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Abstract
Approximate computing research seeks to trade-off the ac-

curacy of computation for increases in performance or re-
ductions in power consumption. The observation driving ap-
proximate computing is that many applications tolerate small
amounts of error which allows for an opportunistic relaxation
of guard bands (e.g., clock rate and voltage). Besides affect-
ing performance and power, reducing guard bands exposes
analog properties of traditionally digital components. For
DRAM, one analog property exposed by approximation is the
variability of memory cell decay times.

In this paper, we show how the differing cell decay times
of approximate DRAM creates an error pattern that serves as
a system identifying fingerprint. To validate this observation,
we build an approximate memory platform and perform ex-
periments that show that the fingerprint due to approximation
is device dependent and resilient to changes in environment
and level of approximation. To identify a DRAM chip given an
approximate output, we develop a distance metric that yields
a two-orders-of-magnitude difference in the distance between
approximate results produced by the same DRAM chip and
those produced by other DRAM chips. We use these results
to create a mathematical model of approximate DRAM that
we leverage to explore the end-to-end deanonymizing effects
of approximate memory using a commodity system running
an image manipulation program. The results from our experi-
ment show that given less than 100 approximate outputs, the
fingerprint for an approximate DRAM begins to converge to a
single, machine identifying fingerprint.

1. Introduction
Secure system designers tend to focus on the anonymity of
communication [25] and take for granted the hardware used to
generate the data communicated. Attribution of data is usually
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Figure 1: Probable Cause creates a fingerprint of an approx-
imate DRAM system by collecting approximate outputs and
stitching together error patterns in those outputs to form a fin-
gerprint for the memory. Attackers can then use this memory
fingerprint to identify other approximate outputs as belonging
to the system.

done through communication meta-data [2]. While the use
of encryption secures the communication against eavesdrop-
pers, it is unable to hide the occurrence of communication.
Anonymity systems such as Tor [5] try to provide this guaran-
tee over the Internet. Even when software and communication
channels are designed to preserve anonymity of users, devices
can be deanonymized using intrusive measures such as espi-
onage tools and Trojans [36] or non-intrusively using unique
characteristics of analog hardware such as RF fingerprint-
ing [1, 26], clock skew [14], or camera sensor noise [19]. The
anonymity of digital computation has not been traditionally a
concern since, in general, computer systems are deterministic
machines that yield identical results to identical inputs.

The assumption of anonymous computation must be recon-
sidered with the emergence of approximate computing. The
goal of approximate computing is to provide significant perfor-
mance improvements and/or energy savings by sacrificing the
accuracy of computation or storage. In many cases, the error
pattern due to approximation depends on hardware variations
locked-in at manufacturing time. The dependency of computa-
tion result on hardware properties creates an opportunity for
an attacker to deanonymize systems that produce approximate
results.
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Approximate computing adds accuracy as a third dimen-
sion to the conventional energy/performance trade-off. Many
applications, such as computer vision, machine learning, and
sensor networks, are naturally imprecise and thus accept a
range of results, so expending extra time and energy to cal-
culate an exact results is of no advantage. For example, any
application that uses floating point numbers already accepts
some inaccuracy.

As one of the main components of an approximate sys-
tem, many works consider the trade off between accuracy
and energy saving in Dynamic Random Access Memory
(DRAM). Energy saving schemes targeted at DRAM work
by lowering the input voltage [3] or by decreasing the refresh
rate [17, 18, 40]. These techniques are a key component in
future approximate computing systems, especially those that
tolerate limited errors in data [6].

While much of the previous work has examined approxi-
mate DRAM’s impact on correctness, performance, and en-
ergy, none of the existing approximate DRAM systems con-
sider their impact on privacy. To this end, we introduce Proba-
ble Cause, to our knowledge, the first paper that explores the
security implications of approximate DRAM. Probable Cause
is an approach to uniquely identify approximate computing
systems based on the error pattern imprinted in approximate
outputs. Figure 1 provides an overview of how Probable Cause
works. The insight driving Probable Cause is that the error pat-
tern imprinted on data reveals the location of the most volatile
cells in an approximate memory. Additionally, this volatility
is chip-specific and due mainly to process variations locked-in
during manufacturing.

To demonstrate the real-world implications of our observa-
tion, we implement Probable Cause. Probable Cause consists
of an approximate memory system and set of approximate
result classification algorithms. We show that Probable Cause
reliably deanonymizes approximate results, even with changes
in temperature and level of approximation. Additionally, we
show that it is possible to dynamically construct a fingerprint
for a DRAM by collecting arbitrary approximate results and
stitching their individual fingerprints together to form a whole-
memory fingerprint.

