre-
diction algorithm uses machine learning for fast and accurate
simulation-free estimation of any cell’s DRV, and the predic-
tion error in comparison to circuit simulation has a standard
deviation of 0.35 mV. We demonstrate the DRV PUF using two
applications—secret key generation and identification. In secret
key generation, we introduce a new circuit-level reliability knob
as an alternative to error correcting codes. In the identification
application, our approach is compared to prior work and shown
to result in a smaller false-positive identification rate for any
desired true-positive identification rate.

Index Terms—Chip identification, data retention volt-
age (DRV), key generation, machine learning (ML), physical
unclonable function (PUF).

I. INTRODUCTION

INTEGRATED circuit instances can be identified or authen-
ticated using nonvolatile static identifiers or through the use

of distinguishing physical characteristics. Physical character-
istics have several security advantages over static identifiers,
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including immutability and resistance to cloning and tam-
pering. The physical characteristics can be viewed as an
identifying fingerprint of a given device instance. More for-
mally, physical fingerprints are a component of a particular
type of physical unclonable function (PUF) [2], [3] that is
originally described as a physically obfuscated key [4], and
more recently as a weak PUF [5].

If used for identification or constructing secret keys, fin-
gerprint observations must be consistent over time and across
different environmental conditions. A fundamental concern in
PUFs is to minimize the impact of noise and environmen-
tal fluctuations while still being sensitive to the microscopic
variations that make each device unique. A common way of
minimizing the impact of noise and environment is to use dif-
ferential circuits. Yet small variations in the fingerprint of a
device are inevitable, and much effort is spent on error cor-
rection of somewhat-unreliable fingerprints or PUF outputs, or
adding significant extra circuitry for calibration [6]. However,
error correcting codes and calibration circuitry are expensive in
terms of the number of raw bits and silicon resource required
to create a reliable key, and more so if a large number of errors
must be correctable.

This paper employs data retention voltage (DRV), the min-
imum supply voltage at which state is retained, as the basis
for a new static random access memory (SRAM) PUF. Our
previous work [1] has shown DRV fingerprints to be more
informative than power-up SRAM PUFs [5], [7]. The physi-
cal characteristics responsible for DRV are imparted randomly
to each cell during manufacturing, providing DRV with a nat-
ural resistance to cloning. DRVs are not only random across
chips, but also have relatively little spatial correlation within a
single chip and can be treated in analysis as independent [8].
The proposed technique has the potential for wide application,
as SRAM cells are among the most common building blocks
of nearly all digital systems.

In this paper, we extend the idea of DRV fingerprinting to
create a PUF based on DRV. To overcome the temperature-
sensitivity of DRV, we propose a DRV-based hashing (DH)
scheme that is robust against temperature changes. The robust-
ness of this hashing comes from its use of (reliable) DRV
ordering instead of (less reliable) DRV values. The use of
DRV ordering can be viewed as a differential mechanism at
the logical level instead of the circuit level as in most PUFs.
To help validate the DRV PUF, we propose a machine learn-
ing (ML) technique for simulation-free prediction of DRVs as a
function of process variations and temperature. The ML model
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enables the rapid creation of the large DRV datasets required for
evaluating the DRV PUF approach. Our approach is furthermore
supported using hardware measurement of DRV data.

The contributions of this paper are as follows.
1) We demonstrate that SRAM DRV can serve as a basis

for reliable identification and key generation. This find-
ing is supported by DRV characterizations of 20K
SRAM cells measured three times at each of three
different temperatures.

2) We present the first work that applies ML for simulation-
free prediction of DRV as a function of temperature,
process variation assignments, and transistor sizes. Once
the ML model is trained, it can predict the DRV of a cell
at a given temperature 2.2e6 faster than can circuit sim-
ulation, and its prediction error versus circuit simulation
has a standard deviation of only 0.35 mV.

The remainder of this paper is structured as follows.
Section II reviews related work on PUFs. Section III introduces
DRV and some conventional methods of DRV prediction.
Section IV explains how the DRVs of SRAM cells are char-
acterized in hardware measurement and circuit simulation.
Section V proposes the use of a neural network model for
predicting DRV. Section VI presents our DH scheme (DH),
secret key generation, and experimental evaluation thereof.
Section VII presents the conclusion in this paper.

II. RELATED WORK

A wide variety of PUFs and fingerprints based on custom
or preexisting integrated circuit components have been pro-
posed. The identifying features used by custom designs include
MOSFET drain-current [9], timing race conditions [2], and the
digital state taken by cross-coupled logic after a reset [10]. IC
identification based on preexisting circuitry is demonstrated
using SRAM power-up state [5], [7], and physical variations of
flash memory [11]. Lee et al. [12] derived a secret key unique
to each IC using the statistical delay variations of wires and tran-
sistors across ICs. Circuit-level techniques for increasing the
reliability of SRAM PUFs are explored by Bhargava et al. [13].
An experimental evaluation of low-temperature data remanence
on a variety of SRAMs is provided by Skorobogatov [14], and
SRAM remanence in radio-frequency identification (RFID) has
been studied by Saxena and Voris generation [15] as a limitation
to SRAM-based true random number.

