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Abstract—Control or disablement of computer vision-assisted
autonomous vehicles via acoustic interference is an open problem
in vehicle cybersecurity research. This work explores a new threat
model in this problem space: acoustic interference via high-speed,
pulsed lasers to non-destructively affect drone sensors. Initial
experiments verified the feasibility of laser-induced acoustic wave
generation at resonant frequencies of MEMS gyroscope sensors.
Acoustic waves generated by a lab-scale laser produced a 300-fold
noise floor modification in commercial off-of-the-shelf (COTS)
gyroscope sensor readings. Computer vision functionalities of
drones often depend on such vulnerable sensors, and can be a
target of this new threat model because of camera motion blurs
caused by acoustic interference. The effect of laser-induced acous-
tics in object detection datasets was simulated by extracting blur
kernels from drone images captured under different conditions
of acoustic interference, including speaker-generated sound to
emulate higher intensity lasers, and evaluated using state-of-the-
art object detection models. The results show an average of 41.1%
decrease in mean average precision for YOLOv8 across two
datasets, and suggest an inverse relationship between an object
detection model’s mean average precision and acoustic intensity.
Object detection models with at least 60M parameters appear
more resilient against laser-induced acoustic interference. Initial
characterizations of laser-induced acoustic interference reveal
future potential threat models affecting sensors and downstream
software systems of autonomous vehicles.

I. INTRODUCTION

Advances in imaging hardware and computer vision (CV)-
assisted controls have revolutionized capabilities for unmanned
vehicles to navigate and monitor ground, underwater, and
aerial environments. These advances, however, also raise
concerns about lowering the cost of trespassing, malicious
reconnaissance, and terrorism, and motivate the need for
counter-unmanned vehicle technologies that can neutralize
unwanted vehicles in protected spaces [23]. High-energy lasers
can destroy targets from several kilometers away, and are thus
far one of the most used unmanned aerial vehicle (UAV)
mitigation techniques, but can neither be used for damage-
free UAV disablement [40], nor for preventing lateral damage
caused by crashing a UAV. Unmanned vehicle sensors are
inherently vulnerable to modulated acoustic waves. Elec-
tronic speakers can generate non-destructive acoustic waves to

Fig. 1. Pulsed lasers generate acoustic waves that can change gyroscope
sensor output to interfere with drone camera stabilization, resulting in motion
blurs in images captured by the drone.

modify outputs of micro-electromechanical system (MEMS)
sensors, e.g., inertial measurement units (IMUs) including
accelerometers, and gyroscopes, [36], and thus control or
disable unmanned vehicles’ functionalities. However, a major
limitation of speaker-generated acoustic waves is their poor
directionality and relatively short interference distance. The
long-range capabilities of lasers have also been used to inject
audio into voice-controllable systems due to a vulnerability
of MEMS microphones [31], but the affect of laser-induced
acoustic pressure on optical systems due to MEMS gyroscope
destabilization is as yet unexplored. Given this, we explore
a new threat model of acoustic interference attacks: acous-
tic wave generation using high-speed, pulsed lasers to non-
destructively affect MEMS gyroscopes, and achieve potentially
long-range disabling interference against computer vision-
assisted drones.

A key challenge for the laser-induced acoustic interference
threat model is to characterize its impact on commercial
devices with accessible and sustainable lab-scale setups. Initial
experiments demonstrated 3 rad/s deviations with a 0.01
rad/s noise floor from acoustic wave generation in a COTS
gyroscope under direct ablation and air ionization using a high-
speed, pulsed laser. Moreover, evaluation of object detection
models using acoustic blur degraded images suggests an
inverse relationship between mean average precision (mAP)
and acoustic interference intensity. For example, there was a
41.1% mean decrease in mAP [50-95] for YOLOv8 across
two datasets. Experimental results and analysis of adversary
capabilities enable identifying potential threat models. Future
work to facilitate research in developing and assessing laser-
induced acoustic interference against computer vision-assisted
vehicles, and other sensor-based autonomous control systems
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Fig. 2. A train of laser pulses with a pulse repetition rate of α Hz generates
acoustic waves at α Hz and its harmonics. The adversary needs to set the
pulse rate to the resonant frequency of the target sensors.

is discussed. Contributions of this work towards initial, proof-
of-concept characterization of laser-induced acoustic interfer-
ence are:

• Experimental analysis of acoustic interference generated
through air ionization and direct ablation from high-
speed, pulsed lasers to modify gyroscope sensor readings.