Our contributions are,
• We present the first work to highlight the privacy implica-

tions of approximate DRAM.
• We empirically evaluate the feasibility of our approach by

deanonymizing DRAM devices based only on their approx-
imate results.

• We present a mathematical model to quantify the end-to-
end information leakage of approximate DRAM, showing
how many approximate results an attacker must gather to
reliably identify a system.

2. Background
Dynamic Random Access Memory (DRAM) is a type of
volatile memory that stores values by holding charge in a ca-

Figure 2: A DRAM cell has a default low value that can be
changed by charging the capacitor. DRAM cells need to be
constantly refreshed for the value to hold, otherwise capacitor
leakage slowly reverts the cell to its default value. All DRAM
operations are done at row granularity.

pacitor. Figure 2 presents a simplified DRAM structure. The
storage capacitor in each DRAM cell has a default/uncharged
state and a charged state. The uncharged state of a cell corre-
sponds to either a logical ’0’ or a logical ’1’, depending on the
DRAM mapping. For each cell, the logical value correspond-
ing to an uncharged capacitor is denoted as the default value.
Generally, all cells in the same row have the same default
value, and the default value alternates every few rows. Writing
a value opposite of the default value charges a cell’s storage
capacitor. The capacitor then begins to lose its charge. Eventu-
ally the capacitor voltage will drop below a detection threshold
and return the cell to its default value. To prevent data loss in
charged cells, DRAM must perform regular refresh operations.
The JEDEC standard [13] specifies a refresh period of 64ms
for operating temperatures below 85◦C. Refreshes have row
granularity (due to the architecture of DRAM). At the hard-
ware level, a refresh operation is a read followed by a write.
The write fully charges any data storage capacitors not in the
default value.

DRAM cells decay at different rates, mainly due to their
manufacturing variations. The distribution of how quickly
DRAM cells decay follows a Gaussian distribution [27]. There
are two types of manufacturing variation that influence the
probability of state loss between refresh: (1) variation in the
capacitance of the DRAM cell and (2) variation in the leak-
age current through the access transistor that drains the ca-
pacitor. It is possible that some variation in capacitance is
mask-dependent, thus replicated across wafers produced in
the same fabrication process. On the other hand, the variation
in the leakage current is not mask-dependent, because it is
caused by threshold voltage variations due to random dopant
fluctuations in the channel of the access transistor. Thus, we
expect leakage current to be the dominant factor in DRAM
cell retention time, i.e., essentially mask independent.

In traditional/exact computing models, a DRAM requires
frequent refreshes to prevent decay of the most volatile cells
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in the most extreme environmental conditions. This results in
large overheads because, while some cells decay in less than a
tenth of a second, the majority of the cells hold their value for
tens of seconds. Additionally, most systems are not running in
extreme environments.

Approximate computing systems take advantage of this
opportunity either by lowering the supply voltage of memory
or by decreasing the refresh rate. Both of these methods result
in energy savings but cause errors in data. Given that the
errors are mainly due to capacitor leakage, the ordering of
cells that lose their charge is repeatable. This observation
drives Probable Cause. In the remainder of the paper, we
experimentally show that these orderings are unique, stable
given environmental changes, and stable given the amount of
error.

3. Threat Model

Probable Cause’s threat model assumes that a user has a system
with approximate memory. The user wishes to publish data
(e.g., post a picture on a forum) created on an approximate
system while preserving his or her anonymity. We assume
that the user takes all known precautions, such as removing
identifying meta-data from the files they post and that they
publish data using an anonymity-preserving communication
channel (e.g., The Onion Router (Tor) [5]).

A key aspect of the threat model is a resource imbalance
between the attacker and the victim: it assumes a sophisticated
attacker with abundant resources (i.e., a nation state) that seeks
to identify a relatively small set of users (e.g., a dissident) using
only those users’ approximate outputs. Figure 3 depicts two
attack scenarios explored in this paper:
(a) The attacker inserts themselves in the supply chain be-

tween the manufacturer and the end user. This encom-
passes the attacker intercepting complete computer sys-
tems or just the DRAM modules themselves. The attacker
fingerprints devices completely before they reach the user,
thus Probable Cause can deanonymize any public approx-
imate result generated by the system.