Previous works [16], [17] have used error correction to con-
struct secret keys from noisy PUF sources; however, these
approaches are expensive in their required number of gates.
Suh et al. [18] used a BCH code to correct 21 errors among
127 raw bits to create a 64-bit key. Guajardo et al. [5] derived
a 278-bit secret key from 1023 bits of power-up SRAM
state using a BCH code that can correct up to 102 errors.
Maes et al. [19] introduced an SRAM helper data algorithm
to mask unreliable bits using low-overhead post-processing
algorithms. Recently, Yu and Devadas [20] proposed the use of
index-based syndrome (IBS) coding for deriving reliable key
bits from PUF outputs. A notable feature of error correction
using IBS coding in PUFs is that the syndrome does not leak
information about the encoded bits. Hiller et al. [21] extend

Fig. 1. Six transistor SRAM cell. Q and Q̄ are the complementary state nodes
that store a single bit value between cross-coupled inverters implemented by
transistors M1–M4. WL is the word line, and controls access transistors M5
and M6. BL and BL are the complementary bitlines used to read and write
the SRAM cell. Arrows denote the direction of current leakage.

IBS coding for SRAM PUFs. Van Herrewege et al. [22] have
designed a new lightweight authentication scheme using PUFs
that does not require storage of a large number of PUF
challenge-response pairs.

Compared to the low cost of the SRAM used for DRV
fingerprinting, a relatively significant practical cost may be
associated with the generation of the test voltages for charac-
terizing the DRVs. Emerging devices such as computational
RFIDs [23] can use software routines to extract DRVs, but
as contactless devices they must generate all test voltages
on-chip. On-chip dynamic control of SRAM supply voltage
is assumed in the low-power literature at least since work
on drowsy caches [24]. Supply voltage tuning has also been
applied with canary cells to detect potential SRAM failures,
and as a post-silicon technique to compensate for process
variation and increase manufacturing yields [25].

III. DATA RETENTION VOLTAGE OF SRAM

An SRAM cell is commonly implemented in CMOS tech-
nology as a six-transistor circuit (Fig. 1). When an SRAM
cell is in the standby condition, its word line (WL) is set low,
and the two access transistors (M5 and M6) are shut off. If
the supply voltage is sufficient, two inverters (composed of
M1, M2 and M3, M4) use positive feedback to pull one com-
plementary state node (Q or Q̄) high, and the other low. If
supply voltage is below DRV, then transistors operate in the
sub-threshold (sub-Vth) region [26] where they are highly sen-
sitive to variations and may lose state. Such a loss of state on
account of insufficient supply voltage is termed a data reten-
tion failure. The voltage at which data retention failures occur
in each SRAM cell depends on its asymmetric process varia-
tion. Because DRV is randomly assigned to each cell through
process variation, the DRV fingerprint of SRAM is a physical
fingerprint suitable for use in a PUF.

Since the DRV of SRAM signifies the minimum sup-
ply voltage at which cells can store arbitrary state, DRV is
usually studied as a lower limit to supply voltage scaling.
Most previous literature focuses on cases where the SRAM
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supply voltage remains safely above DRV. While remaining
above DRV, the supply voltage can be adjusted to reduce
leakage power [24], [27], compensate for manufacturing vari-
ability [25], or compensate for environmental variations [28].
This paper is not concerned with remaining above DRV, but
instead with characterizing the DRV of each cell and using
this unique variation-sensitive information as part of a PUF.

Fast and accurate DRV analysis is needed to evaluate DRV
fingerprinting, and significant research effort has been spent
on solving this problem. The default technique for DRV anal-
ysis is Monte Carlo circuit simulation. When searching for the
DRV of an entire array instead of individual cells, improve-
ments over basic Monte Carlo simulation include the use of
importance sampling [29], adaptive sampling [30], [31], and
boundary line searching [32]. An overview of several statis-
tical techniques is given by Wang et al. [33]. In Section V,
we propose a new technique that uses ML to predict DRV.
This approach differs from the aforementioned statistical
approaches in having the goal of predicting the DRV of indi-
vidual cells, instead of just accurately estimating the failure
rate of the entire SRAM using process variation statistics.

IV. DRV CHARACTERIZATION

We characterize the DRV of an SRAM cell at address i
with a pair 〈v0

i , v1
i 〉. Each vw

i represents the highest voltage at
which address i will have a retention failure after state w is
written to it. In principle, v0

i and v1
i are real-valued; in prac-

tice, we approximate each one using N discrete voltages with
a step size of �v. Procedure 1 presents our characterization
procedure. The implementation details of Procedure 1 vary
slightly when applied in hardware measurement or simulation
as explained in the next two sections.

The DRV characterization procedure is parameterized
by maximum, minimum, and step size for test voltages
(vmax, vmin, and �v, respectively), and by the time (ttest)
for which each test voltage is applied. Simulations by
Nourivand et al. [25] using a procedure similar to Procedure 1
show that a value of 2 ms for ttest is sufficient to induce reten-
tion failures. The total time to characterize the DRV of an
SRAM cell using Procedure 1 is given by tproc in (1). In the
case of simulation, tproc is the simulated time, and the actual
runtime for the circuit simulator is many orders of magnitude
larger. The frequency of observing different DRVs in hardware
measurements and simulation are shown in Fig. 4

tproc = ttest × vmax − vmin

�v
. (1)

A. Hardware DRV Measurement

The target platform for DRV fingerprinting is an inte-
grated SRAM block with an adjustable supply voltage, as is
sometimes used to compensate for variation [34]. To simplify
experiments, our platform mimics this configuration using a
dedicated SRAM chip and a separate microcontroller. Fig. 2
presents the overview of our experimental system. SRAM sup-
ply voltages are generated using analog outputs of a Texas
Instruments MSP430 F2618 microcontroller [35], and that
same microcontroller also orchestrates the timing of the supply