• A methodology to simulate and evaluate the impact of
laser-induced acoustic interference on computer vision of
unmanned vehicles.

• Exploration of potential laser-induced acoustic interfer-
ence threat models and their limiting factors.

II. BACKGROUND & RELATED WORK

A. Laser-Induced Acoustic Waves

Lasers can generate acoustic waves via various photo-
acoustic effects, which are the physical processes of optical
energy being transformed into mechanical (acoustic) waves
in gases, liquids, and solids. High-energy pulsed lasers can
induce acoustic waves to affect MEMS sensors through both
air ionization and direct material ablation.

Pulsed Lasers Different from continuous wave lasers that
constantly output optical energy, pulsed lasers turn on and
off with certain pulse repetition rates and pulse widths, as
shown in Figure 2. A key parameter of acoustic interference
in an inertial measurement unit (IMU) is the acoustic wave
frequency which is resonant to a sensor’s mechanical resonant
frequency. For acoustic interference against MEMS IMU sen-
sors, the acoustic waves generated by a pulsed laser with a
repetition rate of α Hz can be considered equivalent to the
sinusoidal acoustic waves generated by electronic speakers at
α Hz.

Air Ionization A high-power laser beam focused onto a
small area in the air can generate air-borne sound by imparting
enough energy density to exceed the breakdown point of the
air molecules [13]. An adversary could use air ionization to
generate acoustic waves by setting the ionization breakdown
point close to the surface of the target vehicle. The acoustic
waves will propagate sequentially to the internal IMU sensor
through airborne and structure-borne paths, and affect sensor
readings, as shown in Figure 1.

Direct Ablation Laser ablation produces acoustic waves
through a similar process, but with the plasma generated out
of irradiated solid materials instead of air molecules. When

generating acoustic interference through direct ablation, the
adversary directly sets the ionization breakdown point on the
surface of the target vehicle. The acoustic waves generate
mechanical vibrations of the target vehicle’s body and affect
sensor readings mostly through structure-borne acoustics, as
shown in Figure 1.

B. Acoustic Attacks on MEMS Sensors

MEMS IMUs are miniature electronic devices that can
measure the movements of objects. Specifically, accelerom-
eters and gyroscopes measure an object’s acceleration and
angular velocity respectively, and provide that measurement
for downstream applications, including localization and nav-
igation in semi or fully autonomous robots and vehicles.
Gyroscope sensors are also widely used in modern camera
systems for image stabilization (see Section II-C). Despite
widespread use of MEMS IMU sensors, prior works have
shown that such sensors are sensitive to acoustic interference at
the sensors’ mechanical resonant frequencies [12], [35], [36].
This is because the mechanical vibrations caused by sound
waves are able to change the readings of the IMU sensors in
a contactless way.

Conversely, Long et al. [18] showed that ambient acoustic
waves near cameras can cause audio-specific image blurs,
which allow adversaries to use computer vision techniques
to eavesdrop on ambient audio by analyzing streams of
camera images. The computer vision capabilities of a drone
are integral for enabling many of its core functionalities,
even for drones which utilize multi-modal sensing [28], but
are not required for it to stay in flight, and as such are a
reasonable target for damage-free drone disablement. While all
previous works of acoustic interference attacks used electronic
speakers to generate acoustic waves, this work explores first-
of-its-kind methodology for laser-based acoustic interference
attacks against MEMS gyroscopes and camera-based computer
visions.

