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Abstract
We propose a new class of signal injection attacks on mi-
crophones by physically converting light to sound. We show
how an attacker can inject arbitrary audio signals to a target
microphone by aiming an amplitude-modulated light at the
microphone’s aperture. We then proceed to show how this
effect leads to a remote voice-command injection attack on
voice-controllable systems. Examining various products that
use Amazon’s Alexa, Apple’s Siri, Facebook’s Portal, and
Google Assistant, we show how to use light to obtain control
over these devices at distances up to 110 meters and from
two separate buildings. Next, we show that user authentica-
tion on these devices is often lacking, allowing the attacker
to use light-injected voice commands to unlock the target’s
smartlock-protected front doors, open garage doors, shop on
e-commerce websites at the target’s expense, or even unlock
and start various vehicles connected to the target’s Google
account (e.g., Tesla and Ford). Finally, we conclude with pos-
sible software and hardware defenses against our attacks.

1 Introduction

The consistent growth in computational power is profoundly
changing the way that humans and computers interact. Mov-
ing away from traditional interfaces like keyboards and mice,
in recent years computers have become sufficiently powerful
to understand and process human speech. Recognizing the
potential of quick and natural human-computer interaction,
technology giants such as Apple, Google, Facebook, and Ama-
zon have each launched their own large-scale deployment of
voice-controllable (VC) systems that continuously listen to
and act on human voice commands.

With tens of millions of devices sold with Alexa, Siri, Por-
tal, and Google Assistant, users can now interact with ser-
vices without the need to sit in front of a computer or type
on a mobile phone. Responding to this trend, the Internet
of Things (IoT) market has also undergone a small revolu-
tion. Rather than having each device be controlled via a dedi-
cated manufacture-provided software, IoT manufacturers can

now spend their time making hardware, coupling it with a
lightweight interface to integrate their products with Alexa,
Siri or Google Assistant. Thus, users can receive information
and control products by the mere act of speaking without
the need for physical interaction with keyboards, mice, touch-
screens, or even buttons.

However, while much attention is being given to improving
the capabilities of VC systems, much less is known about
the resilience of these systems to software and hardware at-
tacks. Indeed, previous works [1, 2] already highlight the lack
of proper user authentication as a major limitation of voice-
only interaction, causing systems to execute commands from
potentially malicious sources.

While early command-injection techniques were noticeable
by the device’s legitimate owner, more recent works [3, 4, 5,
6, 7, 8, 9, 10] focus on stealthy injection, preventing users
from hearing or recognizing the injected commands.

The absence of voice authentication has resulted in a
proximity-based threat model, where close-proximity users
are considered legitimate, while attackers are kept at bay by
physical obstructions like walls, locked doors, or closed win-
dows. For attackers aiming to surreptitiously gain control over
physically-inaccessible systems, existing injection techniques
are unfortunately limited, as the current state of the art [6] has
a range of about 25 ft (7.62 m) in open space, with physical
barriers (e.g., windows) further reducing the distance. Thus,
in this paper we tackle the following questions:

Can commands be remotely and stealthily injected into a
voice-controllable system from large distances? If so, how
can an attacker perform such an attack under realistic condi-
tions and with limited physical access? Finally, what are the
implications of such command injections on third-party IoT
hardware integrated with the voice-controllable system?

1.1 Our Contribution
In this paper we present LightCommands, an attack that can
covertly inject commands into voice-controllable systems at
long distances.
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Figure 1: Experimental setup for exploring attack range. (Top) Floor plan of the 110 m long corridor. (Left) Laser with telephoto
lens mounted on geared tripod head for aiming. (Center) Laser aiming at the target across the 110 m corridor. (Right) Laser spot
on the target device mounted on tripod.

Laser-Based Audio Injection. First, we have identified a
semantic gap between the physics and specifications of mi-
crophones, where microphones often unintentionally respond
to light as if it was sound. Exploiting this effect, we can inject
sound into microphones by simply modulating the amplitude
of a laser light.
Attacking Voice-Controllable Systems. Next, we investi-
gate the vulnerability of popular VC systems (such as Alexa,
Siri, Portal, and Google Assistant) to light-based audio injec-
tion attacks. We find that 5 mW of laser power (the equivalent
of a laser pointer) is sufficient to control many popular voice-
activated smart home devices, while about 60 mW is sufficient
for gaining control over phones and tablets.
Attack Range. Using a telephoto lens to focus the laser, we
demonstrate the first command injection attack on VC systems
which achieves distances of up to 110 meters (the maximum
distance safely available to us) as shown in Figure 1. We also
demonstrate how light can be used to control VC systems
across buildings and through closed glass windows at similar
distances. Finally, we note that unlike previous works that
have limited range due to the use of sound for signal injection,
the range obtained by light-based injection is only limited by
the attacker’s power budget, optics, and aiming capabilities.
Insufficient Authentication. Having established the feasi-
bility of malicious control over VC systems at large distances,
we investigate the security implications of such attacks. We
find that VC systems often lack any user authentication mech-
anisms, or if the mechanisms are present, they are incorrectly
implemented (e.g., allowing for PIN brute forcing). We show
how an attacker can use light-injected voice commands to un-
lock the target’s smart-lock protected front door, open garage
doors, shop on e-commerce websites, or even locate, unlock
and start various vehicles (e.g., Tesla and Ford) if the vehicles
are connected to the target’s Google account.
Attack Stealthiness and Cheap Setup. We then show how

an attacker can build a cheap yet effective injection setup, us-
ing commercially available laser pointers and laser drivers.
Moreover, by using infrared lasers and abusing volume fea-
tures (e.g., whisper mode for Alexa devices) on the target
device, we show how an attacker can mount a light-based au-
dio injection attack while minimizing the chance of discovery
by the target’s legitimate owner.
Countermeasures. Finally, we discuss software and
hardware-based countermeasures against our attacks.
Summary of Contributions. In this paper we make the
following contributions.
1. Discover a vulnerability in MEMS microphones, making

them susceptible to light-based signal injection attacks
(Section 4).

2. Characterize the vulnerability of popular Alexa, Siri, Por-
tal, and Google Assistant devices to light-based command
injection across large distances and varying laser power
(Section 5).

3. Assess the security implications of malicious command
injection attacks on VC systems and demonstrate how such
attacks can be mounted using cheap and readily available
equipment (Section 6).

4. Discuss software and hardware countermeasures to light-
based signal injection attacks (Section 7).

1.2 Safety and Responsible Disclosure

Laser Safety. Laser radiation requires special controls
for safety, as high-powered lasers might cause hazards of
fire, eye damage, and skin damage. We urge that researchers
receive formal laser safety training and approval of experi-
mental designs before attempting reproduction of our work.
In particular, all the experiments in this paper were conducted
under a Standard Operating Procedure which was approved
by our university’s Safety Committee.
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Disclosure Process. Following the practice of responsible
disclosure, we have shared our findings with Google, Amazon,
Apple, Facebook, August, Ford, Tesla, and Analog Devices,
a major supplier of MEMS microphones. We subsequently
maintained contact with the security teams of these vendors,
as well as with ICS-CERT and the FDA. The findings pre-
sented in this paper were made public on the mutually-agreed
date of November 4th, 2019.

2 Background

2.1 Voice-Controllable System
The term “Voice-Controllable (VC) system” refers to a sys-
tem that is controlled primarily by voice commands directly
spoken by users in a natural language, e.g., English. While
some important exceptions exist, VC systems often immedi-
ately operate on voice commands issued by the user without
requiring further interaction. For example, when the user com-
mands the VC system to “open the garage door”, the garage
door is immediately opened.

Following the terminology of [4], a typical VC system
is composed of three main components: (i) voice capture,
(ii) speech recognition, and (iii) command execution. First,
the voice capture subsystem is responsible for converting
sound produced by the user into electrical signals. Next, the
speech recognition subsystem is responsible for detecting
the wake word in the acquired signal (e.g., “Alexa", “OK
Google", "Hey Portal" or “Hey Siri") and subsequently inter-
preting the meaning of the voice command using signal and
natural-language processing. Finally, the command-execution
subsystem launches the corresponding application or executes
an operation based on the recognized voice command.