Procedure 1 Characterize the DRV Fingerprint of a Set of
SRAM Cells
Require: A set of bit-addressable SRAM cells
Ensure: v0

i , v1
i {the DRV characterization of cell at address i.}

1: Let Vnom be the nominal supply voltage for the SRAM
2: Let si refer to the logical state of SRAM address i.
3: for w = 0, 1 do
4: for i ∈ SRAM do
5: si ← w {write w to SRAM address}
6: vw

i ← vmin {value used if no retention failure observed}
7: end for
8: vtest ← vmax {initialize test voltage}
9: while vtest > vmin do

10: lower SRAM voltage from Vnom to vtest
11: remain at voltage vtest for time ttest
12: raise SRAM voltage from vtest to Vnom
13: for i ∈ SRAM do
14: if (si �= w) ∧ (

vw
i = vmin

)
then

15: SRAM cell at address i did not retain state w after
applying vtest, and vtest is the first and highest voltage
at which this retention failure occurred.

16: vw
i ← vtest

17: end if
18: end for
19: vtest ← vtest −�v {try a lower voltage next}
20: end while
21: end for

voltage changes (per Procedure 1). An op-amp configured
as a voltage follower tracks the analog output voltage from
the microcontroller and powers the SRAM at the same volt-
age; the op-amp is used because the analog output of the
microcontroller cannot supply enough current to power the
SRAM directly. All experiments use instances of SRAM chip
AS6C6264 [36] and the DRV characterization parameters are
vmax = 700 mV, vmin = 0 mV, �v = 2 mV, and ttest = 1 s.
Thermal tests are conducted inside of a Sun Electronics EC12
Environmental Chamber [37], and an OSXL450 infrared non-
contact thermometer [38] with ±2 ◦C accuracy is used to
verify the temperature.

Note that our experimental platform differs from that used
in [1]. In our previous work, the DRVs of SRAM cells in a
microcontroller memory are characterized by repeatedly low-
ering the microcontroller’s supply voltage and observing the
highest voltage that induces a retention failure in each cell.
Because the microcontroller’s SRAM shares a common sup-
ply node with the processing core, the low test voltages used
for the characterization cause the core to reset and lose its
state. As persistent state is required for the DRV characteri-
zation, our experiments used the microcontroller’s nonvolatile
memory to preserve state while the test voltages were applied.

B. DRV Measurement in SPICE Simulation

Circuit simulation is a second platform for DRV char-
acterization (Procedure 1), and it complements hardware
measurements by allowing for DRV exploration under con-
trollable process variations and environmental conditions. In
circuit simulation, we use transistor models from the 45 nm
predictive technology model [39], [40]. To mimic the random
process variations that give each cell its unique DRV, variations
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Fig. 2. Experimental platform used for determining SRAM chip DRV
assignments.

are introduced for transistor width W, length L, and thresh-
old voltage Vth. The International Technology Roadmap for
Semiconductors indicates that transistor length should have a
3σ variation that is 10% of the nominal length L [41], [42].
Adopting the same guideline for transistor width, in our sim-
ulation the random components of both W and L are normally
distributed with a standard deviation that is 3.33% of the nom-
inal W or L value. The standard deviation of threshold voltage
is given by (2); a value of 1.8 mV*μm is used for the matching
constant AVth [43]. The parameter values used when imple-
menting the DRV characterization procedure (Procedure 1) in
SPICE are vmax = 500 mV, vmin = 0 mV, �v = 0.1 mV, and
ttest = 2 ms

σVth =
AVth√
W ∗ L

. (2)

C. Impact of Temperature Variations

DRVs generally increase with temperature [26], and this
hinders the reliability of DRV-based fingerprinting. Recalling
that each DRV is a point 〈v0

i , v1
i 〉 in 2-D space, an intuitive

way to define the distance between two DRVs is to use their
distance in this 2-D space (3). This distance metric is used as
the basis for DRV fingerprint matching in [1]. To demonstrate
the impact of temperature, we compute the average distance
between two characterizations of the same cell, when one is
taken at 28 ◦C and the other at 50 or 70 ◦C. As shown in
Fig. 3, the average distance between the two characterizations
increases with the temperature difference

d1(i, j) =
√(

v0
i − v0

j

)2 +
(

v1
i − v1

j

)2
. (3)

Given that DRV fingerprints are intended for use in real-
world scenarios without precisely controlled temperatures, the
temperature sensitivity shown in Fig. 3 indicates that the dis-
tance metric of (3) is prone to unreliability in real-world usage.
In Section VI, we propose a new technique for extracting
temperature-invariant information from DRV and demonstrate

Fig. 3. Distance [per (3)] between two characterizations of the same cell
increases as temperature changes.

that this new technique is highly reliable when temperature
fluctuates.

V. MODELING THE DRV OF SRAM CELL

Although the SPICE simulation described in Section IV-B is
a straightforward and highly accurate approach to characterize
the DRV of SRAM cells, it is very time consuming for two
reasons. The first reason is that, to find the maximum volt-
age that induces a failure in each cell, numerous test voltages
must be applied (Procedure 1). The second reason is simply
that simulating each test voltage is itself very slow. On our
experimental machine, equipped with an Intel Xeon E5-2690
processor running at 2.90 GHz with 64 GB of RAM, simulat-
ing a single test voltage on a single SRAM cell for 2 ms has
a runtime of 0.17 s.

