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Abstract—This paper explores how to localize a device

equipped solely with camera sensors by leveraging the unin-

tended response of occluded camera hardware to transmitted

ultrasound—specifically, determining with high probability which

ultrasound transmission pattern was injected during image

capture, based on distinctive ultrasound signals unwittingly

detected by the image sensor. Prior device location identification

methods require the use of dedicated hardware or protocols,

e.g., microphone arrays or GPS. We envision a new poten-

tial mechanism by leveraging ubiquitous camera hardware on

mobile and IoT devices to receive acoustic signals produced

by ultrasonic localization beacons, even when the camera is

occluded. We discover that ultrasonic signals affect gyroscopes

integral to modern camera sensors’ stabilization hardware and

induce distinct destabilization signals in the dark images captured

by occluded cameras. This work provides theoretical analysis,

simulation modeling, and experimental evidence of how this

optical acoustic side channel creates different noise patterns

in camera images when the camera is subjected to different

ultrasound stimuli. Our evaluation with 119 videos captured by a

smartphone camera over multiple days shows success in detecting

whether the smartphone is near an ultrasonic transmitter that

can be associated with different locations.

Index Terms—Optical Acoustic Side Channel, CMOS Image

Sensors, Dark Signal, Device Localization, Smartphone Privacy

I. INTRODUCTION

Privacy-oriented guidelines for mobile security often recom-
mend judiciously granting camera and microphone access to
user-installed applications, affecting user behavior [1], where
some consumers may use lens covers and tape as an occlusion
to prevent being observed by unintended recipients. Our work
shows that an attacker can still learn information regarding the
device location through an optical acoustic side channel even
if the camera lens is occluded. As mobile and IoT devices
are becoming ubiquitous and integral to a user’s daily life,
location privacy has become a major concern due to the fact
that various information channels could leak the location of a
device and its user. For example, global positioning system
(GPS), often used for location-based services provided by
smartphones, inevitably opens the door for applications to
monitor user locations [2], [3]. In addition, microphones on
mobile and wearable devices are exploited to receive location-
specific acoustic signals generated by audio transmitters [4],
[5], [6]. Given these threats, previous research has invented
methods to filter out fine-grained location information from

Fig. 1. The Threat Model. Using a dark signal optical acoustic side channel,
a target mobile device can be located in a GPS-denied environment using only
an occluded camera of a mobile device and ultrasonic transmitters. The target
mobile device front and back cameras are covered with privacy guards.

their sensor data [7], [8], or educated users to simply disable
GPS and microphones on their devices. Despite these pre-
cautions against GPS and microphones which are known to
be able to leak location information, this paper investigates
a new, complementary threat model that asks the question:
How may adversaries possibly identify the location of a device
by analyzing the camera images taken by the device, even if
the camera lens is occluded? Location privacy leakage due to
unwitting sharing of camera photos and videos that contain
identifiable landmarks in the image scenes is well known [9],
[10], [11]. It is foreseeable that location identification threats
through cameras will increase as cameras become one of the
most widely deployed types of sensors [12], [13]. However,
this work investigates how to achieve location identification
with a dark image scene captured by an occluded camera by
leveraging ultrasonic beacon signals in the ambient acoustic
environment to create distinct features in dark images that
seem to contain no usable information. Specifically, ultrasonic
signals induce distinct destabilization patterns depending on
the image stabilization mechanism used by camera sensors,
e.g., optical image stabilization (OIS), electronic image sta-
bilization (EIS), or both, by affecting the mechanical behav-
ior of microelectromechanical systems (MEMS) gyroscopes
integrated in these camera sensors. This leads to discernible
spatial variance in dark signals of an image. Dark signals are
thermally induced signals in image sensors that are dominated
by image sensor noise sources due to low levels of image
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sensor irradiation [14], [15], [16], such as when a camera
lens is occluded. This work discovers that even with occluded
camera lenses, the ultrasonic modulated signals differ from
ambient acoustic noise signals, enabling the development of
a signal correlation-based indicator function to predict device
proximity to an ultrasonic transmitter, underscoring potentially
leveraging occluded cameras for localization.

To probe the characteristics, and provide preliminary exis-
tence proof, of this optical acoustic side channel, our work
develops a simulation model that aims to validate how the
ultrasonic attack signal, at the resonant frequency of the gyro-
scope, modulates the camera response. In addition, we perform
experiments with the camera of a commercial-off-of-the-shelf
(COTS) smartphone and an ultrasonic speaker transmitting
sinusoidal pulse and sweep waveforms at a distance of up to
0.28 m from the smartphone. Our simulation and experiments
demonstrate strong correlations between the ultrasound signals
around the camera hardware and the spatial variance of dark
images captured by the occluded smartphone camera. Based on
these observations, we develop a low-resource signal indicator
to identify whether the occluded camera is near an ultrasonic
transmitter that can be associated with a known location.
The signal indicator holds a given signal as a baseline by
computing the maximum correlation coefficient of the baseline
signal against itself, and then it compares the maximum
correlation coefficient of an incoming input signal against the
baseline maximum correlation coefficient.

Our results show that the signal indicator could reliably
distinguish between ultrasound-modulated signals and ambient
acoustic noise signals across different ultrasonic transmission
patterns and image stabilization settings. We evaluate the
signal indicator using a MATLAB simulation on a dataset
consisting of 119 videos captured by the occluded camera
in various environmental settings and observe a near 99.9%
accuracy in detecting whether there is an ultrasound signal
around the occluded camera for a given camera configuration.
In addition, we analyze the impact of key camera configuration
parameters such as optical zoom, exposure time, rolling shutter
rate, and image sensor size, among others. Finally, we discuss
the limitations of our simulations and short-distance experi-
ments, and how future research could leverage the analysis
methodology provided in this work to design feasibility studies
in more diverse scenarios. To summarize, our work has the
following contributions:

• A threat model of using open and occluded cameras
to receive ultrasonic signals for device location identi-
fication. The threat model completes existing GPS and
microphone-based approaches and enables more ubiqui-
tous localization capability in camera-only IoT devices.