2.2 Attacks on Voice-Controllable Systems
Several previous works explored the security of VC systems,
uncovering vulnerabilities that allow attackers to issue unau-
thorized voice commands to these devices [3, 4, 5, 6, 7].
Malicious Command Injection. More specifically, [1, 2]
developed malicious smartphone applications that play syn-
thetic audio commands into nearby VC systems without re-
quiring any special operating system permissions. While these
attacks transmit commands that are easily noticeable to a hu-
man listener, other works [3, 8, 9] focused on camouflaging
commands in audible signals, attempting to make them unin-
telligible or unnoticeable to human listeners, while still being
recognizable to speech recognition models.
Inaudible Voice Commands. A more recent line of work
focuses on completely hiding the voice commands from hu-
man listeners. Roy et al. [5] demonstrate that high frequency
sounds inaudible to humans can be recorded by commodity
microphones. Subsequently, Song and Mittal [10] and Dol-
phinAttack [4] extended the work of [5] by sending inaudible

commands to VC systems via word modulation on ultrasound
carriers. By exploiting microphone nonlinearities, a signal
modulated onto an ultrasonic carrier is demodulated to the
audible range by the targeted microphone, recovering the orig-
inal voice command while remaining undetected by humans.

However, both attacks are limited to short distances (from
2 cm to 175 cm) due to the transmitter operating at low power.
Unfortunately, increasing the transmitting power generates an
audible frequency component containing the (hidden) voice
command, as the transmitter is also affected by the same non-
linearity observed in the receiving microphone. Tackling the
distance limitation, Roy et al. [6] mitigated this effect by split-
ting the signal in multiple frequency bins and playing them
through an array of 61 speakers. However, the re-appearance
of audible leakage still limits the attack’s range to 25 ft (7.62
m) in open space, with physical barriers (e.g., windows) and
the absorption of ultrasonic waves in air further reducing
range by attenuating the transmitted signal.
Skill Squatting Attacks. A final line of work focuses on
confusing speech recognition systems, causing them to mis-
interpret correctly-issued voice commands. These so-called
skill squatting attacks [11, 12] work by exploiting systematic
errors in the recognition of similarly sounding words, routing
users to malicious applications without their knowledge.

2.3 Acoustic Signal Injection Attacks
Several works used acoustic signal injection as a method of
inducing unintended behavior in various systems.

More specifically, Son et al. [13] showed that MEMS sen-
sors are sensitive to ultrasound signals, resulting in denial
of service attacks against inertial measurement unit (IMU)
on drones. Subsequently, Yan et al. [14] demonstrated that
acoustic waves can be used to saturate and spoof ultrasonic
sensors, impairing car safety. This was further improved by
Walnut [15], which exploited aliasing and clipping effects
in the sensor’s components to achieve precise control over
MEMS accelerometers via sound injection.

More recently, Nashimoto et al. [16] showed the possibility
of using sound to attack sensor-fusion algorithms that rely on
data from multiple sensors (e.g., accelerometers, gyroscopes,
and magnetometers) while Blue Note [17] demonstrates the
feasibility of sound attacks on mechanical hard drives, result-
ing in operating system crashes.

2.4 Laser Injection Attacks
In addition to sound, light has also been utilized for signal
injection. Indeed, [14, 18, 19] mounted denial of service at-
tacks on cameras and LiDARs by illuminating victims’ photo-
receivers with strong lights. This was later extended by Shin
et al. [20] and Cao et al. [21] to a more sophisticated attack
that injects precisely-controlled signals to LiDAR systems,
causing the target to see an illusory object. Next, Park et al.
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[22] showed an attack on medical infusion pumps, using light
to attack optical sensors that count the number of adminis-
tered medication drops. Finally, Uluagac et al. [23] show how
various sensors, such as infrared and light sensors, can be used
to activate and transfer malware between infected devices.

Another line of work focuses on using light for injecting
faults inside computing devices, resulting in security breaches.
More specifically, it is well-known that laser light causes
soft (temporary) errors in semiconductors, where similar er-
rors are also caused by ionizing radiation [24]. Exploiting
this effect, Skorobogatov and Anderson [25] showed the first
light-induced fault attacks on smartcards and microcontrollers,
demonstrating the possibility of flipping individual bits in
memory cells. This effect was subsequently exploited in nu-
merous follow ups, using laser-induced faults to compromise
the hardware’s data and logic flow, extract secret keys, and
dump the device’s memory. See [26, 27] for further details.

2.5 MEMS Microphones
MEMS is an integrated implementation of mechanical compo-
nents on a chip, typically fabricated with an etching process.
While there are a number of different MEMS sensors (e.g.,
accelerometers and gyroscopes), in this paper we focus on
MEMS-based microphones, which are particularly popular in
mobile and embedded applications (such as smartphones and
smart speakers) due to their small footprints and low prices.
Microphone Overview. The left column of Figure 2 shows
the construction of a typical backport MEMS microphone,
which is composed of a diaphragm and an ASIC circuit. The
diaphragm is a thin membrane that flexes in response to an
acoustic wave. The diaphragm and a fixed back plate work
as a parallel-plate capacitor, whose capacitance changes as a
consequence of the diaphragm’s mechanical deformations as
it responds to alternating sound pressures. Finally, the ASIC
die converts the capacitive change to a voltage signal on the
output of the microphone.
Microphone Mounting. A backport MEMS microphone is
mounted on the surface of a printed circuit board (PCB), with
the microphone’s aperture exposed through a cavity on the
PCB (see the third column of Figure 2). The cavity, in turn,
is part of an acoustic path that guides sound through holes
(acoustic ports) in the device’s chassis to the microphone’s
aperture. Finally, the device’s acoustic ports typically have
a fine mesh as shown in Figure 3 to prevent dirt and foreign
objects from entering the microphone.

2.6 Laser Sources

Choice of a Laser. A laser is a device that emits a beam of
coherent light that stays narrow over a long distance and be
focused to a tight spot. While other alternatives exist, in this
paper we focus on laser emitting diodes, which are common
in consumer laser products such as laser pointers. Next, as

the light intensity emitted from a laser diode is directly pro-
portional to the diode’s driving current, we can easily encode
analog signals via the beam’s intensity by using a laser driver
capable of amplitude modulation.
Laser Safety and Availability. As strong, tightly focused
lights can be potentially hazardous, there are standards in
place regulating lights emitted from laser systems [28, 29]
that divide lasers into classes based on the potential for injury
resulting from beam exposure. In this paper, we are interested
in two main types of devices, which we now describe.
Low-Power Class 3R Systems. This class contains de-
vices whose output power is less than 5 mW at visible wave-
length (400–700 nm, see Figure 4). While prolonged inten-
tional eye exposure to the beam emitted from these devices
might be harmful, these lasers are considered safe for brief
eye-exposures. As such, class 3R systems form a good com-
promise between safety and usability, making these lasers
common in consumer products such as laser pointers.
High-Power Class 3B and Class 4 Systems. Next, lasers
that emit between 5 and 500 mW are classified as class 3B
systems, and might cause eye injury even from short beam
exposure durations. Finally, lasers that emit over 500 mW of
power are categorized as class 4, which can instantaneously
cause blindness, skin burns and fires. As such, uncontrolled
exposure to class 4 laser beams should be strongly avoided.

However, despite the regulation, there are reports of high-
power class 3B and 4 systems being openly sold as “laser
pointers” [30]. While purchasing laser pointers from Ama-
zon and eBay, we have discovered a troubling discrepancy
between the rated and actual power of laser products. While
the labels and descriptions of most products stated an output
power of 5 mW, the actual measured power was sometimes
as high as 1 W (i.e., ×200 above the allowable limit).

3 Threat Model

The attacker’s goal is to remotely inject malicious commands
into the targeted voice-controllable device without being de-
tected by the device’s owner. More specifically, we consider
the following threat model.
No Physical Access or Owner Interaction. We assume
that the attacker does not have any physical access to the
victim device. Thus, the attacker cannot press any buttons,
alter voice-inaccessible settings, or compromise the device’s
software. Finally, we assume that the attacker cannot make
the device’s owner perform any useful interaction (such as
pressing a button or unlocking the screen).
Line of Sight. We do assume however that the attacker has
remote line of sight access to the target device and its micro-
phones. We argue that such an assumption is reasonable, as
voice-activated devices (such as smart speakers, thermostats,
security cameras, or even phones) are often left visible to the
attacker, including through closed glass windows.

2634    29th USENIX Security Symposium USENIX Association



Device chassis

PCB

Gasket
Mesh

ASIC

Diaphragm

BackplatePackage

Acoustic pressure wave Front

Back

ASIC Diaphragm

Through hole

Diaphragm

Figure 2: MEMS microphone construction. (Left) Cross-sectional view of a MEMS microphone on a device. (Middle) A
diaphragm and ASIC on a depackaged microphone. (Right) Magnified view of an acoustic port on PCB.

Acoustic port of 
Google Home

Acoustic port of 
Echo Dot 3rd gen.

Figure 3: Acoustic port of (Left) Google Home and (Right)
Echo Dot 3rd generation. The ports are located on the top of
the devices, and there are meshes inside the port.