C. Image Stabilization in Drones

Drone computer vision capabilities may include object
detection and tracking [2], [4], and obstacle avoidance [6], to
name a few, and object detection enables many downstream
computer vision capabilities [2], [15]. Drones use a combi-
nation of digital and mechanical/optical image stabilization
to compensate for motion-induced image degradation [26].
Gyroscope-guided image stabilization is a well-established
mechanical/optical technique which compensates for the shifts
and rotations resultant from the movement of the optical
system during image capture [17]. Object detection, used by
either autonomous or operated drones, is a core capability for
enabling drone function across different applications, includ-
ing infrastructure inspection, crowd control, reconnaissance
and surveillance, or counter-drone operations [2]. Many object
detection techniques for drones rely on IMU sensor data,
e.g., fast object detection [4], pose recognition [29], or gyro-
informed tracking [15]. Object detection models rely on image
quality [33], and are sensitive to sources of degradation
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Fig. 3. Example of gyroscope reading deviations caused by laser air ionization
and direct ablations at two acoustic resonant frequencies of the gyroscope.

affecting feature representations [16], [37]. The work herein
focuses on inducing gyroscope measured deviation to cause
camera destabilization, and determine at what acoustic inten-
sity threshold sensor destabilization affects a drone’s object
detection capability.

III. METHODOLOGY

A. Pulsed Lasers for Acoustic Wave Generation

A Light Conversion Pharos DPSS femtosecond laser was
used for all pulsed laser tests. This laser supports 1kHz to
200kHz pulse repetition rates, 3mJ/pulse max output energy,
and 20W max output power. The laser wavelength is 1030nm.
The optical system uses a focusing lens with a focal length
of 7cm. By default, the highest output power of the laser was
used. For attack targets, either a MPU6050 MEMS gyroscope
sensor, or a DJI Mavic 2 Pro drone, was used near the laser
focal point. A gyroscope test board was created to enable
easier handling of the MPU6050 MEMS gyroscope during
testing by attaching the sensor to a piece of plastic material
commonly used to construct drones. The test board was used
as the target for either air ionization and direct ablation-
generated acoustic interference, and the gyroscope output was
measured. When testing air ionization, the gyroscope sensor
was placed near the focal point of the laser, but focal point
was in the air. During air ionization, the generated acoustic
waves propagate to the sensor through air. When testing
direct ablation on the gyroscope test board, the laser focal
point was on the test board plastic. In this case, the acoustic
waves affect the sensor through direct mechanical vibrations.
Different pulse rates were tested for the laser to generate
acoustic interference at various frequencies.

B. Simulating Laser Acoustics Impact on Drone CV

As mentioned, object detection enables downstream com-
puter vision capabilities, which are often required for enabling
key functionality in a drone. Object detection can be enabled
in current commercial drones [10], [21], but to decouple the
effect of laser-induced acoustic interference on the drone’s

gyroscope from its effect on other components of the drone’s
hardware this work opted to capture acoustic-interfered data
from the drone camera and evaluate the object detection
models on a separate computer. However, object detection
datasets with images captured under acoustic interference do
not currently exist, so acoustic wave-induced motion blur
was instead simulated in existing object detection datasets
by extracting blur kernels from drone images captured under
acoustic interference.

High Intensity Laser Simulation Electronic speakers were
used to emulate higher intensity lasers for greater acoustic
wave generation (i.e., >98dB). Acoustic intensity produced by
air ionization has a theoretical limit of about 600Pa, equivalent
to about 150dB SPL, which is significantly higher than that
required by previous speaker-generated acoustic attacks [24].
Experimental results have also verified that lab-scale lasers can
use air ionization to generate sound over 120dB SPL that can
vibrate nearby objects in non-contact manners [11]. As such,
we can gain insight into the potential effects of using higher
powered lasers as emulated by electronic speakers. A drone
was subjected to increasing acoustic intensity from 98dB to
110dB, with a step size of 3. A previously described setup was
used for acoustic wave generation using an electronic speaker
[12]. Videos recorded using the drone camera during acoustic
interference were used to extract blur kernels. The most blur
degraded frame from each video capture was identified using
the BRISQUE metric [22] to simulate a blur kernel for each
acoustic intensity level.