An alternative to iterative SPICE analysis is to predict DRV
using a model. Just as the DRV of each SRAM cell is ulti-
mately determined by temperature and the process variations
of its transistors, the DRV of an SRAM cell can be formu-
lated as a function of its temperature T and transistor width,
length, and threshold voltage (W, L, and Vth, respectively).
Qin et al. [26] provided an analytical model for the DRV
of an individual cell as in (4), where DRVr is the DRV at
room temperature, and DRVf is defined in (5) with �T rep-
resenting the temperature difference from room temperature.
Terms ai, bi, and c in (5) are fitting coefficients and their val-
ues are determined empirically for each CMOS technology
process [26]

DRV = DRVr + DRVf (4)

DRVf =
6∑

i=1

ai ∗ �(Wi/Li)

Wi/Li
+

6∑

i=1

bi ∗�(Vthi)+ c ∗�T. (5)

Although this model can accurately estimate the DRV of a
cell, it has two weaknesses that create the need for a more
advanced model.

1) To predict a specified DRV value with (5), the user needs
to know the DRVr for each SRAM cell. This value is
not expressed as a function of transistor parameters and
can only be calculated through hardware measurement
or computationally expensive circuit simulation.

2) Using the same coefficients ai, bi, and c for differ-
ent SRAM cells creates estimation errors. In reality,
the DRV of different cells increase according to dif-
ferent coefficients depending on their unique process
variations. This distinction is especially important in
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Fig. 4. Joint probability distribution function over all cells of the two variables (v0
i and v1

i ) comprising a DRV characterization. The distribution is determined
experimentally using Procedure 1, and shows that a large fraction of cells have the minimum possible value (vmin) for either v0 or v1, indicating a cell that
retains one written state across all test voltages. (a) DRV joint PDF from hardware measurements. (b) DRV joint PDF from SPICE.

this paper, where the unique impact of process variations
across cells is critical to the overall work.

A. Predicting DRV Using Artificial Neural Networks

Our approach addresses the two aforementioned weaknesses
in Qin et al.’s work [26] by using ML for DRV prediction. The
ML algorithm predicts the DRV directly from the parameters
that are responsible for determining it, without using expensive
circuit simulation. Given that the values of process variation
parameters vary over bounded ranges, it follows that the DRVs
too fall within a bounded range [DRVmin, DRVmax]. The range
of DRVs is manually divided into K classes, each with size
�DRV (6). The use of K classes makes DRV prediction a
“multiclassification” problem: for any given feature pattern
{Wi, Li, . . . , Vth_i, T}, there is exactly one among K classes
corresponding to the correct DRV output

[DRVmin, DRVmax] = {[DRVmin, DRVmin +�DRV)

∪ [DRVmin +�DRV, DRVmin

+ 2 ∗�DRV) ∪ · · ·
∪ [DRVmax −�DRV, DRVmax]}. (6)

Artificial neural network (ANN) is a well known ML
method [44], [45] that is widely used to solve multiclassifi-
cation problems. Our DRV prediction method specifies the
DRV of an SRAM cell as an ANN output class, and indicates
the class to which the corresponding SRAM parameter pat-
tern should be assigned to. Our approach collects a group of
samples from SPICE, including physical parameters of SRAM
circuitry as input and corresponding DRV values (which can
be viewed as golden value) as output. An ANN model is
later trained based on this data to match input with output.
In this process, neurons learn to classify the examples from
each class (Fig. 5). Finally, the hidden neurons dealing with
the same class will be combined as one group, so the number
of groups corresponds to the number of output classes. Each
class has a corresponding surface, which is approximated by
the combined neuron groups.

To get data for ANN model training, we use SPICE simu-
lator as the infrastructure for collecting DRV statistics. DRV
values are extracted from simulations of 2000 cells across
temperature 25–100 ◦C, with a step size of 1 ◦C. A com-
mon problem with ML models is overfitting, where a model
is trained to perform well on training data but fails to yield
similar results upon seeing new data. To avoid overfitting
in building the DRV model, we reordered the samples and
divided them into three subsets: 1) training (60%); 2) valida-
tion (20%); and 3) test (20%). Training set is the dataset used
for computing the gradient and updating the network weights
and biases. The validation set is used to monitor errors dur-
ing the training process. The validation and training set errors
usually decreases during the initial phase of training. The test
set error is not used during training, but is used to validate the
model performance and compare different models.

B. Evaluating Accuracy of DRV Prediction

The prediction results of the test subsets are shown in Fig. 6.
The regression plots display the ANN-predicted DRVs with
respect to the golden DRV values collected from SPICE sim-
ulation. In Fig. 6, R denotes the correlation between model
outputs and golden values. For a perfect fit, the predicted out-
puts should be equal to the golden values (the data should
fall along a 45◦ line). For our DRV model, there is a high
correlation between prediction and output for all datasets.

Before our ANN model in this paper, the linear model
described in (5) was widely used to model the DRV value
of SRAM designs, which can be optimized with linear regres-
sion (LR) method. LR fits a data model that is linear in the
model coefficients. The most common type of LR is a “least-
squares fit,” which can find an optimal line to represent the
discrete data points. In an LR model, the same physical param-
eters of ANN models are defined as input training features
p = {pi, | pi ∈ {W1/L1, W2/L2, . . . , T}}. By denoting the linear
coefficients with θ = {θ0, θ1, . . . , θn}, we get

hθ (p) = θ0 + θ1 ∗ p1 + · · · + θn ∗ pn (7)
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Fig. 5. ANN for DRV classification and prediction.