400 500 600 700

Ultra violet Infrared

Wavelength [nm]

Visible light

Figure 4: Wavelength and color of light

Device Feedback. We note that the remote line of sight ac-
cess to the target device usually allows the attacker to observe
the device’s LED lights. Generally, these LEDs light up after
a device properly recognizes its wake-up word (e.g., Alexa,
Hey Google) and show unique colors and light patterns once
a voice command has been recognized and accepted. Observ-
ing the lights, an attacker can use this feedback to remotely
determine if an attack attempt was successful.
Device Characteristics. Finally, we also assume that the
attacker has access to a device of a similar model as the tar-
get device. Thus, the attacker knows all the target’s physical
characteristics, such as location of the microphone ports and
physical structure of the device’s sound path. Such knowl-
edge can easily be acquired by purchasing and analyzing a
device of the same model before launching attacks. We do
not, however, assume that the attacker has prior access the
specific device instance used by the victim. In particular, all
the experiments done in this paper were empirically verified
to be applicable to other devices of the same model available
to us without instance-specific calibration.

4 Injecting Sound via Laser Light

4.1 Signal Injection Feasibility
In this section we explore the feasibility of injecting acous-
tic signals into microphones using laser light. We begin by
describing our experimental setup.
Setup. We used a blue Osram PLT5 450B 450-nm laser
diode connected to a Thorlabs LDC205C laser driver. We

increased the diode’s DC current with the driver until it emit-
ted a continuous 5 mW laser beam, while measuring light
intensity using the Thorlabs S121C photo-diode power sensor.
The beam was subsequently directed to the acoustic port on
the SparkFun MEMS microphone breakout board mounting
the Analog Devices ADMP401 MEMS microphone. Finally,
we recorded the diode current and the microphone’s output
using a Tektronix MSO5204 oscilloscope, see Figure 5. The
experiments were conducted in a regular office environment,
with typical ambient noise from human speech, computers,
and air conditioning systems.
Signal Injection by Converting Sound to Light. To con-
vert sound signals into light, we encode the intensity of the
sound signal as the intensity of the laser beam, where louder
sounds make for larger changes in light intensity and weaker
sounds correspond to smaller changes. Next, as the intensity
of the light beam emitted from the laser diode is direction
proportional with the supplied current, we use a laser driver
to regulate the laser diode’s current as a function of an audio
file played into the driver’s input port. This resulted in the
audio waveform being directly encoded in the intensity of the
light emitted by the laser.

More specifically, we used the current driver to modulate
a sine wave on top of the diode’s current It via amplitude
modulation (AM), given by the following equation:

It = IDC +
Ipp

2
sin(2π f t) (1)

where IDC is a DC bias, Ipp is the peak-to-peak amplitude,
and f is the frequency. In this section, we set IDC = 26.2 mA,
Ipp = 7 mA and f = 1 kHz. The sine wave was played using
a laptop’s on-board soundcard, where the speaker output was
connected to the modulation input port on the laser driver
via a Neoteck NTK059 audio amplifier. The laser driver [31]
performs an amplitude modulation (AM) of the sine wave
onto its output current without needing additional custom
circuits or software. Finally, as the light intensity emitted by
the laser diode is directly proportional to the current provided
by the laser driver, this resulted in a 1 kHz sine wave directly
encoded in the intensity of the light emitted by the laser diode.
Observing the Microphone Output. As can be seen in
Figure 5, the microphone output clearly shows a 1 kHz sine
wave that matches the frequency of the injected signal without
any noticeable distortion.
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audio amplifier, and oscilloscope. (Middle) Laser diode with beam aimed at a MEMS microphone breakout board. (Right) Diode
current and microphone output waveforms.

4.2 Characterizing Laser Audio Injection

Having successfully demonstrated the possibility of injecting
audio signals via laser beams, we now proceed to characterize
the light intensity response of the diodes (as a function of cur-
rent) and the frequency response of the microphone to laser-
based audio injection. To see the wavelength dependency,
we also examine a 638-nm red laser (Ushio HL63603TG) in
addition to the blue one used in the previous experiment.

Laser Current to Light Characteristics. We begin by
examining the relationship between the diode current and the
optical power of the laser. For this purpose, we aimed a laser
beam at our Thorlabs S121C power sensor while driving the
diodes with DC currents, i.e., Ipp = 0 in Equation 1. Consid-
ering the different properties of the diodes, the blue and red
laser are examined up to 300 and 200 mA, respectively.

The first column of Figure 6 shows the current vs. light (I-
L) curves for the blue and red lasers. The horizontal axis is the
diode current IDC and the vertical axis is the optical power. As
can be seen, once the current provided to the laser is above the
diode-specific threshold (denoted by Ith), the light power emit-
ted by the laser increases linearly with the provided current.
Thus, as |sin(2π f t)|< 1, we have an (approximately) linear
conversion of current to light provided that IDC− Ipp/2 > Ith.

Laser Current to Sound Characteristics. We now proceed
to characterize the effect of light injection on a MEMS micro-
phone. We achieve this by aiming an amplitude-modulated
(AM) laser beam with variable current amplitudes (Ipp) and
a constant current offset (IDC) into the aperture of the Ana-
log Devices ADMP401 microphone, mounted on a breakout
board. We subsequently monitor the peak-to-peak voltage of
the microphone’s output, plotting the resulting signal.

The second column of Figure 6 shows the relationship
between the modulating signal Ipp and the resulting signal
Vpp for both the blue and red laser diodes. The results suggest
that the driving alternating current Ipp (cf. the bias current)
is the key for strong injection: we can linearly increase the
sound volume received by the microphone by increasing the
driving AC current Ipp.

Choosing IDC and Ipp. Given a laser diode that can emit a
maximum average power of L mW, we would like to choose

the values for IDC and Ipp which result in the strongest pos-
sible microphone output signals, while having the average
optical power emitted by the laser be less than or equal to L
mW. From the leftmost column of Figure 6, we deduce that the
laser’s output power is linearly proportional to the laser’s driv-
ing current It = IDC + Ipp sin(2π f t), and the average power
depends mostly on IDC, as Ipp sin(2π f t) averages out to zero.

Thus, to stay within the power budget of L mW while
obtaining the strongest possible signal at the microphone
output, the attacker must first determine the DC current offset
IDC that results in the diode outputting light at L mW, and then
subsequently maximize the amplitude of the microphone’s
output signal by setting Ipp/2 = IDC− Ith.*

Characterizing the Frequency Response of Laser Audio
Injection. Next, we set out to characterize the response
of the microphone to different frequencies of laser-injected
sound signals. We use the same operating points as the previ-
ous experiment, and set the tone’s amplitude such that it fits
with the linear region (IDC = 200 mA and Ipp = 150 mA for
the blue laser, and IDC = 150 mA and Ipp = 75 mA for the red
laser). We then record the microphone’s output levels while
changing the frequency f of the light-modulated sine wave.

The third column of Figure 6 shows the obtained frequency
response for both blue and red lasers. The horizontal axis is
the frequency while the vertical axis is the peak-to-peak volt-
age of the microphone output. Both lasers have very similar
responses, covering the entire audible band 20 Hz–20 kHz,
implying the possibility of injecting any audio signal.
Choice of Laser. Finally, we note the color insensitivity
of injection. Although blue and red lights are on the other
edges on the visible spectrum (see Figure 4), the levels of
injected audio signal are in the same range and the shapes
of the frequency-response curves are also similar. Therefore,
color has low priority in choosing a laser compared to other
factors for making LightCommands. In this paper, we consis-
tently use the 450-nm blue laser mainly because of (i) better
availability of high-power diodes and (ii) the advantage in
focusing because of a shorter wavelength.

*We note here that the subtraction of Ith is designed to ensure that
IDC− Ipp/2 > Ith, meaning that the diode stays in its linear region thereby
avoiding signal distortion.
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Figure 6: Characteristics of the 450-nm blue laser (first row) and the 638-nm red laser (second row). (First column) Current-light
DC characteristics. (Second column) Microphone response for a 1 kHz tone with different amplitudes. (Third column) Frequency
responses of the overall setup for fixed bias and amplitude.