• A methodology for acquiring ultrasound information
from a dark image scene captured by occluded cameras.
Our analysis of how ultrasound modulates image stabi-
lization patterns presents an exploitable optical acoustic
side channel.

• Simulation and experimental results. Our results provide
preliminary evidence for the existence of such optical

acoustic side channels and a foundation for future im-
plementation to build upon.

II. BACKGROUND & RELATED WORK

Optical Acoustic Side Channels. Sound is a mechanical
wave that can impart energy to any surface it strikes. The
kinetic energy of sound waves can cause slight deviations
on the surfaces of objects, which can be observed as pixel
displacements using lenses to extract motion vectors and
reconstruct the original sound [17], [18], [19]. Images acquired
using mobile devices can be used to reconstruct sound from
motion vectors of pixel displacements in images, where the
pixel displacement is imparted in sequential image frames
due to the kinetic energy of sound waves moving the springs
holding the camera lens [20]. Pixel displacements in images
caused by sound energy are amplified by the rolling shutter
of image sensors because the shutter mechanism exposes and
reads out sequential pixel rows from top to bottom. Note that
sound reconstruction via the rolling shutter effect is possible
in part due to the dynamic range of pixel intensities in an
irradiated sensor image, i.e., an image taken with camera
exposure [14], but a unirradiated sensor image will lack
dynamic range as most intensity values will be nil; therefore,
using images lacking dynamic range in pixel intensities is
challenging for optical acoustic side channels.

Image Stabilization. Camera stabilization methods are
useful for optical acoustic side channels [21], [20], [22]. Un-
wanted device movement while taking an image or capturing
a video can cause motion artifacts, such as blurs, in the
captured media. Optical image stabilization (OIS) involves the
compensatory movement of a lens in the opposite direction
to an image sensor in order to correct for motion blurs,
often using micro-mechanical electronic systems (MEMS),
such as gyroscopes [23], [24]. Electronic image stabilization
(EIS) is a software-only counterpart of OIS, and corrects
motion artifacts using signal processing [25]. In this paper,
we configure different image stabilization mechanisms for a
camera to determine their effect on the resultant dark signal
camera responses.

Sound-Based Localization. Sound-based localization de-
termines the location of a target using the direction of arrival
(DOA) of sound waves and the distance between the transmit-
ters and the receivers [26], [27], [28]. Measures used in sound-
based localization compute time of arrival (TOA), time differ-
ence of arrival (TDOA), or time of flight (TOF) of the trans-
mitted signal, providing high accuracy measurements while
incurring an equipment cost, thus limiting scalability [27].
Ultrasound-based device localization techniques use sound
frequencies near or greater than 20 kHz to localize a target,
but have variable accuracy due to time-based measurements
[29], [30], [31] [32]. Recent sound-based localization tech-
niques improve on problems related to multi-path interference
[29], or improving 2D accuracy [30] since pioneering work
such as Cricket [32] and DOLPHIN [28]. However, accuracy
gains from neural network-based methods are hindered by the
need for training data, and computational complexity of the
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methods [31]. We develop a low-resource signal processing-
based method for device localization. Our approach does
not require sound direction of arrival estimation, or time
synchronization between the transmitter and image sensor. Our
results remain consistent across different optical and hybrid
zoom settings using two different image sensors, and different
sets of camera and transmitter parameters, indicating that the
observed phenomena are intrinsic properties of the optical
system.

III. THREAT MODEL

The EyeHearYou threat model is centered on an optical
acoustic dark signals side channel in mobile device cameras
where the amplitude of mean pixel intensities of an occluded
camera can be modulated using an external driving force.
The threat model transmitter is an ultrasound source, and the
transceiver is an occluded camera of the target mobile device.
The occluded camera is a transceiver because it both receives
the ultrasound signal, and transmits a signal to indicate device
proximity to the transmitter.

Adversary Motivation. The adversary wants remote device
localization in a GPS-denied environment, and does not have
access to an indoor positioning system, e.g., WiFi, or dedicated
surveillance equipment. The adversary also lacks direct (line
of sight) or indirect scene information of the target or its
environment. The adversary can access the target mobile
device camera, but when the adversary remotely accesses the
camera, the position of the device results in low light, or
occluded, conditions at either the front, rear, or both cameras.

Device Characteristics. The adversary performs the attack
via a user-installed application which grants camera access;
user-installed applications, such as QR code or PDF scan-
ners, are a well-known attack vector for gaining access to
smartphone cameras [33], [34]. User studies have shown that
most mobile device users are more concerned about grant-
ing microphone access than camera access to mobile device
applications [1], and as such user-installed mobile device
applications are increasingly denied microphone access [35].
Therefore, we assume a scenario in which the adversary targets
a single device via a user-installed application, and the user-
installed application has denied microphone access. The target
device is any commercial-off-the-shelf (COTS) mobile device
with gyroscope-based image stabilization, which includes most
modern smartphones and tablets [36], [37], [38].

Adversary Capabilities. The adversary has remote access
to the camera of a target mobile device, and will acquire
a signal indicator (SI) from a video recording alerting the
adversary to the target device being within range of a trans-
mitter. Once the adversary has a location of interest (LOI)
in mind, an attack is carried out as described in Figure 2.
The adversary can create a set of known nodes ω by placing
ultrasonic transmitters within the LOI, and enable on-device
video processing to remotely acquire an SI, where each node ω→
transmits a characteristic ultrasonic frequency within the range
of the device gyroscope and movable lens resonant frequency.
We assume that the adversary will create a network of nodes to

cover an LOI area such that the target device is always within
range of a transmitter. By doing video processing on-device
and acquiring the SI, the adversary precludes video upload
latency and bandwidth limitations. The adversary will likely
turn on the video recording periodically, or as needed, so as
not to consume too much target device resources.