Fig. 6. Training results based on neural network model, across three datasets.
R denotes the correlation between golden DRV data from SPICE simulation,
and predicted DRV value from our model.

where θ stands for the set of coefficients [e.g., ai and bi as
shown in (5)]. Each training sample is composed of transis-
tor feature set p and the corresponding golden DRV value
DRVgolden from SPICE simulation. Based on least-squares
fit rule, the cost function of m training examples can be
expressed as

J(θ) = 1

2m

m∑

k=1

(
hθ

(
p(k)

)
− DRV(k)

golden

)2
(8)

where p(k) corresponds to the training features of kth training
sample, like the transistor sizes and temperature. To obtain

Fig. 7. DRV prediction error for the ANN model and LR model. In both
cases, error is determined by comparison to SPICE simulated results.

the optimal θ , we applied “gradient descent” simultaneously
on each coefficient θj, j ∈ (1, 2, . . . , n)

Repeat

{
θj := θj − α

∂J(θ)

∂θj

= θj − α
1

m

m∑

i=1

(
hθ

(
p(k)

)
− DRV(k)

golden

)
p(k)

i

}

(9)

α is the learning rate of LR model and p(k)
i is the ith feature

of the kth training sample.
To further evaluate the effectiveness of our ANN model,

we compare its prediction error to that of the LR model1

on a randomly chosen dataset of size 3500. Fig. 7 presents
the prediction error of these models. The neural network
model achieves smaller prediction errors than the LR model.

1The LR model is trained and optimized with the same three datasets as
the neural network model.
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Fig. 8. DRV of SRAM cells increase linearly with temperature, but the
slope varies across cells. The ordering of DRV is largely preserved across
temperatures, except for a few cells that switch ordering.

The mean μ and standard deviation σ of prediction error for
the neural network model are −0.01 and 0.35 mV, respectively,
while those of the LR model are 0.041 and 0.9 mV. The neu-
ral network model outperforms the linear model because the
neural network model assigns varied weights and bias to dif-
ferent feature patterns,2 whereas the linear model formulates
all input features with the same optimized θ .

VI. DRV-BASED PUF

DRV-based identification or authentication schemes must
consider the impact of temperature changes. The DRV
of each SRAM cell increases approximately linearly with
temperature [26], and the coefficient relating DRV to tempera-
ture varies only slightly across cells. Accordingly, the relative
ordering of DRVs across cells is more reliable than the values
themselves; in other words, the cell with the ith highest DRV
will remain roughly the ith highest when temperature changes,
even though all DRVs will change in absolute terms. Fig. 8
shows the relationship of DRV and temperature, according to
ML prediction, for ten randomly chosen SRAM cells. The
DRV ordering is preserved across temperature values, except
for two pairs of cells that flip their ordering. Any two cells
with sufficiently different nominal DRVs have a DRV ordering
that does not change with temperature.

A. DRV-Based Hashing With DH and DH-PREIMAGE

To utilize the robustness of DRV ordering, we propose
a hashing scheme with the mapping between challenges
and responses defined by the DRV ordering within SRAM
address pairs. In this scheme, a challenge C of length m
is a sequence of address pairs (〈c̄0, c0〉, . . . , 〈c̄m−1, cm−1〉),
a response R is a bit string (r0, . . . , rm−1). A DRV measure-
ment D assigns values to each address of an SRAM such
that D(c) = max(v0

c, v1
c), where v0

c and v1
c are the minimum

retention voltages after writing the 0 and 1 states to the cell
at address c (Procedure 1). Note that a DRV D is a single

2This also validates our finding in Fig. 8, that different SRAM cells have
different DRV growth slopes while temperature is increasing.

Procedure 2 R = DH(D, C): Use DRV Assignment D to Hash
Challenge C to Response R
Require: D {DRV assignments for a set of SRAM addresses}
Require: C {sequence of addr pairs

(〈c̄0, c0〉, . . . , 〈c̄m−1, cm−1〉
)
}

Ensure: R {bit string response
(
r0, . . . , rm−1

)
to challenge}

1: for 〈c̄i, ci〉 ∈ C do
2: ri ← (D(ci) ≥ D(c̄i))
3: end for
4: return R

Procedure 3 C = DH-PREIMAGE(D, R): Map Response R to
Challenge C Using DRV Assignment D
Require: D {SRAM DRVs. D(a) is DRV of cell at address a.}
Require: R {the desired response bit string

(
r0, . . . , rm−1

)
}

Ensure: C {sequence of addr pairs
(〈c̄0, c0〉, . . . , 〈c̄m−1, cm−1〉

)
}

{sort addresses by DRV. Let ai denote address such that D(ai)
is ith highest among all addresses}

1: for i ∈ 0..(|R| − 1) do
2: if ri = 1 then
3: 〈c̄i, ci〉 ← 〈ai+|D|−m, ai〉 {ci gets addr with higher DRV}
4: else
5: 〈c̄i, ci〉 ← 〈ai, ai+|D|−m〉 {c̄i gets addr with higher DRV}
6: end if
7: end for
8: return C

imprecise observation, and two DRVs produced by the same
chip will only match approximately. Procedure DH(D, C)

(Procedure 2) hashes a challenge C to a response R. Procedure
DH-PREIMAGE(D, R) (Procedure 3) computes a challenge
C that reliably hashes to response R on a particular chip.
For any DRV assignment D and response R, the relationship
R = DH(D, DH-PREIMAGE(D, R)) holds. Procedures DH
and DH-PREIMAGE are the building blocks for key generation
and identification applications in Sections VI-B and VI-D.