4.3 Mechanical or Electrical Transduction?
In this section we set out to investigate the physical root cause
behind of the microphone’s sensitivity to light. We consider
both the photoelectric and photoacoustic effects, and try to
distinguish between them by selectively illuminating different
parts of the microphone’s internal structure using lasers.
Photoelectric Effect. Traditional laser fault injection at-
tacks on semiconductor chips (as described in 2.4) are ex-
plained by the photoelectric effect in transistors [26, 27] re-
sulting in irregularities in the device’s digital logic. Like-
wise, MEMS microphones also have ASICs inside their pack-
ages, which are used for converting the capacitive changes of
the diaphragm into an electrical signal (see Figure 2). Such
ASICs can be externally-illuminated via lasers through the
microphone’s exposed acoustic port. As strong light hits a
semiconductor chip, it induces a photocurrent across a tran-
sistor, where the current’s strength is proportional to the light
intensity [24]. The analog part of the microphone’s ASIC
recognizes this photocurrent as a genuine signal from the di-
aphragm, resulting in the microphone treating light as sound.
Confirming this, while not common in smart speakers, we
have seen several other microphone vendors covering the
ASIC with opaque resin, known in the industry as “goop”.
Photoacoustic Effect. The light sensitivity of microphones
can also be attributed to the photoacoustic effect [32], which
converts optical to kinetic energy and induces mechanical
vibration at the illuminated material. The effect is well known
for more than 100 years since its discovery by Alexander
Graham Bell back in 1880 [33], which is now used for spec-
troscopy and bioimaging. Although we have not found any
previous work on the photoacoustic effect specific to a MEMS
microphone, the effect is universal and available even with
ambient water vapor in the air [34].
Selective Laser Illumination. We can further narrow the
root cause of the microphone’s light sensitivity, by noticing
that the photoelectric effect happens on an ASIC while the
photoacoustic effect on a diaphragm. Thus, by selectively
illuminating different microphone components using a laser,
we attempted to precisely show the physical root cause.

ASIC covered by black epoxy
ASICLaser spot

Figure 7: (Left) Laser spot on the ADMP401’s ASIC. (Right)
the ASIC covered with opaque epoxy to block laser light.

We achieve this by opening the metal package of the Ana-
log Devices ADMP401 microphone and injecting analog sig-
nals into its diaphragm and ASIC components using a focused
laser beam (see Figure 2). After using a microscope to focus
a 200 µm laser spot on the microphone’s components, we
observed the strongest signal while aiming the laser on the
microphone’s ASIC, as shown in Figure 7(left). This direct
injection is very efficient, where less than 0.1 mW of laser
power was sufficient to saturate the microphone. We take this
as an indication that laser light can cause photoelectric trans-
duction inside the microphone’s ASIC, since in our attack
the light is reflected onto the ASIC from the microphone’s
metal package. After covering the microphone’s ASIC with
opaque epoxy (Figure 7(right)), aiming the laser on the ASIC
no longer generates any signal. However, even after the treat-
ment, the microphone still generates a signal when the laser
spot is aimed at the microphone’s diaphragm.

Based on these results, we conclude that in addition to
the photoelectric effect observed on the microphone’s ASIC,
there is another light-induced transduction within the MEMS
diaphragm. Since the diaphragm is a simple capacitor, we
hypothesize that this effect is due to the physical movements
of the microphone’s diaphragm (i.e., light-induced mechan-
ical vibration). Next, while the above is not a comprehen-
sive survey on different MEMS microphones, this analysis
does provide an overall understanding of the root cause of
the physicals effects observed in this paper. Finally, for the
experiments conducted in the remainder of this paper, we
have aimed the laser through the microphone’s acoustic port.
We hypothesize that our attacks illuminated both the micro-
phone’s ASIC and diaphragm, resulting in some combination
of the photoacoustic and photoelectric effects.
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5 Attacking Voice-Controllable Systems

In this section we evaluate our attack on seventeen popular
VC systems. We aim to find out the minimum laser power
required by the attacker to gain control over the VC system
under ideal conditions as well as the maximum distance that
such control can be obtained under more realistic conditions.
Target Selection. We benchmark our attack against several
consumer devices which have voice control capabilities (see
Table 1). We aim to test the most popular voice assistants –
namely Alexa, Siri, Portal, and Google Assistant. While we
do not claim that our list is exhaustive, we do argue that it does
provide some intuition about the vulnerability of popular VC
systems to laser-based voice injection attacks. Next, to explore
how different hardware variations (rather than algorithmic
variations) affect our attack performance, we benchmark our
attack on multiple devices running the same voice recognition
backend: Alexa, Siri, Portal and Google Assistant, as sum-
marized in Table 1. For some devices, we examine different
generations to explore the differences on attack performance
for various hardware models. Finally, we also considered
third-party devices with built-in speech recognition, such as
the EcoBee thermostat.

5.1 Exploring Laser Power Requirements

In this section we aim to characterize the minimum laser
power required by the attacker under ideal conditions to con-
trol a voice-activated system. Before describing our experi-
mental setup, we discuss our selection of voice commands
and experiment success criteria.
Command Selection. We have selected four different voice
commands that represent common operations performed by
voice-controllable systems.
• What Time Is It? We use this command as a baseline of

our experiments, as it only requires the device to correctly
recognize the command and access the Internet to recover
the current time.

• Set the Volume to Zero. Here, we demonstrate the
attacker’s ability to control the output of a VC system. We
expect this to be the first voice command issued by the
attacker, in an attempt to avoid attracting attention from the
target’s legitimate owner.

• Purchase a Laser Pointer. With this command we show
how an attacker can potentially place order for various prod-
ucts on behalf (and at the expense) of users. The attacker
can subsequently wait for delivery near the target’s residents
and collect the purchased item.

• Open the Garage Door. Finally, we show how an at-
tacker can interact with additional systems which have been
linked by the user to the targeted VC system. While the
garage door opener is one such example with clear security
implications, we discuss other examples in Section 6.

Command Generation. We have generated audio record-
ings of all four of the above commands using a common audio
recording system (e.g., Audacity). Each command recording
was subsequently appended to a recording of the wake word
corresponding to the device being tested (e.g., Alexa, Hey
Siri, Hey Portal, or OK, Google) and normalized to adjust
the overall volume of the recordings to a constant value. We
obtained a resulting corpus of 16 complete commands. Next,
for each device, we injected four of the complete commands
(those beginning with the device-appropriate wake word) into
the device’s microphone using the setup described below and
observed the device’s response. Finally, we note that no ma-
chine learning algorithms or any device-specific calibration
were done during the generation of the audio files contain-
ing the voice commands. These recorded voice commands
were subsequently used in the experiments described below
without further modification for all the tested devices.
Verifying Successful Injection. We consider a command
injection successful in case the device indicates the correct
interpretation of the command. We note that some commands
require other devices to be attached to the victim account
in order to properly execute, resulting in an error otherwise
(e.g., a garage door opener for a command opening the garage
door). As in this section we only test feasibility of command
injection (as opposed to end-to-end attacks of Section 6), we
consider an injection attempt successful in case the device
properly recognized all the command’s words. For devices
with screens (e.g., phones and screen-enabled speakers), we
verified that the device displayed a correct transcription of the
light-injected command. Finally, for screen-less devices (e.g.,
smart speakers), we examined the command log of the account
associated with the device for the command transcription.
Attack Success Criteria. For a given power budget, dis-
tance, and command, we consider the injection successful
when the device correctly recognized the command during
three consecutive attempts. The injection attempt is consid-
ered to be a failure otherwise (e.g., the device only recognizes
the wake-up word but not the entire command). We take
this as an indication that the power budget is sufficient for
achieving a near-perfect consecutive command recognition
assuming suitable aiming and focusing.

Next, we consider an attack successful for a given power
budget and distance when all four commands are success-
fully injected to the device in three consecutive injection
attempts. The attack is considered a failure in any other case
(e.g., achieving two out of three correct command recogni-
tions). Like in the individual command case, we take this as
an indication that the considered power budget and distance is
sufficient for a successful command injection. As such, the re-
sults in this section should be seen as a conservative estimate
of what an attacker can achieve for each device assuming
good environmental conditions (e.g., quiet surroundings and
suitable aiming).
Voice Customization and Security Settings. For the ex-
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periments conducted in this section, we left all the device’s
settings in their default configuration. In embedded Alexa
and Google VC systems (e.g., smart speakers, cameras, etc.)
voice customization is off by default, meaning that the device
will operate on commands spoken by any voice. Meanwhile,
for phones and tablets, we left the voice identification in its
default activated setting. For such devices, to ascertain the
minimum required power for a successful attack, we person-
alized the device’s voice recognition system with the human
voice used to generate the command recordings described
above. We then subsequently inject the audio recording of the
commands using the same voice without any other customiza-
tion. Finally, in Section 5.4, we discuss bypassing various
voice matching mechanisms.
Experimental Setup. We use the same blue laser and
Thorlabs laser driver as in Section 4.1, aiming the laser beam
at microphone ports of the devices listed in Table 1 from a
distance of about 30 cm. As in Section 4.1, we did not need
any custom circuitry or algorithms, using the modulation port
of the laser driver for converting audio to laser-current. Next,
to control the surrounding environment, the entire setup was
placed in a metal enclosure, with opaque bottom and sides and
with a dark red semi-transparent acrylic top plate, designed to
block blue light. See Figure 8. As the goal of the experiments
described in this section is to ascertain the minimum required
power for a successful attack on each device, we have used
a pair of electrically controlled scanning mirrors (40 Kbps
high-speed laser scanning system for laser shows) to precisely
place the laser beam in the center of the device’s microphone
port. Before each experiment we manually focused the laser
so that the laser spot size hitting the microphone is minimal.