IV. PROBLEM FORMULATION

In this section, the occluded camera problem is formulated,
and the constraints determining the practicality and scalability
of the ultrasound transmitter network are defined.

1) Camera Block and Response Intensity: We define an
occluded camera as a mobile device camera that has an
occlusion on both the rear and front cameras. The universal
set Tω of target device T device positions, tω → {tω1 , . . . , tωk}
for K positions results in a signal µy from the camera where
the linear response of the camera is for a normalized pixel
intensity x → [0, 1] [14] modified by the device position tω.
If the adversary can access the camera of a target mobile
device, and the device is not occluded simultaneously at both
the front and rear cameras, such as while the target device
is in use, then either the front or rear camera can be used
to surreptitiously make note of the target’s indoor location,
and no further method of inquiry may be required for target
surveillance. We consider the threat model for Tω.B ↑ Tω

where both the front and back cameras are simultaneously
occluded for prolonged periods of time, such as when the
target mobile device owner is ambulatory or stationary for
10 secs or longer in a GPS-denied environment. Studying
the camera response under this entire set of device positions
is out-of-scope for this paper, and accordingly we set tω as
either open (tω.O) or occluded (tω.B). Some examples of how
an occluded camera occurs naturally under normal use of a
smartphone include, for example, placing a device a) in a bag,
b) in a pocket, c) facedown on a desk with a privacy-oriented
camera cover for the rear camera, or d) on its back inside a
wallet case, which occludes the front camera.

For an occluded camera, the signal acquired by the adver-
sary will be characterized by a tω.B such that µy(x,tω.B) <<

µy(x,tω), which we will refer to as µblk and µy , respectively.
The mean intensity amplitude is modulated by an ultrasound
signal at the resonant frequency of the device gyroscope
and movable camera lens, and a set of configurable channel
functions Fc = {fc1(.), . . . , fcC (.)} for C functions under
adversary control, where a given channel function fc affects
either the transmitted attack signal, or the modulated response
of the transceiver. In Table I we present a summary of channel
functions evaluated in this paper for both the transmitter and
the transceiver, and describe their functionality for the threat
model.

2) Device Localization: Given a set of known ultrasonic
transmitter nodes ω with a node ω

→, we define the device
localization problem with an upper bound lmax of distance
for which a receiver can detect a transmitter signal in a given

1Frequencies used for evaluations withheld for responsible disclosure.
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Fig. 2. The Attack System Design. The adversary configures channel functions for the ultrasound signal transmitter and the user-installed mobile application,
which acts as a transceiver. The occluded camera signal amplitude is modulated by ultrasound (satk), and the adversary uses Steps 1-5 to localize a device
using camera responses (µatk) from unique ultrasound patterns for each location. The occluded ambient acoustic noise (µblk) is acquired beforehand, and
also processed using steps 2-4. The open camera response is shown for comparison. The underlying mechanism for the camera response which produces the
ultrasound-modulated signals is destabilization of mechanisms used to correct camera blurs or motions, such as the device movable lens, or device gyroscope.
A) An occluded camera field of view, FOVOccluded, has neither depth nor spatial information, and the resultant camera response gives a unirradiated sensor
image. The springs are part of the movable lens structure, and used for mechanical camera stabilization. B) Gyroscope-based camera stabilization is used by
both OIS and EIS mechanisms.

TABLE I
THREAT MODEL CHANNEL FUNCTIONS

Channel Function Parameters Functionality Controls

OIS On/Off Enable/Disable Camera
EIS On/Off Enable/Disable Camera
Exposure (ms) {10,20,40,80,100} Set Camera
Frame Rate (fps) 30 Set Camera
ISO 400 Set Camera
Zoom {1X, 3X, 12X} Set Camera
Frame Size (Pixels) 1080 → 1920 Set Camera
Pulse Frequency (Hz) { ω1 , . . . , ωN }1 Set Transmitter
Pulse Interval (s) {1.5, 8} Set Transmitter
Pulse Pattern {Pulse, Sweep} Set Transmitter
Pulse Start Phase (deg) 0 Set Transmitter
Filter Range (Hz) { ω1 , ω2 } Set SI

system, and the system is viable for all distances ↓ lmax.
Each node ω

→ transmits a signal as defined by the adversary,
and there is no communication between the nodes. Let the
ultrasonic signal modulating an image frame f be a sine wave
over a time period t with amplitude A, phase ε, and frequency
ϑ, satk = sin(ε + ϖϑt)A. The attack sequence involves
collecting an ambient acoustic noise signal from the target
mobile device before pulsing all transmitters, and using a look-
up table to identify the location using the signal correlation.

Signal Indicator. The adversary’s goal is to configure
a subset of channel functions to differentiate between µblk

and µatk, the ultrasound modulated signal from an occluded
camera, by using the signal indicator (SI),

SI(µin) =

{
1, if R(µin, µblk) ↔= R(µblk, µblk),

0, if R(µin, µblk) = R(µblk, µblk).
(1)

The SI compares the correlation between a given camera
response, µin, and an existing ambient acoustic noise baseline
signal, µblk, as described in Equation 1. The ambient baseline

is fixed, and is acquired by the adversary before beginning the
ultrasound transmission. In this paper we show that the camera
destabilization frequency response to ultrasound at its resonant
frequency creates minute movements of the camera lens such
that the movement of the lens creates a camera response where
the spatial variance of the pixel intensities can be filtered to a
signal which is correlated differently to the ambient acoustic
noise signal in that same setting.