The DH procedure is designed to be resilient to small fluc-
tuations in DRV, and to common-mode DRV shifts such as
those caused by temperature. The steps for DH are given in
Procedure 2. For each address pair 〈c̄i, ci〉 in the challenge, the
corresponding response bit ri is assigned a 1 if address ci has
the higher or equal DRV, and 0 if address c̄i has a higher DRV.
Procedure DH is made resilient by applying challenges for
which the addresses in each pair have vastly different DRVs,
so that the inequality at line (2) of Procedure 2 consistently
resolves in the same way despite small variations.

Given a DRV D and a desired response R, the role of pro-
cedure DH-PREIMAGE is to create a challenge C that will
reliably generate R whenever it is applied to the same SRAM
that produced D. The steps for DH-PREIMAGE are shown in
Procedure 3. For each bit ri of the desired response, a pair of
challenge addresses 〈c̄i, ci〉 is chosen. If the desired response
bit is 0 (1), then c̄i (ci) is assigned the address of the cell
with the higher DRV. Note that the two addresses chosen for
each pair have markedly dissimilar DRVs that are separated
by |D| − m positions in DRV ordering (see lines 3 and 5
of Procedure 3), where |D| is the SRAM size and m is the
response length. Stated differently, one address in each pair
has one of the m highest DRVs in the SRAM, and the other
has one of the m lowest DRVs. The DRV dissimilarity within
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Fig. 9. Example of DRV-hashing. According to the depicted DRV assign-
ment D, and letting challenge C be (〈1, 10〉, 〈6, 9〉, 〈7, 5〉), procedure DH(D, C)

produces response R = (1, 0, 1). Similarly, procedure DH-PREIMAGE(D, R),
given this response R, would produce as output the same challenge C.

each address pair ensures that the higher DRV can be reliably
determined when the challenge is applied in a subsequent call
to DH.

A demonstration of the DH is given in Fig. 9. According to
the depicted DRV assignment D, procedure DH hashes chal-
lenge C = (〈1, 10〉, 〈6, 9〉, 〈7, 5〉) to response R = (1, 0, 1):
the first response bit is 1 because address 10 has a higher DRV
than address 1, the second response bit is 0 because address 6
has a higher DRV than address 9, and the third response bit
is 1 because address 5 has a higher DRV than address 7.

A necessary condition for obtaining a wrong response bit
for a challenge address pair is that, when some test voltage is
applied, the cell with nominally lower DRV fails, and the cell
with the nominally higher DRV does not. In the toy exam-
ple of Fig. 9, given that the DRVs within each pair have a
gap of 110 mV, this will only happen in the case of extreme
noise or if the supply voltage differs by 110 mV from one cell
location to the other. As the cells of an SRAM are powered
by the same supply, and given that supply nodes are already
designed to avoid local voltage droop, such a large supply
voltage difference across cells is uncommon.

The DRV hashing scheme in this paper is related to IBS
coding [20] and ordering-based encoding schemes applied to
PUFs with real-valued outputs [46]. Given a group of indexed
objects with real-valued measurements, IBS coding encodes
each bit to a syndrome that is the index of the maximum or
minimum value in the group depending on the bit’s polarity.
Given noisy measurements of the same indexed objects, the
syndrome is decoded by determining whether the measure-
ment it indexes is closer to maximal or minimal in the group.
A comparison of the reliability and security of IBS versus
other approaches is given by Yu et al. [47]. Variants of IBS
coding are also applied to SRAM power-up state PUFs [21].
Procedures DH-PREIMAGE and DH are analogs for IBS
encoding and decoding, respectively. In addition to using a
hashing scheme related to IBS coding, a second reliability
enhancing feature is that the SRAM cell pairs are selected to

maximize the discrepancy between the values in each pair-
ing. The idea of configuring real-valued PUFs to utilize large
discrepancies for enhanced reliability has been proposed previ-
ously for ring oscillator PUFs [48], [49], where the identifying
feature is oscillator frequency instead of minimum retention
voltage.

B. Secret Key Generation

Cryptographic keys must be fully reliable, and this is
in conflict with the inherent imprecision of PUFs in sens-
ing the effects of small physical variations. Error correcting
codes can bridge the gap from noisy PUFs to reliable keys.
With error correction, some number of raw response bits are
transformed by helper data into a noisy codeword that is
decoded into a reliable key. One example of error correc-
tion in weak PUFs is the use of BCH codes with power-up
fingerprints [5]. The physical nature of PUFs also allows for
circuit-level reliability mechanisms that enable lighter-weight3

error correcting codes, or in some cases supplant them entirely.
Examples of reliability-enhancing circuit techniques are rein-
forcing variation tendencies with directed aging [6], [13], and
using helper data to mark on each device the response bits
that are precharacterized as unreliable [20].