For aiming at devices whose microphone port is covered
with cloth (e.g., Google Home Mini shown in Figure 9), the
position of the microphone ports can be determined using an
easily-observable reference point such as the device’s wire
connector or LED array. Finally, we note that the distance
between the microphone and the reference point is easily
obtainable by the attacker either by exploring his own device,
or by referring to online teardown videos [35].
Experimental Results. The fifth column of Table 1 presents
a summary of our results. While the power required from
the attacker varies from 0.5 mW (Google Home) to 60 mW
(Galaxy S9), all the devices are susceptible to laser-based
command injection, even when the device’s microphone port
(e.g., Google Home Mini) is covered with fabric and / or foam.

Finally, for Facebook’s Portal Mini device which supports
both Amazon’s and Facebook’s voice assistants, we note the
×6 increase in minimum power between “Hey Portal" and
“Alexa" wakeup words. In addition, Portal also consistently
failed to identify the word “laser” used in the last command,
forcing us to disregard it. As both experiments were done
using the same setup and with the laser aimed at the same
microphone, we attribute these to algorithmic differences be-
tween Amazon’s and Facebook’s voice recognition backends.

Scanning mirrors
on rotation stage

Target

Mirror
driver

Laser
diode

Laser beam

Figure 8: Exploring minimum laser power requirements: the
laser and target are arranged inside an enclosure. The laser
spot is aimed at the target acoustic port using electrically
controllable scanning mirrors inside the enclosure. The enclo-
sure’s top red acrylic cover was removed for visual clarity.

Microphones LED array

Figure 9: Google Home Mini. Notice the cloth-covered mi-
crophone ports.

5.2 Exploring Attack Range
The experiments done in Section 5.1 are performed under
ideal conditions, at close range and with the aid of electronic
aiming mirrors. Thus, in this section we report on attack
results under more realistic distance and aiming conditions.
Experimental Setup. From the experiments performed
in Section 5.1 we note that about 60 mW of laser power is
sufficient for successfully attacking all of our tested devices
(at least under ideal conditions). Thus, in this section we
benchmark the range of our attack using two power budgets.
• 60 mW High-Power Laser. As explained in Section 2.6,

we frequently encountered laser pointers whose measured
power output was above 60 mW, which greatly exceeds
legal 5 mW restrictions. Thus, emulating an attacker which
does not follow laser safety protocols for consumer devices,
we benchmark our attack using a 60 mW laser, which is
sufficient for successfully attacking all of our tested devices
in the previous experiment.

• 5 mW Low-Power Laser. Next, we also explore the max-
imum range of a more restricted attacker, which is limited
to the maximum amount of power allowed in the U.S. for
consumer laser pointers, namely 5 mW.

Laser Focusing and Aiming. For large attack distances
(tens of meters), laser focusing requires a large diameter lens
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Table 1: Tested devices with minimum activation power and maximum distance achievable at the given power of 5 mW and 60
mW. A 110 m long hallway was used for 5 mW tests while a 50 m long hallway was used for tests at 60 mW.

Device Backend Category Authen- Minimum Max Distance Max Distance
tication Power [mW]* at 60 mW [m]** at 5 mW [m]***

Google Home Google Assistant Speaker No 0.5 50+ 110+
Google Home Mini Google Assistant Speaker No 16 20 —
Google Nest Cam IQ Google Assistant Camera No 9 50+ —
Echo Plus 1st Generation Alexa Speaker No 2.4 50+ 110+
Echo Plus 2nd Generation Alexa Speaker No 2.9 50+ 50
Echo Alexa Speaker No 25 50+ —
Echo Dot 2nd Generation Alexa Speaker No 7 50+ —
Echo Dot 3rd Generation Alexa Speaker No 9 50+ —
Echo Show 5 Alexa Speaker No 17 50+ —
Echo Spot Alexa Speaker No 29 50+ —
Facebook Portal Mini (Front Mic) Alexa Speaker No 1 50+ 40
Facebook Portal Mini (Front Mic)§ Portal Speaker No 6 40 —
Fire Cube TV Alexa Streamer No 13 20 —
EcoBee 4 Alexa Thermostat No 1.7 50+ 70
iPhone XR (Front Mic) Siri Phone Yes 21 10 —
iPad 6th Gen Siri Tablet Yes 27 20 —
Samsung Galaxy S9 (Bottom Mic) Google Assistant Phone Yes 60 5 —
Google Pixel 2 (Bottom Mic) Google Assistant Phone Yes 46 5 —
*at 30 cm distance, **Data limited to a 50 m long corridor, ***Data limited to a 110 m long corridor, §Data generated using only the first 3 commands.

and cannot be done via the small lenses that are typically used
for laser pointers. Thus, we mounted our laser to an Opteka
650-1300 mm high-definition telephoto lens, with 86 mm
diameter (Figure 1(left)). Finally, to simulate realistic aiming
conditions for the attacker, we avoided the use of electronic
scanning mirrors (used in Section 5.1) and mounted the lens
and laser on a geared camera head (Manfrotto 410 Junior
Geared Tripod Head) and tripod. Laser aiming and focusing
was done manually, with the target also mounted on a separate
tripod. See Figure 1 for a picture of our setup.

Test Locations and Experimental Procedure. As eye ex-
posure to a 60 mW laser is potentially dangerous, we blocked
off a 50 meter long corridor in our office building and per-
formed the experiments at night. However, due to safety rea-
sons, we were unable to obtain a longer corridor for our high-
power tests. For lower-power attacks, we performed the ex-
periments in a 110 meter long corridor connecting two build-
ings (see Figure 1(top)). In both cases, we fixed the target
at increasing distances and adjusted the optics accordingly
to obtain the smallest possible laser spot. We regulated the
diode current so that the target is illuminated with 5 or 60 mW
respectively. Finally, the corridor is illuminated with regular
fluorescent lamps at office-level brightness while the ambient
acoustic noise was about 46 dB (measured using a General
Tools DSM403SD sound level meter).

Success Criteria. We use the same success criteria as in
Section 5.1, considering the attack successful at a given dis-
tance in case the device correctly recognized all commands
during three consecutive injection attempts and considering
failure otherwise. We take this as an indication of the maxi-
mum range achievable by the attack at the considered power

budget. Finally, we benchmark our attack’s accuracy as a
function of distance in Section 5.3.

Experimental Results. Table 1 contains a summary of our
distance-benchmarking results. With 60 mW laser power, we
have successfully injected voice commands to all the tested
devices from a distance of several meters. For devices that
can be attacked using 5 mW, we also conducted the low-
power experiment in the 110 m hallway. Untested devices
are marked by ’—’ in Table 1 due of their high minimum
activation power.

While most devices require a 60 mW laser for success-
ful command injection (e.g., a non-standard-compliant laser
pointer), some popular smart speakers such as Google Home
and Eco Plus 1st and 2nd Generation are particularly sensitive,
allowing for command injection even with 5 mW power over
tens of meters. Next, as our attacks were conducted in 50 and
110 meter hallways (for 60 and 5 mW lasers, respectively) for
some devices, we had to stop the attack when the maximum
hallway length was reached. We mark this case with a ‘+’
sign near the device’s range in the appropriate column.

Attack Transferability. Despite inevitable manufacturing
variability between the 17 devices tested in this work, we
did not observe any significant changes between the response
of different microphones to laser injection. That is, all mi-
crophones had shown the same high-level behavior, reacting
to light as if it was sound without any microphone-specific
calibration. This evidence also supports the universality of
our attack, as once the laser was aimed and focused, all de-
vices responded to injected commands without the need for
per-device calibration. In particular, the same laser light cor-
responding to a specific voice command was used on multiple
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Table 2: Attack success accuracy as a function of distance.
Command 20m 25m 27m

What Time Is It? 100% 90% 0%
Set the Volume to Zero 100% 80% 0%
Purchase a Laser Pointer 90% 0% 0%
Open the Garage Door 100% 100% 0%

devices without any modifications. Finally, we note that all
devices tested in this paper have multiple microphones, while
we aimed our laser to only a single microphone port. How-
ever, despite this, the attack is still successful, indicating that
current VC systems do not require the microphones’ signals
to match before executing voice commands.