Attack Range. The adversary can use the resonant fre-
quencies of the device and camera gyroscopes via one of two
modes, pulses or sweeps, which broadens the adversary’s node
network. For example, if a given device has multiple resonant
frequencies, then the lower bound of the adversary’s node
network is ϑ ↗ ε ↗ 2(modes), with a theoretical upper limit
available through phase modulation of the signal [39], [40],
[41]. As such, an adversary can create a network of nodes in
a given location of interest, where each node is spaced by the
maximum distance lmax. Note current ultrasonic transmitters
have a 4 m to 11 m range [42], [43].

V. OPTICAL ACOUSTIC SIDE CHANNEL WITHOUT SCENE
INFORMATION

In this section we describe the functional mapping of the
ultrasonic signal from the transmitter, satk, to the SI of the
observed occluded camera response, µatk : satk ↗ (Gc ↑
Fc) ↘ SI , where Gc is a set of channel functions for
the attack. The adversary is interested in acquiring a camera
response µatk which has pixel intensities characterized by
image sensor dark signals created during low light conditions
from its position tω, and a subset of channel functions Gc for
the transmitter and transceiver. The camera response under
ultrasonic acoustic pressure is distinct from the image sensor
dark signals created during low light conditions and ambient
sound, µblk. The mean intensity of the camera response when

4



Fig. 3. Open and Occluded Ultrasound-Modulated Camera Responses. Normalized mean intensity for ultrasound signal induced camera responses does
not vary as much as spatial variance for those same signals, as seen in B) and D). The filtered response is computed as the difference between the normalized
mean intensity and the offset spatial variance, and then used as an input for the signal indicator function. Camera responses shown here are from videos
recorded at 10 ms exposure at 30 fps. The y-axis scale between different camera responses is not normalized to provide a sense of the range of variation.

the camera is open and experiencing ambient sound is simply
µy . We simulate the camera response under open and occluded
ultrasound modulated conditions to understand how to develop
a signal indicator which can differentiate between real-world
ambient and ultrasound modulated camera responses.

A. Camera Ultrasound Response Model

Dark Signals. A camera works by irradiating an image sen-
sor over exposure time, texp. The amount of subsequent charge
generation resulting from the photoelectric effect following
image sensor irradiation is dependent in part on light intensity
and the number of active pixels, M ↗ N, in a pixel array.
Following charge collection and conversion over a number of
steps in the sensor circuit, the resultant digital output signal
µy from an image sensor is assumed to increase linearly
with radiant exposure. However low light conditions, such as
when the camera lens is occluded, result in lower amounts of
photogenerated charge, and in this case the camera response
is primarily characterized by dark current and image sensor
noise sources. Dark current is charge randomly generated by
electrons discharged from a pixel without sensor irradiation
due to the thermal energy of the image sensor, and starts
accumulating as soon as exposure begins [44], [16]. An
occluded camera signal is in part produced by both dark
current and an offset, the dark signal value at zero exposure
which guides its fixed pattern noise [14]. Dark signal is
amplified following longer collection and integration, such
as by increasing texp directly, or by setting an exposure
value by modifying the camera ISO. The camera ISO is a
standardized scale for modifying the camera’s exposure value
[45]. Blocking a camera lens results in a diminished field of
view, as seen in Figure 2A, and the new projection is an M ↗ N
dark frame, f, lacking both a dynamic range of pixel intensities
and spatial information. The goal of the threat model is to
modulate the limited information in the frame f.

Electronic Rolling Shutter Transceiver for Ultrasonic

Signals. Whereas prior works have shown the amplification
of pixel displacements in irradiated sensor images due to
sound energy [46], [47], [48], [49], we find that the image
sensor rolling shutter also encodes the amplitude variance
of an ultrasonic signal, satk, as spatial information on a
unirradiated sensor image frame. Assuming that the mean
intensity of an open camera without noise sources remains
stable overtime, then adding a sound which shifts the lens
produces pixel deviations overtime in accordance with the lens
movement, such that the mean camera response for f becomes
µatk = sin(ε + piϑϱ)A, where ϱ is Vςr. The time series V{
n · 1

↑ r
M ↓ | n → Z, 0 ↓ n · 1

↑ r
M ↓ < 2

}
, where n is an integer,

represents the change in mean pixel intensity for a given
sequence of frames. The electronic rolling shutter readout, r,
is the rate at which the shutter sequentially reads M rows,
and the interval ς is the time between successive ultrasonic
pulses in seconds. The camera response is subject to random
and fixed sources of noise, which we include as,

µatk = sin(ε+ ϖϑϱ)A+NF (φ(m) + P
ε(↼)) (2)

where Gaussian (φ) and Poisson (P) noise can be parame-
terized using different values of m and ↼ to set the mean of
their respective distributions. The NF is a noise factor which
can be modified in place of independently configuring the
parameters for the noise functions, and ↽ modifies the Poisson
contribution of dark current shot noise, which may increase
with exposure.

Given that the mean intensity of a signal includes sources
of random and fixed noise, we compute the spatial variance of
the signal to reduce the noise, and amplify the pixel intensity
deviations. The gray values in two images taken at the same
exposure will vary slightly because of temporal noise, but
the pixel intensity offset of the image sensor ensures that the
nonuniformity remains stationary across two different frames
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as fixed pattern noise [14]. Consequently, the temporal noise
variance across two images taken at the same exposure can be
expressed as spatial variance with a pixel offset size O as,

s
2 =

1

MN

(
M↔1∑

m=0

N↔1∑

n=0

f1[m]ϑM [n]ϑN f2[m]ϑM [n]ϑN

)
≃µf1µf2

(3)
where ⇀M = M ≃ O and ⇀N = N ≃ O. Note that pixel
intensity offset intrinsic to the image sensor is different from
the pixel offset size O we use for computing the offset spatial
variance. In general, a pixel from a occluded video frame
may have intensities mi ⇐ 0, nj ⇐ 0 because of the dark
signal pixel intensity offset and nonuniformity, various image
sensor noise sources, and some light always incident to the
sensor. In summary, mean intensity is the camera response
which includes sources of both random and fixed noise, e.g.,
from readout [15]. We compute the spatial variance of each
subsequent frame with a pixel offset size O determining the
range of pixel rows and columns selected to average the
signal response, which produces a L ↗ 1 time series. The
filtered camera response is acquired as the difference of the
normalized mean intensity and offset spatial variance, and is
used the input for the signal indicator function.