Acoustic Blur Kernel For this simulation method, the goal
was to extract features from observed motion in a blurry
image to inform a blur kernel, and use that blur kernel to
degrade clean object detection dataset images in a localized
manner. Feature descriptors in an image, such as localized
intensity gradients, can be used to describe an image object’s
shape, and histogram of oriented gradients (HOG) is a com-
monly used technique for determining gradient orientations
local to an object [7]. Motion blur can result in smoothing,
effectively leading to a loss of gradients [3], and reduction
in pixel intensities along edges [20]. To simulate acoustic
blurred images, 3 second videos using the drone’s camera
were recorded while subjecting the drone to a direct laser
ablation or electronic speaker generated acoustic waves, where
acoustic wave generation was confirmed by using a previously
determined resonant frequency. The drone remained in a
stationary and stable position during laser ablation to preclude
any other reasons for image motion blur. The most blurred
frame from each video was identified using the BRISQUE
metric [22], and used to determine blurred image intensity
gradients using HOG. Finally, non-blurry and clean images
were convolved using a 10 × 10 kernel on pixels mapped
to corresponding blur image gradient locations with low-level
intensities.

Object Detection Datasets and Models Images degraded
by acoustic blur kernels were used to evaluate performance
for different object detection models. Only the validation set
images were degraded to emulate an object detection model
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trained for normal applications. Object detection baseline
model performance was established using Detectron2’s RCNN
X101-FPN and Faster RCNN X101-FPN pretrained model
checkpoints on COCO2017 [38]. Datasets with objects for
common drone applications, e.g. infrastructure surveillance or
detecting other drones, were also used for evaluating the effect
of acoustic wave generation on an object detection model [9],
[27] using pretrained model checkpoints available for each
dataset [14]. The metrics used for object detection include
mean average recall (mAR), and mean average precision at
different intersection over union (IoU) thresholds, 0.5, 0.6, and
the interval of [.5,0.5-0.9] [25]. The metrics APM and APL

are average precision for ground truth objects with different
pixel areas [25].

IV. EXPERIMENTAL RESULTS

TABLE I
YOLOV8 OBJECT DETECTION EVALUATION

Dataset Experiment mAR mAP50 mAP60 mAP
50-95

Baseline 0.993 0.994 0.993 0.918
Laser 0.834 0.895 0.910 0.562
98 dB 0.712 0.831 0.964 0.605

ParkingLot [9] 101 dB 0.706 0.823 0.895 0.594
104 dB 0.694 0.806 0.889 0.576
107 dB 0.673 0.794 0.903 0.563
110 dB 0.871 0.779 0.874 0.535
Baseline 0.999 0.995 0.999 0.999
Laser 0.834 0.895 0.910 0.562
98 dB 0.843 0.912 0.898 0.572

DroneSegment [27] 101 dB 0.858 0.921 0.916 0.567
104 dB 0.883 0.908 0.891 0.572
107 dB 0.898 0.826 0.902 0.563
110 dB 0.927 0.813 0.900 0.555

A. Laser-Induced Acoustic Wave Generation

Acoustic wave generation from high-speed, pulsed laser
was experimentally verified to modify gyroscope readings
through both air ionization and direct ablation. For example,
Figure 3 shows gyroscope reading deviations when the laser
produces acoustic waves at two acoustic resonant frequencies
(audible at 4.3kHz, and inaudible at 26.8kHz) of the gyroscope
sensors compared to when there is no laser-generated acoustic
interference. In each case, the laser is turned on for 2 seconds.