5.3 Exploring Attack’s Success Probability
In the attacks presented in Sections 5.1, 5.2, and Table 1, all
the tested devices properly recognized the injected commands
once suitable aiming and focusing were achieved. However,
as can be seen in Table 1, some devices stopped recognizing
the commands after exceeding a certain distance. Investigat-
ing this phenomenon, we explored the attack’s error rate at
the borderline attack range. To achieve this, we use a Google
Home Mini device as a case study, as its attack range is lim-
ited to 20 meters which is shorter than the 50 meter corridor
available to us for high-power 60 mW experiments.

Table 2 presents a summary of our findings, where each
command was injected into the Google Home Mini device
10 times (totaling 40 consecutive command injections). As
can be seen, at 20 meters injection attacks are nearly always
successful, with a single error in recognizing the word “laser”
in the third command. However, at 25 meters the success
probability significantly falls, with no successful injections
observed at 27 meters. These results indicate that while some
commands are a slightly harder to inject than others, the sud-
den drop in performance at 27m indicates that our attack’s
success probability does not seem to be dominated by the
command’s phonemes. Instead, it appears that success proba-
bility is governed by command-unrelated factors such as the
internal microphone structure, the presence of fabric covering
the microphone ports, the power density of the light hitting the
device’s microphone ports, the laser beam focus, alignment,
environmental noise level, machine learning algorithms, etc.
We leave the task of investigating these factors to future work.

5.4 Attacking Speaker Authentication
We begin by distinguishing between speaker recognition fea-
tures, which are designed to recognize voice of specific users
and personalize the device’s content, and speaker authenti-
cation features which is designed to restrict access control
to specific users. While not the main topic of this work, in
this section we now discuss both features in the context of
light-based command injection.

No Speaker Authentication for Smart Speakers. We
observe that for smart-speaker devices (which are the main
focus of this work), speaker recognition is disabled by default
at the time of writing. Next, even if the feature is enabled by
careful users, smart speakers are designed to be used by multi-
ple users. Thus, their speaker recognition features are usually
limited to content personalization rather than authentication,
treating unknown voices as guests. Empirically verifying this,
we found that Google Home and Alexa smart speakers block
voice purchasing for unrecognized voices (presumably as they
do not know which account should be billed for the purchase)
while allowing previously-unheard voices to execute security
critical voice commands such as unlocking doors. Finally, we
note that at the time of writing, voice authentication (as op-
posed to personalization) is not available for smart speakers,
which are common home smart assistant deployments.

Phone and Tablet Devices. Next, while not the main fo-
cus of this work, we also investigated the feasibility of light
command injection into phones and tablets. For such devices,
speaker authentication is enabled by default due to the high
processing power and single owner use.

Overview of Voice Authentication. After being person-
alized with samples of the owner’s voice speaking specific
sentences, the tablet or phone continuously listens to the mi-
crophone and acquires a set of voice samples. The collected
audio is then used by the device’s proprietary voice recogni-
tion systems, aiming to recognize the device’s owner speak-
ing assistant-specific wake up words (e.g., “Hey Siri” or “OK
Google”). Finally, when there is a successful match with the
owner’s voice, the phone or tablet device proceeds to execute
the voice command.

Bypassing Voice Authentication. Intuitively, an attacker
can defeat the speaker authentication feature using authentic
voice recordings of the device’s legitimate owner speaking the
desired voice commands. Alternatively, if no such recordings
are available, DolphinAttack [4] suggests using speech synthe-
sis techniques, such as splicing relevant phonemes from other
recordings of the owner’s voice, to construct the commands.

Wake-Only Security. However, during our experiments we
found that speaker recognition is used by Google and Apple to
only verify the wake word, as opposed to the entire command.
For example, Android and iOS phones trained to recognize
a female voice, correctly execute commands where only the
wake word was spoken by the female voice, while the rest of
the command was spoken using a male voice. Thus, to bypass
voice authentication, an attacker only needs a recording of
the device’s wake word in the owner’s voice (which can be
obtained by recording any command spoken by the owner).

Reproducing Wake Words. Finally, we explore the possi-
bility of using Text-To-Speech (TTS) techniques for reproduc-
ing the owner’s voice saying the wake words for a tablet or
phone based voice assistant. To that aim, we repeat the phone
and tablet experiments done in Sections 5.1, 5.2 and Table 1,
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Table 3: Bypassing voice authentication on phones and tablets
Device Assistant TTS Service Voice Name
iPhone XR Siri NaturalReader US English Heather
iPad 6th Gen Siri NaturalReader US English Laura
Galaxy S9 Google Assistant NaturalReader US English Laura
Pixel 2 Google Assistant NaturalReader US English Laura

training all the phone and tablet devices with a human fe-
male voice. We then used NaturalReader [36], an online TTS
tool for generating the wake words specific for each device,
hoping that the features of one of the offered voices will mis-
takenly match the human voice used for personalization. See
Table 3 for device-specific voice configurations provided by
NaturalReader which mistakenly match the female voice used
for training. Next, we concatenate the synthetically-generated
wake word spoken in a female voice to a voice command
pronounced by a male native-English speaker. Using these
recordings, we successfully replicated the minimum power
and maximum distance results as presented in Table 1.

We thus conclude that while voice recognition is able to
enforce some similarity between the attacker’s and owner’s
voices, it does not offer sufficient entropy to form an adequate
countermeasure to command injection attacks. In particular,
out of the 18 English voices supported by NaturalReader, we
were able to find an artificial voice matching the human fe-
male voice used for personalization for all 4 of our tablets and
phones without using any additional machine learning algo-
rithms. Finally, we did not test the ability to match voices for
devices other than phones and tablets, as voice authentication
is not available for smart speakers at the time of writing.

6 Exploring Various Attack Scenarios

The results of Section 5 clearly demonstrate the feasibility of
laser-based injection of voice commands into voice-controlled
devices across large attack distances. In this section, we ex-
plore the security implications of such an injection, as well as
experiment with more realistic attack conditions.

6.1 A Low-Power Cross-Building Attack
For the long-range attacks presented in Section 5.2, we delib-
erately placed the target device so that the microphone ports
are facing directly into the laser beam. While this is realistic
for some devices (who have microphone ports on their sides),
such an arrangement is artificial for devices with top-facing
microphones (unless mounted sideways on the wall).

In this section we perform the attack under a more realis-
tic conditions, where an attacker aims from another higher
building at a target device placed upright on a window sill.
Experimental Conditions. We use the laser diode, tele-
photo lens and laser driver from Section 5, operating the diode
at 5 mW (equivalent to a laser pointer) with the same modula-
tion parameters as in the previous section. Next, we placed

a Google Home device (which only has top-facing micro-
phones) upright near a window, on a fourth-floor office (15
meters above the ground). The attacker’s laser was placed on
a platform inside a nearby bell tower, located 43 meters above
ground level. Overall, the distance between the attacker’s and
laser was 75 meters, see Figure 10 for the configuration.
Laser Focusing and Aiming. As in Section 5.2, it is impos-
sible to focus the laser using the small lens typically used for
laser pointers. We thus mounted the laser to an Opteka 650-
1300 mm telephoto lens. Next, to aim the laser across large
distances, we have mounted the telephoto lens on a Manfrotto
410 geared tripod head. This allows us to precisely aim the
laser beam on the target device across large distances, achiev-
ing an accuracy far exceeding the one possible with regular
(non-geared) tripod heads where the attacker’s arm directly
moves the laser module. Finally, in order to see the laser spot
and the device’s microphone ports from far away, we have
used a consumer-grade Meade Infinity 102 telescope. As can
be seen in Figure 10 (left), the Google Home microphone’s
ports are clearly visible through the telescope.†

Attack Results. We have successfully injected commands
into the Google Home target in the above described condi-
tions. We note that despite its low 5 mW power and windy
conditions (which caused some beam wobbling due to laser
movement), the laser beam successfully injected the voice
command while penetrating a closed double-pane glass win-
dow. While causing negligible reflections, the double-pane
window did not cause any visible distortion in the injected sig-
nal, with the laser beam hitting the target’s top microphones
at an angle of 21.8 degrees and successfully injecting the com-
mand without the need for any device- or window-specific
calibration. We thus conclude that cross-building laser com-
mand injection is possible, at large distances and under realis-
tic attack conditions. Finally, the experiment in Figure 10 was
conducted at night due to safety requirements, with long-range
attacks under illuminated conditions shown in Section 5.2.

6.2 Attacking Authentication

Some of the current generation of VC systems attempt to
protect unauthorized execution of sensitive commands by
requiring additional user authentication step. For phone and
tablet devices, the Siri and Alexa apps require the user to
unlock the phone before executing certain commands (e.g.,
unlock front door, disable home alarm system). However,
for devices that do not have other form of inputs beside the
user’s voice (e.g., voice-enabled smart speakers, cameras, and
thermostats) a digit-based PIN code is used to authenticate
the user before critical commands are performed.