B. Attack Feasibility
In this section, we provide evidence as existence proof for

the underlying mechanism of an optical acoustic side channel
attack using image sensor dark signals guided by two research
questions,

1) RQ 1: How can information still be captured from
an optical system with an occluded camera lens? Our
hypothesis is that dark signal pixel intensities produce a
modulated camera response based on the camera desta-
bilization from ultrasound. We validate this by using the
µatk (Equation 2) modulation model to simulate camera
response signals and compare them to signals acquired
from open and occluded cameras.

2) RQ 2: How can occluded camera information be utilized
in a device localization threat model? We hypothesize,
that depending on the set of channel functions, the signal
produced under ambient and ultrasound conditions will
be uncorrelated, and thus using an ambient acoustic
noise signal as a baseline will enable developing an
indicator function to determine device proximity to a
transmitter. To validate this hypothesis, we compute the
correlation between the ultrasound-modulated camera
response and the baseline ambient acoustic noise signal
for a given set of channel functions.

Ultrasonic Modulation of Unirradiated Pixel Intensities.

Our first goal is to find a clear camera response to utilize in a
threat model as occluded camera signals can be noisy. Figure
3 compares the spatial variance, as defined in Equation 3, and
the mean intensity of signals acquired from image sensors
under both occluded and open lens conditions, with ultrasound.
For the existence proof tests, a Samsung smartphone with an
occluded camera lens is placed 0.5 cm from an ultrasonic

speaker on a tripod, while a sine wave with a peak-to-peak
voltage of 20 V is pulsed every 8 seconds; we increase
the distance to 28 cm (0.28 m) for evaluations. We also
record ambient recordings, where no ultrasound is played.
We observe that the occluded camera signal lacks sufficient
dynamic range, such that the normalized mean intensity of
ultrasound modulated responses, µatk, does not vary over time
relative to the normalized mean intensity of occluded ambient
recordings, µblk, as seen in Figure 3 B and D.

While the occluded camera signal lacks dynamic range,
the lens movement induced by the ultrasonic signal creates
areas of varying pixel intensities within a frame. As a result,
computing the spatial variance of the signal makes the modu-
lation of the ultrasonic signal more apparent. Figure 3 shows
greater variation in the spatial variance of µatk compared to
µblk. When comparing the occluded camera scenarios, Figure
3 B and D, to the open camera scenarios, Figure 3 A and
C, we observe regions of lens movement in the occluded
ultrasound cases, coupled with shifts in frequencies in cor-
responding time points in the spectrograms. This suggests
that the optical stabilization mechanisms are vulnerable to
providing information about the acoustic signal, even when the
camera lens is occluded. Previous research on optical acoustic
side channels has typically relied on visual access to the scene
for exploitation. However, this result indicates that visual scene
access is not necessary for exploiting ultrasonic signals and
dark frame signal analysis.

Ultrasound Modulated Camera Response vs. Intrinsic

Camera Noise. The ultrasound signal in the occluded camera
can be observed by comparing the modulated occluded and
ambient occluded camera responses in the frequency domain.
While the ambient occluded camera responses are dominated
by readout noise, which occurs at periodic intervals, the ul-
trasound modulated filtered responses are relatively greater in
magnitude, as seen in Figure 3, and have varying frequencies
at intervals outside of readout noise time. Additionally, com-
paring the mean intensity of modulated occluded vs. ambient
occluded signals shows that ultrasound can stabilize the signal
to remove readout noise, as seen in Figure 5.

Camera Response Simulation. We develop a simulation
of the open and occluded camera responses to determine
how each optical system parameter is responsible for a given
camera response. From our experiments, we know that when
a camera is open and ultrasound is played, the lens jumps
vigorously, which is a known effect of the gyroscope frequency
response to sound at its resonant frequency [22], [50], [51].
In Figure 4, a µatk signal modulated by ultrasound and
Gc = {OIS, EIS, 10 ms exposure, 30 fps, 400 ISO, 1080
↗ 1920 image size, a transmission frequency, 8 secs pulse
interval, and a filter frequency} is shown. The signal model,
shown in Figure 4, is the modulated open camera response to
destabilization without noise sources, where the peaks of the
signal arise from destabilization of the optical system upon
receiving ultrasound. The interconnecting arms between the
signal peaks are when ultrasound transmission is turned off.
Removing the sensor readout frequency, r, and pulse interval ς
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Fig. 4. Simulated vs. Real Signals. The µatk signal obtained from open and occluded OIS/EIS camera responses are simulated (in gray) and shown against
their real counterparts (in blue). The real camera response shows when the camera shakes due to the received ultrasound, where the interlocking arms indicate
when the sound is off. The simulated signal is produced by configuring rolling shutter rate r and ultrasound interval pulse ω , and then by adding noise to
the signal model, as shown in Equation 2. The amplitude of the occluded signal model is very small in comparison, and shown in the zoom-in inset. For the
occluded simulated camera response, the contribution of the Poisson noise was multiplied with -1 to achieve the downward spikes.

produces a less stable looking signal which deviates from the
camera response. Changing the noise parameters of Equation
2 changes the correlation of the simulated µatk to the real-
world µatk, which is likely because dark current shot noise
in the image sensor arises from a Poisson process [15], and
all gyroscopes have Gaussian noise [52]. We then model the
occluded camera response as a signal with a relatively lower
amplitude as we do not expect nearly the same amplitude of
pixel shifts as the open camera response to sound. Adding
noise sources to the simulated occluded model produces a
camera response which matches a real-world occluded camera
response, for example as shown by comparing a simulated
µatk normalized mean response to real-world µatk normalized
mean response. Therefore, low-level pixel intensities in an
occluded camera can be modulated using ultrasound in the
absence of image sensor irradiation.