Out-of-focus Ablation When the target object is in the
optical path of the laser, ablation can happen not only when
the target is right at the focal point of the laser beam but
also when the target deviates from the focal point along
the path, i.e., being out-of-focus. Out-of-focus ablation can
happen if the adversary fails to aim the laser at the target, or
purposely adjusts the focal point away from the focal point. To
investigate the impact of out-of-focus ablation, the gyroscope
test board was moved away from the focal point, which is 7cm
away from the focusing lens. Figure 6 shows how changing
the test board’s position relative to the focus point changes the
sensor readings, where a location deviation of 0cm represents
being at the focal point. When the ablation target is 21cm away
from the focal point, the maximum sensor reading deviation
reduces from about 3rad/s (Figure 3 (d)) to about 0.08rad/s

Fig. 4. A tear-down view of the DJI Mavic 2 Pro drone’s gyroscope sensor.

(Figure 6 (d)). This is about 2.7% of the original deviation
amplitude, but is still higher than the 0.01 rad/s noise floor.

While interference strength, as measured by gyroscope
reading deviation from a 0.01 rad/s noise floor, is lower when
the target is out-of-focus, the stability of interference improves.
In contrast to in-focus ablation, which may quickly burn a hole
through the target material, out-of-focus ablation only causes
slow melting of the ablated material, which is less destructive
due to lower energy-per-area (Section II-A). Figure 6 shows
a comparison between the burn marks generated by in-focus
and out-of-focus ablation, and Figure 6 (d) shows that the
acoustic interference could last for over 5 seconds with out-of-
focus ablation. The results suggest that advanced adversaries
could deliberately create out-of-focus conditions to achieve
more stable and persistent controls over the induced acoustic
interference at the cost of lower interference strength.

B. Impact on Object Detection

After verifying the feasibility of using lasers to generate
acoustic interference to modify gyroscope sensor measure-
ments, the effect of acoustic interference on drone camera
hardware was investigated.

TABLE II
COCO2017 OBJECT DETECTION EVALUATION

Model Experiment mAP50-95 mAP50 APM APL

Baseline 65.076 86.222 60.236 73.577
Laser 55.897 77.658 49.687 65.676
98 dB 57.650 79.581 51.542 67.604

RCNN 101 dB 57.633 79.578 51.503 67.586
104 dB 57.631 79.549 51.462 67.556
107 dB 57.623 79.572 51.388 67.554
110 dB 57.624 79.597 51.452 67.566
Baseline 37.455 52.935 40.59 50.573
Laser 30.375 44.036 33.248 41.039
98 dB 31.038 44.914 34.023 42.291

Faster RCNN 101 dB 30.988 44.877 33.967 42.219
104 dB 30.988 44.828 33.941 42.223
107 dB 30.994 44.824 34.000 42.267
110 dB 30.998 44.853 34.002 42.240

Interfered Video Collection. The laser setup used for this
research only enables in-focus direct ablation for generating
acoustic interference which can produce motion blurs in a
drone camera video. Figure 5 (b) and (c) demonstrate an
example of the video blurs when the laser generates acoustic
waves at the gyroscope’s resonant frequency via direct abla-
tion. The insufficient interference strength is the main reason
that air ionization and out-of-focus ablation could not generate
observable changes in the camera videos. It should be noted
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that the drone’s gyroscope is installed in the center of the
drone body and covered by thick plastic and metal materials
(Figure 4), making it challenging for adversaries to aim the
laser’s focal point closely at the drone’s gyroscope, as well
as for air-borne acoustic waves to reach the sensor. Potential
threat model modifications which could enable air ionization
and out-of-focus ablation to affect drone cameras are discussed
in Section VI.