†Figure 10 (left) was taken via a cell phone camera attached to the
telescope’s eyepiece. Unfortunately, due to imperfect phone-eyepiece align-
ment, the outcome is slightly out of focus and the laser spot is over saturated.
However, the Google Home was in sharp focus with a small laser spot when
viewed directly by a human observer.
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Figure 10: Setup for the low-power cross-building attack: (Top left) Laser and target arrangement. (Bottom left) Picture of the
target device as visible through the telescope, with the microphone ports and laser spot clearly visible. (Middle) Picture from the
tower: laser on telephoto lens aiming down to the target. (Right) Picture from the office building: laser spot on the target device.

PIN Eavesdropping. The PIN number spoken by the user
is inherently vulnerable to eavesdropping attacks, which can
be performed remotely using a laser microphone (measuring
the acoustic vibration of a glass window using a laser reflec-
tion [37]), or using common audio eavesdropping techniques.
Moreover, within an application the same PIN is used to au-
thenticate more than one critical command (e.g., “unlock the
car” and “start the engine”) while users often re-use PIN num-
bers across different applications. In both cases, increasing
the number of PIN-protected commands ironically increases
the opportunity for PIN eavesdropping attacks.
PIN Brute forcing. We also observed incorrect implemen-
tation of PIN verification mechanisms. While Alexa natu-
rally supports PIN authentication (limiting the user to three
wrong attempts before requiring interaction with a phone ap-
plication), Google Assistant delegates PIN authentication to
third-party device vendors that often lack security experience.

Evaluating this design choice, we have investigated the fea-
sibility of PIN brute forcing attacks on an August Smart Lock
Pro, which is the most reviewed smart lock on Amazon at the
time of writing. First, we have discovered that August does
not enforce a reasonable PIN code length, allowing PINs con-
taining anywhere from 1 to 6 digits for door unlocking. Next,
we observed that August does not limit the number of wrong
attempts permitted by the user at the time of writing, nor does
the lock implement a time delay mechanism between incor-
rect attempts, allowing the attacker o to unlock the target’s
door is to simply enumerating all possible PIN codes.

Empirically verifying this, we have written a program that
enumerates all 4-digit PIN numbers using a synthetic voice.
After each unsuccessful attempt, the Google home device
responded with “Sorry, the security code is incorrect, can

I have your security code to unlock the front door?” only
to have our program speak the next PIN candidate. Overall,
a single unlock attempt lasted about 13 seconds, requiring
36 hours to enumerate the entire 4-digit space (3.6 hours
for 3 digits). In both the 3- and 4-digit case, the door was
successfully unlocked when the correct PIN was reached.
PIN Bypassing. Finally, we discovered that while com-
mands like “unlock front door” for August locks or “disable
alarm system” for Ring alarms require PIN numbers, other
commands such as “open the garage door” using an assistant-
enabled garage door opener‡ often do not require any authenti-
cation. Thus, even if one command is unavailable, the attacker
can often achieve similar goals by using other commands.

6.3 Attacking Cars
Many modern cars have Internet-over-cellular connectivity,
allowing their owners to perform certain operations via a
dedicated app on their mobile devices. In some cases, this
connectivity has further evolved (either by the vendor or by a
third-party) in having the target’s car be connected to a VC
system, allowing voice unlocking and/or pre-heating (which
often requires engine start). Thus, a compromised VC system
might be used by an attacker to gain access to the target’s car.

In this section we investigate the feasibility of such attacks,
using two major car manufactures, namely Tesla and Ford.
Tesla. Tesla cars allow their owner to interact with the car
using a Tesla-provided phone app. After installing the app on
our phone and linking it to a Tesla Model S, we installed the
“EV Car”§ integration, linking it to the vehicle. While “EV

‡https://www.garadget.com/
§https://assistant.google.com/services/a/uid/000000196c7e079e?hl=en
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Car” is not provided by Tesla, after successful configuration
using the vehicle’s owner credentials, we were able to get
several capabilities. These included getting information about
the vehicle’s current location¶, locking and unlocking the
doors and trunk, starting and stopping the vehicle’s charging
and the climate control system. Next, we note that we were
able to perform all of these tasks using only voice commands
without the need of a PIN number or key proximity. Finally,
we were not able to start the car without key proximity.
Ford Cars. For newer vehicles, Ford provides a phone
app called “FordPass”, that connects to the car’s Ford SYNC
system, and allows the owner to interact with the car over the
Internet. Taking the next step, Ford also provides a FordPass
Google Assistant integration|| with similar capabilities as the
“EV Car” integration for Tesla. While Ford implemented PIN
protection for critical voice commands like remote engine
start and door unlocking, like in the case of August locks,
there is no protection against PIN brute forcing. Finally, while
we were able to remotely open the doors and start the engine,
shifting the vehicle out of “Park” immediately stopped the
engine, preventing the unlocked car from being driven.

6.4 Exploring Stealthy Attacks
The attacks described so far can be spotted by the user of
the targeted VC system in three ways. First, the user might
notice the light indicators on the target device following a
successful command injection. Next, the user might hear the
device acknowledging the injected command. Finally, the user
might notice the spot while the attacker tries to aim the laser
at the target microphone port.

While the first issue is a limitation of our attack (and in fact
of any command injection attack), in this section we explore
the attacker’s options for addressing the remaining two issues.
Acoustic Stealthiness. To tackle the issue of the device
owner hearing the targeted device acknowledging the execu-
tion of voice command (or asking for a PIN number during the
brute forcing process), the attacker can start the attack by ask-
ing the device to lower its speaker volume. For some devices
(EcoBee, Google Nest Camera IQ, and Fire TV), the volume
can be reduced to completely zero, while for other devices
it can be set to barely-audible levels. Moreover, the attacker
can also abuse device features to achieve the same goal. For
Google Assistant, enabling the “do not disturb mode” mutes
reminders, broadcast messages and other spoken notifications.
For Amazon Echo devices, enabling “whisper mode” signifi-
cantly reduces the volume of the device responses during the
attack to almost inaudible levels.
Optical Stealthiness. The attacker can use an invisible
laser wavelength to avoid having the owner spot the laser light
aimed at the target device. However, as the laser spot is also

¶Admittedly, the audible location is of little use to a remote attacker who
is unable to listen in on the speaker’s output.

||https://assistant.google.com/services/a/uid/000000ac1d2afd15
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Figure 11: Setup with laser flashlight to avoid precise aiming.
(Left) Target device illuminated by the flashlight. (Right)
Modified laser flashlight mounted on a geared tripod head
aiming at the target 10 meters away.

invisible to the attacker, a camera sensitive to the appropriate
wavelength is required for aiming. Experimentally verifying
this, we replicated the attack on Google Home device from
Section 5.1 using a 980-nm infrared laser (Lilly Electronics 30
mW laser module). We then connected the laser to a Thorlabs
LDC205C driver, limiting its power to 5 mW. Finally, as the
spot created by infrared lasers is invisible to humans, we
aimed the laser using a smartphone camera (as these typically
do not contain infrared filters).

Using this setup, we have successfully injected voice com-
mands to a Google Home at a distance of about 30 centimeters
in the same setup as Section 5.1. The spot created by the in-
frared laser was barely visible using the phone camera, and
completely invisible to the human eye. Finally, not wanting
to risk prolonged exposure to invisible (but eye damaging)
laser beams, we did not perform range experiments with this
setup. However, given the color insensitivity described in Sec-
tion 4.1, we conjecture that results similar to those obtained
in Section 5.2 could be obtained here as well.

6.5 Avoiding the Need for Precise Aiming

Another limitation of the attacks described so far is the need
to aim the laser spot precisely on the target’s microphone
ports. While we achieved such aiming in Section 6.1 by using
geared camera tripod heads, in this section we show how the
need for precise aiming can be avoided altogether.

An attacker can use a higher-power laser and trade its power
with a larger laser spot size, which makes aiming considerably
easier. Indeed, laser modules higher than 4W are commonly
available on common e-commerce sites for laser engraving.
Since we could not test such a high-power laser in an open-
air environment due to safety concerns, we decided to use a
laser-excited phosphor flashlight (Acebeam W30 with 500
lumens), which is technically a laser but sold as a flashlight
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with beam-expanding optics (making it a class 3B system).
To allow for voice modulation, we modified the flashlight

by removing its original current driver and connecting its
diode terminals to the Thorlabs LDC240C laser driver (see
Figure 11). Then, the experimental setup of Section 5.2 is
replicated except that the laser diode and telephoto lens is
replaced with the flashlight. Using this setup, we successfully
injected commands to a Google Home device at a range of
about 10 meters, while running the flashlight at an output
power of 1 W. Next, as can be seen in Figure 11, the beam spot
created by the flashlight is large enough to cover the entire
target (and its microphone ports) without the need to use
additional focusing optics and aiming equipment. However,
we note that while the large spot size helps for imprecise
aiming, the flashlight’s quickly diverging beam also limits the
attack’s maximum range.