Our key generation using DRV-hashing uses circuit-level
reliability enhancement and (optionally) error correcting
codes. The steps to implement DRV-based secret key gener-
ation for a given SRAM instance are shown in Procedure 4.
Lines 1–5 comprise the enrollment process to occur at the
manufacturer immediately after fabrication. First, an arbi-
trary secret key K is chosen and encoded into codeword R;
R is the value that should be the response of the DRV PUF
in the field later. Next, DH-PREIMAGE is called (line 3)
to generate a challenge that will reliably hash to response
R on this PUF instance. The challenge is then stored to a
one-time-programmable on-chip memory (line 4). Finally, the
enrollment process is completed by blowing a fuse to disable
the DH-PREIMAGE functionality (line 5). After the enroll-
ment process is completed, the PUF can be used in the field
as a secret key. When the stored challenge C is applied to the
PUF in the field, it hashes to response R′ according to DRV
D′ (line 6). If D′ is similar to the enrollment DRV D (as it
will be for the same chip), then the inherent robustness of DH
should produce a response R′ that exactly matches or closely
approximates R. Response R′, a possibly noisy version of the
original codeword R, is decoded to correct errors and regen-
erate the enrolled key K (line 7). This key is a secret, chosen
by the party that enrolled the DRV PUF, and known only to
them. To maintain secrecy of key K, it must only be used as
an input to a cryptographic hash, and never be revealed in
plain text.

Note that the secrecy of the generated key requires that an
attacker cannot apply arbitrary challenges to the DRV PUF.
If an attacker can apply chosen challenges, then helper data
manipulation attacks from other pairing-based PUFs [50] can
also expose the secret key from the DRV PUF. It is therefore

3That is, codes that are cheaper to implement but cannot correct as many
errors.
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Fig. 10. When implementing a key of length m using a DRV PUF in SRAM
of size 2m (per Procedure 4), the response BER decreases as m increases. The
decrease in BER results from an increase in the DRV gap, where “avg DRV
gap” represents the absolute DRV difference between c̄i and ci, averaged over
challenge pairs.

necessary in the secret key application that the challenge
addresses are supplied exclusively from a memory that is not
overwritable in the field. Note that nonoverwritable challenge
addresses need not be secret. The addresses do not leak infor-
mation about the key under the assumption that DRVs are
independent and identically distributed, as shown in work on
IBS coding [47].

An adversary possessing a chip may somehow modify the
test voltages prescribed by Procedure 1 for DRV characteri-
zation. This could induce a flawed DRV characterization; for
example, if the voltage is never lowered at all, the character-
ization would wrongly conclude that all cells have a DRV of
0 V since none ever had a retention failure at any test voltage.
However, voltage manipulation does not provide any useful
information about the DRV-based secret key. Even though it
may be possible to learn that a retention failure happens at
some particular voltage, no information is leaked unless it
can be determined which address in a pair failed, and this
is not observable because the output of the DRV PUF is never
revealed in the clear.

C. Reliability

The response bit error rate (BER) in key generation experi-
ments depends on the key size and the size of the SRAM used
for the DRV PUF. The result of Fig. 10 shows the BER4 of
an m-bit key generated by a 2m-cell SRAM.5 The response
BER decreases as m increases, and does not exceed 1e−5 for
any key size larger than 60 bits. The BER decreases as the
SRAM size increases, because a larger SRAM tends to have
a larger difference between the DRVs of the addresses within
each challenge pair. We refer to the DRV difference between
the two addresses in each challenge pair as the “DRV gap”

4In BER analysis, error correcting codes are not used so that circuit-level
reliability of the proposed hashing scheme can be observed. Error correcting
codes would serve to correct the errors that contribute to BER.

5An SRAM with 2m cells is the smallest SRAM capable of generating an
m-bit response, because each response bit is generated using two addresses.

Fig. 11. When implementing a key of length m using a DRV PUF in SRAM
of size ≥ 2m (per Procedure 4), there is a clear increase in the average DRV
gap as SRAM size increases. Because a larger DRV gap equates to a lower
BER, changing the size of SRAM therefore represents a reliability knob for
the DRV PUF.

Procedure 4 Use DRV PUF as Reliable Secret Key. Lines 1–4
Enroll the PUF and Personalize it With Key K. Lines 5 and 6
Occur in the Field to Regenerate K From Challenge C

1: Choose a secret key K
2: R = ECC-ENCODE(K) {for error correction}
3: C← DH-PREIMAGE(D, R) {challenge C is public}
4: Store C to one-time-programmable on-chip memory
5: Disable DH-PREIMAGE {Blow fuse. See Fig. 9}

6: R′ ← DH(D′, C) {D′ ≈ D =⇒ R′ ≈ R}
7: K ← ECC-DECODE(R′) {Regenerated secret key inside chip}

of a DRV PUF. Larger DRV gaps indicate more reliable DRV
PUF responses, because the determination in DH of which
challenge address has the higher DRV will be less error prone.

The BER can be further reduced by increasing the size of
the SRAM to beyond the minimum of twice the key length m.
In this case, the cells with DRVs near the median DRV of
the SRAM are not among the m highest nor m lowest, and
are therefore not selected by DH-PREIMAGE to be used in
the challenge. This further increases the DRV gap to reduce
BER. Fig. 10 shows experimentally the average DRV gap as
a function of SRAM size and key length. The areas in Fig. 11
with the darkest coloring correspond to the most reliable sce-
narios for key generation. Therefore, arbitrary robustness can
be added directly to the hashing scheme, creating a second
reliability knob to be used in concert with, or instead of, error
correcting codes.