Object Detection Evaluation Direct ablation of the drone
gyroscope with the laser causes the drone’s camera to vibrate,
which induces motion blurs in the drone camera stream, as
shown in Figure 5 (c). The most likely cause of the camera
vibration is mechanical vibration of the optical system due
to destabilization caused in the gyroscope via the resonant
frequency of the laser. The DJI Mavic 2 Pro drone used in this
research uses a triaxial gimbal [1], and a system of sensors
dubbed FlightAutonomoy [6] for camera stabilization. Thus,
it is likely that mechanical vibrations caused by the laser-
induced acoustic interference against the drone’s gyroscope
overpowered additional onboard mechanisms for camera sta-
bilization, but this requires more experimentation to confirm.
The BRISQUE [22] score of the images produced using the
blur kernels matched that of the most blurry frame identified
from the drone videos, but a more precise method to confirm
accurate blur kernel extraction is required. Current methods
utilize neural nets for both point spread function estimation
and image deblurring [5], [39], and a deblurring neural net
may potentially be used for extracting a more precise blur ker-
nel. The object detection pretrained model checkpoints were
trained on relatively low noise images without motion blurs,
and using blurred images for object detection dropped the
performance of the object detection model as expected, as seen
in Table I. However, the blur kernels likely contain information
that is unique to the mechanical vibrations experienced by
the drone’s optical system, which is why our experiments
utilize data captured from the drone for object detection model
evaluation.

The lowest values for Table I and II are highlighted. The
YOLOv8 [34] model used in this research has 3.2M parame-
ters, while the the Faster RCNN and RCNN [38] have greater
than 60M parameters, which is why YOLOv8 experiences rela-
tively more degradation as acoustic intensity is increased Table
II. Furthermore, it’s likely that the pretrained checkpoints
for Faster RCNN and RCNN cannot degrade further due to
inherent learned feature representations in the model weights
even with increased acoustic intensity. In Table I, the lowest
mean average precision values are found for higher acoustic
intensities, implying poorer identification of relevant objects.
But high mean average recall (mAR) for higher intensities
implies that models were still able to find relevant bounding
boxes despite the motion blur produced at these intensities.
We find that the 98dB acoustic intensity of the laser (non-
simulated) was sufficient to produce a 38.8% and 43.7%
percent decrease in mAP [50-95] across two datasets using
YOLOv8. During direct ablation, the laser focal point was on
the gyroscope test board, which can result in destruction of

Fig. 5. Ablation test setup with a DJI Mavic 2 Pro drone, and the drone
camera images with and without laser-induced acoustic interference. The laser
ablation causes motion blurs in the camera output.

the drone body, making it unlikely for the destroyed plastic
to propagate generated acoustic waves. As such, we believe
that the image blurs produced during direct ablation are most
likely by vibrations from laser-induced sounds which do not
propagate through the plastic. However, we aim to confirm
this via stable interference from less damaging methods.

V. DISCUSSION

A. Air Ionization and Direct Ablation

Interference Strength At the same acoustic frequency and
laser-target distance, direct ablation causes larger changes to
the sensor readings than air ionization, often by over one order
of magnitude. Direct ablation possibly has a more efficient
coupling path, or is amplified by the inherent particle compo-
sitions of plastics and air molecules. For air ionization, closer
distances between the focal point and the sensor almost always
lead to larger deviations in sensor readings, corresponding with
prior research on acoustic attacks using electronic speakers
(Section II-B). However sensor reading deviations during di-
rect ablations are more unpredictable, possibly due to the non-
monotonic acoustic energy responses in complex mechanical
structures. Such an effect was also observed in previous works
investigating sensor-related attacks which exploit structure-
borne acoustic wave propagation [18]. In both air ionization
and direct ablation, the strength of interference decreases
proportionally with the laser output power.

Interference Stability and Destruction Weaker sensor
reading deviations due to air ionization are often more stable
than those caused by direct ablation. For example, Figure
3 (bottom) shows that the gyroscope deviations under direct
ablation start with a large value, and then quickly reduce to a
small value. This is because there is a limited amount of plastic
material that can be ablated. While air ionization consumes
air molecules that can be replenished by ambient airflow,
laser ablation consumes the solid plastic material directly,
causing permanent destruction of burn marks (see Figure 6
for example). Once laser ablation has consumed all the plastic
material around the laser’s focal point area, there will be a hole
in the plastic, and further laser energy will start consuming
the air in the hole, essentially transforming the process into
air ionization. As a result, the strength of interference caused
by direct ablation gradually decreases to a constant lower
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Fig. 6. Gyroscope reading deviations caused by in-focus and out-of-focus
ablations. Out-of-focus ablation causes smaller degrees of deviation, but
produces more stable interference with less damaging effects.

bound value that is decided by the interference generated by
air ionization.