Movable Lens vs. Gyroscope Destabilization. There are
at least two optical stabilization mechanisms an adversary can
exploit in this threat model. This is confirmed by comparing
occluded camera recordings to open camera recordings for
both ultrasonic signals (µatk) and ambient recording (µblk)
scenarios while configuring the image stabilization method.
For ambient recordings, the experiment procedure is the same
as described for the occluded camera video capture, except in
this case ultrasound is not played while recording. Normally,
when camera stabilization is enabled and ultrasound is played,
a camera shake can be visually observed on screen when the
camera is open, and as expected a camera shake does not
appear when camera stabilization is disabled and ultrasound
is played. However, it appears that lens destabilization from
the ultrasound is apparent in image analysis from occluded
camera recordings when both OIS and EIS are disabled, even
though a camera shake does not visibly show up when the
camera is open and OIS/EIS is disabled during ultrasound
transmission video recording. We reason that a secondary
mechanism is enabling lens movement in this case, which is
likely the movable lens of the device camera. But it is unclear

TABLE II
MAXIMUM CORRELATION COEFFICIENT FOR A SUBSET OF OCCLUDED

SIGNALS (0.5 CM, S2, PULSE)

Trial Max Coeff. Signal In Baseline Signal SI

1 158 {10ms,None,Signal} {10ms,None,Ambient} 1
2 181 {10ms,EIS,Signal} {10ms,EIS,Ambient} 1
3 108 {20ms,None,Signal} {20ms,None,Ambient} 1
4 93 {20ms,EIS,Signal} {20ms,EIS,Ambient} 1
5 82 {40ms,None,Signal} {40ms,None,Ambient} 1
6 121 {40ms,EIS,Signal} {40ms,EIS,Ambient} 1
7 119 {80ms,None,Signal} {80ms,None,Ambient} 1
8 86 {80ms,EIS,Signal} {80ms,EIS,Ambient} 1

if the lens movement is due to a second camera gyroscope, or
simply due to the movement of the lens springs.

C. Signal Indicator for Modulated Camera Responses

To use ultrasound modulated dark signals for a device lo-
calization attack, we develop a signal indicator to differentiate
between an ultrasound modulated camera response vs. an am-
bient camera response. When sources of kinetic energy, such
as sound, transfer that energy to a microelectromechanical
sensor upon impact, the vibrational frequency of the sensor
matches the frequency of the driving source of kinetic energy,
but the sensor’s new vibrational frequency has a lag relative
to the frequency of the sound source [53]. If the occluded
camera pixel intensities do get modulated by ultrasound signal,
due to either the gyroscope or the movable lens springs being
struck by ultrasound, then the camera response signal will
be correlated to the attack signal. Cross-correlation is an
operation which can determine the displacement of one time
series relative to another, and is often used as a measure of
signal similarity. The existence proof experiments, Figures 3
and 5, that two camera responses acquired under the same
conditions, but one modulated with ultrasound pulses, have
different frequency spectra. This explains why two ambient
acoustic noise signals are more correlated versus signals where
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Fig. 5. OIS/EIS Spatial Variance and Spectrograms for 40 ms Signals. While signal spikes do not show up clearly over the time-axis for the modulated
signal, the spectrograms of the modulated and ambient acoustic noise signals show different frequency content. The ambient acoustic noise signal shows
readout spikes, but readout noise is suppressed in the ultrasound modulated signal, though its signal amplitude is lower. Ultrasound modulated signals seem
to experience an increase or decrease in amplitude, likely due to the phase of the incoming sound wave.

Fig. 6. 3D View of 40 ms exposure OIS Signal Frequencies. Visualizing
the signals using a three-dimensional view of the frequency domain helps
show the extent of their modulation from ultrasound. The amplitude of the
occluded ambient acoustic noise signal is lower, and shows readout spikes.

one is ambient and the other is modulated by ultrasound, as
shown in Table II.

VI. EVALUATIONS

In this section, we describe the experimental methodology to
confirm our findings from the existence proof analysis of RQ1
and RQ2. This is done by implementing the methodology as
outlined in Section IV-2 to enable the adversary to estimate the
cross-correlation of transceiver signals and a baseline ambient
acoustic noise signal for a given set of channel functions.
Real-world camera responses modulated by real-world satk

are evaluated by configuring the channel functions shown in
Table I.

A. Experimental Methodology

Generating Ultrasound. Ultrasound is generated using a
DG5072 function generator (2-channel, 70 MHz) to produce
a sine wave with a peak-to-peak amplitude of 20 V and
start phase of 0 deg, and transmitted through a Vifa omni-
directional ultrasonic speaker (Part 60409). A portable single-
channel ultrasonic power amplifier is used for the speaker,
powered by an external AC power supply. A digital laser
measure helps confirm distance between the ultrasonic speaker
and the device, where the device is held in place using a
tabletop tripod at 0.5 cm (0.005 m) and 28 cm (0.28 m) from
the ultrasonic speaker.