Finally, the large spot size created by the flashlight (cover-
ing the entire device surface) can also be used to inject the
sound into to multiple microphones simultaneously, thereby
potentially defeating software-based anomaly detection coun-
termeasures described in Section 7.

6.6 Reducing the Attack Costs
While the setups used for all the attacks described in this paper
are built using readily available components, some equipment
(such as the laser driver and diodes) are intended for lab use,
making assembly and testing somewhat difficult for a non-
experienced user. In this section we present a low-cost setup
that can be easily constructed using improvised means and
off-the-shelf consumer components.
Laser Diode and Optics. Modifying off-the-shelf laser
pointers can be an easy way to get a laser source with colli-
mation optics. In particular, cheap laser pointers often have
no current regulators, having their anodes and cathodes di-
rectly connected to the batteries. Thus, we can easily connect
a current driver to the pointer’s battery connectors via alliga-
tor clips. Figure 12 shows a cheap laser pointer based setup,
available at $18 for 3 pieces at Amazon.
Laser Driver. The laser current driver with analog modula-
tion port is the most specialized instrument of our setup, as we
used the scientific-grade laser drivers that cost about $1,500.
However, cheaper alternatives exist, such as the Wavelength
Electronics LD5CHA driver available for about $300.
Sound Source and Experimental Results. Finally, the at-
tacker needs a method for playing recorded audio commands.
We used an ordinary on-board laptop sound card (Dell XPS
15 9570), amplified using a Neoteck NTK059 Headphone
Amplifier ($30 on Amazon). See Figure 12 for a picture of a
complete low-cost setup, which does not involve any custom
components or additional software beyond wires cut to length.
We have experimentally verified successful command injec-
tion using this setup into a Google Home located at a distance
of 15 meters, with the main range limitation being the laser

Laser current driver

Laser spot (green)

Audio amplifier

A cheap laser pointer
with alligator clips
on its battery electrodes

Audio cable
from PC 

5V

Figure 12: Setup for low-cost attack: a laser current driver
connected to a laser pointer attacking a Google Home device.

Figure 13: (Left) Aiming a laser beam on an electret con-
denser microphone. (Right) Spectrogram of the microphone’s
output showing a clearly visible chirp signal.

focusing optics and an artificially-limited power budget of 5
mW for safety reasons. Finally, we achieved a range of 110
meters with the cheap setup by replacing the laser optics with
the telephoto lens from the previous sections.

6.7 Attacking Non-MEMS Microphones
Although smart speakers, phones, and tablets typically use
MEMS microphones due to their small footprint, we also in-
vestigate the feasibility of the attack on larger, conventional
non-MEMS microphones. We empirically verify this using
a Sanwa 400-MC010 Electret Condenser Microphone, aim-
ing the (blue) laser beam through the microphone’s metallic
mesh (See Figure 13 (Left)). Using the same parameters as in
Section 4.2 (e.g., IDC = 200 mA and Ipp = 150 mA), we play
a chirp signal varying frequency linearly from 0 to 10 kHz in
5 seconds. Figure 13 (Right) shows the spectrogram of the
audio recorded by the microphone, clearly showing repeated
diagonal lines that correspond to the linear frequency sweep.
We thus conclude that our results are also applicable beyond
MEMS microphones, to electret condenser microphones.
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7 Countermeasures and Limitations

7.1 Software-Based Approach

As discussed in Section 6.2, an additional layer of authen-
tication can be effective at somewhat mitigating the attack.
Alternatively, in case the attacker cannot eavesdrop on the
device’s response (for example since the device is located
far away behind a closed window), having the VC system
ask the user a simple randomized question before command
execution can be an effective way to prevent the attacker from
obtaining successful command execution. However, note that
adding an additional layer of interaction often comes at a cost
of usability, limiting user adoption.

Next, manufacturers can attempt to use sensor fusion tech-
niques [38] in the hopes of detecting light-based command
injection. More specifically, voice assistants often have multi-
ple microphones, which should receive similar signals due to
the omnidirectional nature of sound propagation. Meanwhile,
when the attacker uses a single laser, only one microphone
receives a signal while the others receive nothing. Thus, man-
ufacturers can attempt to mitigate the attack presented in
this paper by comparing signals from multiple microphones,
ignoring injected commands using a single laser. However,
attackers can attempt to defeat such comparison countermea-
sures by simultaneously injecting light to all the device’s
microphones using multiple lasers or wide beams, see Sec-
tion 6.5. We leave this task of implementing such defenses
and investigating their security properties to future work.

Finally, LightCommands are very different compared to
normal audible commands. For sensor-rich devices like
phones and tablets, sensor-based intrusion detection tech-
niques [39] can potentially be used to identity and subse-
quently block such irregular command injection. We leave
further exploration of this direction to future work.

7.2 Hardware-Based Approach

It is possible to reduce the amount of light reaching the mi-
crophone’s diaphragm using a barrier or diffracting film that
physically blocks straight light beams, while allowing sound
waves to detour around it. Performing a literature review on
proposed microphone designs, we have found several such
suggestions, mainly aimed to protect microphones from sud-
den pressure spikes. For example, the designs in Figure 14
have a silicon plate or movable shutter, both of which elimi-
nate the line of sight to the diaphragm [40]. It is important to
note however, that such barriers should be opaque to all light
wavelengths (including infrared and ultraviolet), preventing
the attacker from going through the barrier using a different
colored light. Finally, a light-blocking barrier can be also im-
plemented at the device level, by placing a non-transparent
cover on top of the microphone hole, which attenuates the
amount of light hitting the microphone.

Silicon plate

Acoustic port

PCB PCB

Diaphragm

Movable shutter

Figure 14: Designs of MEMS microphone with light-blocking
barriers [40]

7.3 Limitations

Hardware Limitations. Being a light-based attack,
LightCommands inherits all the limitations of light-related
physics. In particular, LightCommands assumes a line-of-
sight threat model and does not properly penetrate opaque
obstacles which might be penetrable to sound. Thus, even
if attacking fabric-covered devices is sometimes possible
(Section 5.2, Google Home Mini), we believe that for fabric-
covered microphones’ ports, the thickness of the cover can
prevent successful attacks (e.g., in the case of Apple Home-
pods). We leave the analysis of such scenarios to future work.

In addition, unlike sound, LightCommands requires careful
aiming and line of sight access. In our experiments, we show
how to partially overcome this limitation by using a telescope
to remotely determine the assistant type and location of the
microphones from the device’s appearance.

Finally, while line of sight access is often available for
smart speakers visible through windows, the situation is dif-
ferent for mobile devices such as smart watches, phones and
tablets. This is since unlike static smart speakers, these de-
vices are often mobile, requiring an attacker to quickly aim
and inject commands. When combined with the precise aim-
ing and higher laser power required to attack such devices, suc-
cessful LightCommands attacks might be particularly chal-
lenging. We thus leave the task of systematically exploring
such devices to future work.
Liveness Test and Continuous Authentication. Unlike
some other injection attacks, LightCommands’ threat model
and lack of proper feedback channels make it difficult for the
attacker to pass any sorts of liveness checks or continuous
authentication methods. These can be as primitive as asking
a user simple questions before performing a command, or as
sophisticated as using data from different microphones [41,
42, 43], sound reflections [44], or other sensors [45] to verify
that the incoming commands were indeed spoken by a live
human. We leave the task of implementing such defenses in
deployed VC systems as an avenue for future works.

8 Conclusions and Future Work

In this paper we presented LightCommands, which is an at-
tack that uses light to inject commands into voice-controllable
systems from large distances. To mount the attack, we trans-
mit light modulated with an audio signal, which is con-
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verted back to audio within the microphone. We demon-
strated LightCommands on many commercially-available
voice-controllable systems that use Siri, Portal, Google As-
sistant, and Alexa, obtaining successful command injections
at a distance of more than 100 meters while penetrating clear
glass windows. Next, we highlight deficiencies in the secu-
rity of voice-controllable systems, which leads to additional
compromises of third-party hardware such as locks and cars.

Better understanding of the physics behind the attack will
benefit both new attacks and countermeasures. In particular,
we can possibly use the same principle to mount other acous-
tic injection attacks (e.g., on motion sensors) using light. In
addition, heating by laser can also be an effective way of
injecting false signals to sensors.
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