B. Potential Threat Models

Attack Surface and Goal Three levels of target com-
plexity should be considered for identifying attack goals of
laser-induced acoustic interference: 1) sensor type, 2) vehicle
subassemblies, and 3) level of vehicle autonomy (Figure 7).
The adversary may interfere with high-level functionalities
by changing the output of sensors, e.g., IMUs, microphones,
pressure sensors etc., that are sensitive to acoustic interference.
This work provides an illustrative example of interference
against CV-assisted aerial vehicles by affecting the gyroscope
sensors used by drones and cause image blurs in drone
captured images. Theoretically, adversaries can also affect the
autonomous navigation control systems that directly depend
on IMU sensors, as has been demonstrated in previous works
(Section II-B). By modulating the output power of laser
pulses, adversaries should be able to generate diverse acoustic
waveforms that can inject more fine-grained false information
into downstream software systems.

Adversary Characteristics Different attack goals require
specific requirements for designing and manufacturing laser
systems. Key factors affecting a laser system used for acoustic
interference include the laser’s maximum attack distance,
portability, power level, acoustic generation mechanisms, etc.
Lightweight, high-energy lasers which an individual can carry
and use to produce sound have already been demonstrated,
suggesting the possibility of more diverse and low-profile
application scenarios of this attack [8], [19]. The required
output power of lasers depends on the desired attack scenarios.
Short-distance attacks can use lower-power lasers because of
less energy dissipation of the laser in air. Additionally, direct
ablation allows adversaries to generate the same intensity of
sensor reading variations with lower laser power, but at the cost
of gradually damaging the ablated target. In contrast, using

Fig. 7. This work explores the threat model of using lasers to perform acoustic
attacks against sensors and the subassembly of computer vision-assissted
autonomous vehicles. In contrast to speaker-based attacks, laser-based attacks
could allow adversaries to achieve long-distance interference.

air ionization keeps the target device intact but requires the
adversary to use a higher-power laser to compensate for the
loss of acoustic energy when the acoustic waves propagate
from air to the target. The adversary thus needs to carefully
align the laser system design with the desired attack effects.

VI. FUTURE WORK

Laser Signal Modulation The laser setup used for this re-
search produces an acoustic signal limited to a near-sinusoidal
waveform at a single frequency. More complex laser-based
acoustic attacks, for precise control over target systems, such
as steering an unmanned vehicle [36] or making CV algo-
rithms misclassify detected objects to certain classes [12],
require adversaries to produce acoustic waves with varying
designated amplitudes and frequencies. The use of additional
optical modulation devices to control the intensity of indi-
vidual pulses of a laser pulse train may achieve acoustic
waves with varying designated amplitudes and frequencies.
The feasibility of this is demonstrated by using lasers to
produce low-intensity music and speech audio [13], [32].

Diverse Targets and Scenarios While this work provides a
preliminary evaluation of how laser-induced acoustic interfer-
ence can affect the output of individual sensor components in
a controlled lab setup, future work may include diverse targets
and scenarios, e.g., vehicle subassemblies. Adversaries wish-
ing to use direct ablation to generate acoustic interference face
trade-offs between damage from ablation to target devices vs.
laser-induced interference strength and duration. Such trade-
offs are dominated by practical factors such as the ablated
material (e.g., plastic vs. metal), the mechanical construct of
target vehicles, the wavelengths and pulse widths of lasers, etc.
Adversaries may develop simulation models similar to ones
currently used for destructive high-energy lasers [30], [40].
Overall, sophisticated software as well as physical testbeds
need to be developed to support future evaluations.
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