Fig. 7. Occluded and Open Camera Setup. Occluded camera is on the
left, open camera is on the right. An on-device application is used to record
the experienced lack of sensor irradiation by the rear camera. Lux is a unit
of sensor illumination, and a lux of → 0 implies the sensor is not receiving
enough light to change the reading for the on-device application.

Rear Camera Blocking. To emulate low light conditions
and encourage dark signal generation, the rear camera of
a target device is covered with aluminum foil and secured
in place with duct tape. By using an on-device light meter
application, the experienced irradiation of the main device rear
camera is recorded. The camera blocking is shown in Figure
7, along with the in-app sensor irradiation metrics. Note that
some light will always irradiate an image sensor through small
gaps between the contact surfaces of a cover and the device,
or pinhole-sized gaps in the weaves of fabric threads. The
evaluation experiments are performed on two sensors of the
rear camera of a Samsung Galaxy S20 5G using three different
combinations for optical and hybrid zoom, as indicated in
Table III. While not used for evaluations, we try to reproduce
the ultrasonic attack on the iPhone 15 Pro Max (2023).

Data Collection. The exposure and image stabilization
configuration of the target device is varied using Mobile AR
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TABLE III
ZOOM SETTING AND DEVICE IMAGE SENSOR

Zoom Sensors Type

1X S2 Optical
3X S2 Hybrid
12X S1, S2 Hybrid

Sensor (MARS) Logger [54], or the default camera. The ISO
and frame rate values are held constant at 400 and 30 fps,
respectively. The open rear camera is focused on an image
pattern, or a plain white wall. For open or occluded camera
recordings with ultrasound, the signal is pulsed at 1.5 secs or
8 secs intervals (Pulse Transmission). A 5 secs linear sweep
is generated using the function generator with start and end
frequencies to capture at least two resonant frequencies of
the device gyroscope (Sweep Transmission). Our classification
accuracy is on the entire dataset, unless stated otherwise
(n=119), and videos are collected over multiple days.

Signal Processing and Classification. We developed a
program in MATLAB to simulate and evaluate the signal
indicator. The camera response magnitude is normalized, and
the offset spatial variance is filtered using a lowpass filter. The
filtered spatial variance is then subtracted from the normalized
camera response, µatk. We then compute the cross-correlation
of the aligned µatk and baseline ambient acoustic noise
signals. The signal indicator is simulated by holding a given
ambient signal for a camera configuration as a baseline, and
then passing in an input ultrasound-modulated signal.

B. Results
Ultrasound-Modulated Camera Responses. We evaluate

the ultrasound vs. ambient response signal indicator using
different combinations of optical zoom configurations to de-
termine if the ultrasound modulated camera response is an
intrinsic property of the optical system, or if it instead depends
on the set of channel functions used. The image sensors, with
their respective pixel pitch sizes in parentheses, are 12MP
IMX555 (1.8 µm) and 64MP S5KGW2 (0.8 µm), where MP
stands for megapixels, are denoted as S1, S2, respectively. The
12MP IMX555 (S1) is used for all experiments in subsection
V-B. Given the variation in readout frequencies across different
image sensors, and their total M ↗ N pixel areas, random
image sensor noise could potentially interfere with ultrasonic
signal modulation. However, the signal indicator remains
robust across the different optical zooms, at both distances
as seen in Table IV, likely because the readout frequency of
the image sensor compensates for image noise sources during
pixel intensity modulation. While it is true that image sensors
with smaller pixel pitches may experience higher levels of
flicker noise [55], [56], the correlation between µatk and the
baseline ambient acoustic noise signal remains distinct even
at a distance of 0.28 m, suggesting that the signal modulation
persists regardless of the distances tested. Given that currently
available commercial ultrasonic transmitters have a range of
4 m to 11 m [42], [43], these results indicate that the threat

TABLE IV
MAXIMUM CORRELATION COEFFICIENT FOR DIFFERENT OPTICAL

ZOOMS AND ULTRASONIC TRANSMISSION PATTERNS

Trial Max Coeff. Signal In Baseline Signal SI

1 119 {1X,None,5cm,Sweep,Signal} {1X,None,5cm,Sweep,Ambient} 1
2 669 {1X,None,5cm,Sweep,Ambient} {1X,None,5cm,Sweep,Ambient} 0
3 99 {3X,None,5cm,Sweep,Signal} {3X,None,5cm,Sweep,Ambient} 1
4 669 {3X,None,5cm,Sweep,Ambient} {3X,None,5cm,Sweep,Ambient} 0
5 90 {12X,None,5cm,Sweep,Signal} {12X,None,5cm,Sweep,Ambient} 1
6 669 {12X,None,5cm,Sweep,Ambient} {12X,None,5cm,Sweep,Ambient} 0
7 578 {1X,None,28cm,Pulse,Signal} {1X,None,28cm,Pulse,Ambient} 1
8 668 {1X,None,28cm,Pulse,Ambient} {1X,None,28cm,Pulse,Ambient} 0

model can be effectively executed across larger image sensor
areas and with smaller pixel pitches, and across different
distances, but a feasibility study with real-world device lo-
calization parameters will better confirm these findings. In
total 119 videos of ⇒ 15 ≃ 32s are analyzed, and a subset
of the results are presented in Tables II and IV. Increasing the
exposure seems detrimental to receiving the transmitted signal
as the frequency spectra of the ultrasound-modulated occluded
80 ms and 160 ms exposure time responses is similar to that
of occluded ambient camera responses. This is most likely
due to increased sensor irradiation clearing out the received
or incoming signal.

Camera Responses from Different Speaker Directions.

The results indicate that ultrasound modulated dark signals can
behave as carrier waves. But it is unclear if the results would
hold the same when a shorter pulse is used, or if the ultrasound
modulated camera responses vary enough depending on the
direction of the sound source. One way to test for this is to use
a shorter pulse duration while varying the location of the sound
source. A brief evaluation showed that a shorter 1.5 secs pulse
produced at 0.5 cm distance from three different directions, 1)
behind the device, 2) near the camera edge, and 3) in front of
the device, showed that the ultrasound-modulated dark signal
response could be produced from all three locations.