D. Circuit Identification

Hashing functions DH and DH-PREIMAGE can be used for
reliable chip identification, in a way that is similar to their
use in key generation. In this application, the DRV of each
SRAM is not considered secret, and arbitrary challenges can
be applied to the SRAM. The goal of chip identification is
to determine whether two DRV characterizations D1 and D2
are generated by the same SRAM cells. Using a distance
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(a)

(c)

(b)

(d)

Fig. 12. Results showing identification performance using the distance metric RESPONSE-DISTANCE (Procedure 5) in upper plots, and performance
using VOLTAGE-DISTANCE (10) in the lower plots. The temperature resilience of DH and DH-PREIMAGE causes RESPONSE-DISTANCE to outperform
VOLTAGE-DISTANCE, as indicated by lower false positive rates for equivalent true positive rates. (a) Distribution of between- and within-class distances
according to the metric RESPONSE-DISTANCE (Procedure 5). (b) ROC curves from RESPONSE-DISTANCE data at left. (c) Distribution of between- and
within-class distances according to the metric VOLTAGE-DISTANCE (10). (d) ROC curves from VOLTAGE-DISTANCE data at left.

metric to quantify dissimilarity between two DRV characteri-
zations, a determination of “same identity” is made whenever
the distance between D1 and D2 is below some matching
threshold. Distances between two DRVs from the same cells
are denoted within class, and distances between two DRVs
from different cells are denoted between class. A true positive
identification occurs when a within-class distance is below the
matching threshold, and a false positive identification occurs
when a between-class distance is below the matching thresh-
old. Perfect identification is possible when all within-class
distances are smaller than all between-class distances, as it
is then possible to choose a matching threshold that will pro-
duce a true positive identification for all within-class distances
without any false positives.

The distance between DRVs D1 and D2 is computed as
RESPONSE-DISTANCE(D1, D2) (Procedure 5). The first step
of Procedure 5 is to choose a random response R1 (line 1)
and generate for D1 a challenge C that is the preimage of
R1 (line 2). Response R2 is then obtained by hashing C using
D2 (line 3). If D1 and D2 are from the same chip, then the

Procedure 5 RESPONSE-DISTANCE(D1, D2): Compute
Distance Between Responses of Two SRAMs When the Same
Challenge is Applied to Both
Require: D1 {DRVs for chip 1. D1(a) is chip 1 DRV at address a.}
Require: D2 {DRVs for chip 2. D2(a) is chip 2 DRV at address a.}
Ensure: x {the distance between D1 and D2}

1: Choose randomly R1 ∈ {0, 1}|D1|/2

2: C← DH-PREIMAGE(D1, R1) {note: R1 = DH(D1, C)}
3: R2← DH(D2, C)
4: x← HAMMING-DISTANCE(R1, R2)

5: return x

BER analysis of the previous section shows that R1 and R2
will also be similar. To perform identification in a challenging
(high-BER) scenario, we use a short key of length 10 and a
small SRAM with 20 cells (see Fig. 10). The distribution of
within- and between-class distances is shown in Fig. 12(a), and
the receiver operating characteristic (ROC) plot in Fig. 12(b)
shows the identification performance for the data. Each ROC
curve traces tradeoffs between true positive and false positive
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identification that can be achieved by changing the matching
threshold. The three ROC curves in Fig. 12(b) compare iden-
tification of across-temperature within-class distances against
between-class distances at a single temperature; these three
comparisons are chosen because they are the most challeng-
ing identification scenarios, as indicated by the largest overlaps
between the two distributions [Fig. 12(a)].

We evaluate the performance of RESPONSE-DISTANCE for
circuit identification (Procedure 5) by comparing its ROC
curves [Fig. 12(b)] against the ROC curves obtained for the
same data by our prior identification scheme [1]. In our prior
work, letting the characterization of address i in D1 and D2
be denoted 〈v10

i , v11
i 〉 and 〈v20

i , v21
i 〉, the distance between

D1 and D2 is given by VOLTAGE-DISTANCE(D1, D2) (10).
The within- and between-class distances according to
VOLTAGE-DISTANCE have a larger overlap [Fig. 12(c)], and
the corresponding ROC curves [Fig. 12(d)] have inferior per-
formance because they admit in all cases a larger false positive
identification rate for the same true positive identification rate

VOLTAGE-DISTANCE(D1, D2)

=
∑

i

√(
v10

i − v20
i

)2 + (
v11

i − v21
i

)2
. (10)

VII. CONCLUSION

This paper has demonstrated a collection of techniques that
allow the DRV of SRAM cells to be used as the basis of a reli-
able PUF. We propose an ML approach for fast and accurate
simulation-free prediction of DRV values. We present proce-
dures DH and DH-PREIMAGE for reliable hashing based on
DRV measurements, and demonstrate that the reliability of
these approaches stems from their use of DRV ordering instead
of the absolute DRV values that were previously proposed.
We use a large dataset of DRVs from circuit simulation to
train and analyze our DRV-prediction scheme, and use a large
dataset of DRV measurements from SRAM chips to quantify
the reliability of DH and DH-PREIMAGE in key generation
and identification applications. Future work will reduce the
runtime of DRV characterization (Procedure 1) by decreasing
ttest and increasing �v (1), and will explore techniques for
learning DRV ordering when the voltages applied to the cir-
cuit are unknown and must be inferred from the number of
failures induced.
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