Ultrasonic Signal Patterns for Location Identification.

Given a large enough location of interest (LOI), the adversary
needs as many transmitters as there are areas to cover, where
the signal attack range can be determined by the adversary as
discussed in Section IV-2. The MEMS gyroscope in the device
we used for our experiments is resonant at multiple ultrasonic
frequencies. We evaluated two ultrasonic signal patterns with-
out any optical stabilization configurations to validate if the
ultrasonic modulated signal could differentiate enough because
of the attack signal ultrasound pattern, and if that difference
would reflect in the signal correlation. The ultrasonic patterns
were produced by the following settings: 1) {1X,None,Pulse},
and 2){1X,None,Sweep}, which are listed as trials 1 and 7,
respectively, in Table IV. The look-up table for the signal
indicator may look like Table IV, from which the adversary
can identify different locations by comparing the maximum
correlation coefficients for different ultrasound transmission
patterns for the same camera configurations. Based on our
limited dataset, our device localization simulation accuracy is
99.9%, but it depends on the fixed ambient signal baseline
prior to providing the ultrasound-modulated signal.
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VII. DISCUSSION

Here we provide guidance on protecting against dark signal
ultrasound-mediated device localization attacks.

No Guarantee of Privacy. This work demonstrates that
blocking a smartphone camera and denying microphone access
does not eliminate the risk of exploitation through an optical
acoustic side channel. A key observation is that producing
an ultrasound-modulated signal requires an uncovered mobile
device edge near the camera, even if the front and back camera
lens are occluded. Therefore, mobile devices may be protected
from ultrasonic attacks by using a protective cover which
encases all sides of the device. We note that the iPhone 15 Pro
Max (2023) did not yield any indication of being susceptible
to an ultrasonic attack for frequencies tested between 18-120
kHz, likely due to its device body material, or the location of
the gyroscope within the device.

Dark Signal Optical Acoustic Side Channel. The central
contribution of this paper is the discovery that an optical
acoustic side channel does not require scene information to
function as a threat, and can operate using low-level image
sensor irradiation. We use device localization as a case study
where the ultrasonic transmitter is an external device, however
we observe that the ultrasonic signal can be recorded via the
device microphone when microphone permissions are granted.
Therefore, we note the possibility of using videos recorded on
a target mobile device as sources of ultrasound signals to carry
out either device localization, or attacks such as SurfingAttack
on voice assistants [57]. A possible defense against these
attacks would be for device manufacturers to enable noise
reduction algorithms by default, ensuring that pixel intensities
in unirradiated sensor images are less exploitable in such threat
models.

VIII. LIMITATIONS AND FUTURE WORK

Device Localization. The performance of our signal indi-
cator relies on the attack sequence, i.e., collecting an am-
bient acoustic noise signal as baseline before activating all
transmitters, and this performance is based on a simulation
in MATLAB, as per the scope of this existence proof study.
We use one speaker and a stationary target for our existence
proof work, but a feasibility study could use a grid of ultra-
sonic transmitters with mobile and stationary targets. A future
real world implementation can validate larger speaker-camera
distances using specialized high-power speakers. Extensive
previous works have shown how simply increasing the output
power of speakers could effectively increase the range of
acoustic interference on sensors hardware [20], [22], [50],
[58]. More diverse types of devices equipped with cameras be-
sides smartphones, such as IoT home cameras, smart screens,
etc., can be tested following the methodology of this work.
While we collected 119 different video samples for different
permutations of each channel configuration, each channel
configuration is only one video, though 15-32s, and sampled at
30 fps. As such, the reliability of the signal indicator to identify
a location based on the signal correlation could be further
evaluated in a feasibility study. Note that MEMS gyroscopes

can wear out from prolonged ultrasound exposure, but that
does not preclude multiple attack vectors which exploit them
[59], [60]. Note that for all methods which target a device,
the target device location is not necessarily the target device
owner location, which an adversary may be more interested
in than the target device location.

Dark Signal Modulation. Dark signals exist in all image
sensors [15], [44], [61], and do not require anything external
for generation. In a sense, the physical camera block is a
filter, and its effects can also be modeled via software for
an open camera. Such signal modulation can help an adver-
sary control the optical system output using understanding
of its semiconductor-level functionality, and perhaps add or
remove image information, including watermarking [62], from
cameras in real time even when the camera lens is not
occluded. Our paper uses ultrasound as a dark signal modula-
tion technique, but other methods for dark signal modulation
may use RF, including microwave hyperthermia [63], [64], or
simulating extrapolated dark signals over increased exposure
times. While CMOS image sensor communication uses light
[65], our dark signal approach opens possibilities to transform
image sensor noise into usable information for communication
by demodulating the transmitted signal.

IX. CONCLUSION

This study provides existence proof of an optical acoustic
side channel that does not rely on direct or indirect scene
information, and can be exploited using dark signals intrinsic
to an image sensor. MEMS gyroscopes and movable lens
mechanisms appear vulnerable to ultrasonic exploitation, even
with occluded lenses, and such destabilization may enable de-
vice localization attack. Our findings challenge the assumption
that emerging threat models must rely on advanced machine
learning or deep learning techniques, which are resource in-
tensive relative to our methodology. We found that ultrasound-
modulated signals could be observed across different optical
and hybrid zoom settings, indicating that the camera response
is produced by intrinsic optical system parameters, such as
the rolling shutter rate and image sensor size, as confirmed
by a simulation model. Future research remains to confirm
the feasibility of device localization with a dark signal optical
acoustic side channel attack.
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