(b) The attacker creates a database of all observed approx-
imate outputs. The error patterns in the outputs are
stitched together to form whole-system fingerprints. In
this scenario, we assume that the attacker has access to
the public data and can guess the positions of error in
the approximate outputs. While this scenario is less in-
trusive, it requires collecting many approximate outputs
from a system before Probable Cause is able to construct
a reliable system-level fingerprint.

Both the supply-chain attack and eavesdropping attack are
feasible given real-world precedents [8].

4. Design of Probable Cause

The two scenarios described in Section 3 pose very different
attack vectors for the adversary to deanonymize data generated

Manufacturer

User
Recipient

Attacker I

(a)

Manufacturer

User
Recipient

(b)

Attacker II

Figure 3: Probable Cause tackles two attack scenarios: (a) the
attacker intercepts and fingerprints the entire memory (as a
part of a system or a standalone module) in the supply chain
and (b) the attacker captures approximate outputs from a de-
ployed system to create a fingerprint.

by an approximate memory. Attacking the supply chain is the
easier of the two attacks to implement. Giving the adversary
physical access to the approximate memory guarantees com-
plete and accurate fingerprinting of the memory. Section 7.1
covers how data only a few memory pages in length can pro-
duce a fingerprint powerful enough to differentiate outputs
from one DRAM chip from another. The second attack sce-
nario is more challenging since the attacker cannot control
what data the victim gives him. This section shows that even
with such limitations, Probable Cause still deanonymizes users
based solely on user-provided approximate outputs.

For the post-deployment attack scenario, we assume the
attacker has access to approximate outputs from the device,
but does not know which page1 of memory it emanates from.
To formalize this, assume that we have approximate outputs
D1,D2, ...,Dn. Without loss of generality, we assume that
these pages are stored in physical memory pages s1,s2, ...,sn
and have length of l1, l2, ..., ln consecutive pages. Note that
this is not a strong assumption as even operating systems that
utilize Address Space Layout Randomization (ASLR) [34] do
not randomize the location of the pages that make up a file
due to the added management overhead.

To create a holistic picture of memory, Probable Cause
treats each output as a piece of a puzzle that it puts together
to create a fingerprint of the entire memory. Figure 4 depicts
how this process works: initially, Probable Cause creates a
fingerprint for every page of data that it sees. Therefore, each
approximate output will be a contiguous series of page-level
fingerprints FP1,FP2, ...,FPn with length of l1, l2, ..., ln pages,
respectively. Next Probable Cause tries to stitch these page-
level fingerprints together into a system-level fingerprint by
searching for overlap among the series of connected page-level
fingerprints. If the page-level fingerprints of two approximate
outputs match, then there is a range of physical memory pages

1Our analysis focuses on 4 KB chunks of memory—called a page, because
that is the smallest unit of contiguous memory that operating systems manage.
Modern operating systems also use larger page sizes, which only makes our
analysis easier.
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Figure 4: Probable Cause constructs the whole-memory fingerprint by stitching together fingerprints of overlapping approximate
outputs. Pages of the same color are the same page and are matched by Probable Cause using page-level fingerprints.

that held both outputs. Probable Cause uses the page-level
fingerprints outside the overlap region to create a combined
system-level fingerprint that encompasses the page-level fin-
gerprints of each output. As the number of outputs increase,
more fingerprints are stitched together. In Section 7.6 we show
how, with large enough data and enough overlap, it is possible
to create a system-level fingerprint comparable to the supply
chain attack. In cases where the approximate outputs were
not stored in any of the same physical memory pages, Proba-
ble Cause must assume that the outputs come from different
systems.

Probable Cause stores system-level fingerprints in a
database equal to the size of the fingerprinted region of mem-
ory. Although we do not imagine storage to be an issue for
powerful attackers such as government agencies or Advanced
Persistent Threats (APTs), it is possible to reduce the storage
requirement by only tracking the fast decaying bits of memory
(approximately, 1% of the bits in a memory).

5. Mechanics of Probable Cause
Probable Cause’s goal is to identify the origin of approxi-
mate data based on the error pattern imprinted by approximate
DRAM. Figure 5 presents three example outputs of two ap-
proximate DRAMs. For this example, a 200×154 pixel black
and white image is stored in two different DRAM chips re-
freshed at a rate that yields 1% error with worst-case data.
Figure 5.a and Figure 5.b show the image produced by the
same chip, but at different temperatures, while Figure 5.c
shows the output from a second chip.

Even from visual observation, it is possible to distinguish
the results coming from a different chip as there are many
similarities in the error patterns in Figures 5.a and 5.b, but no
real similarity to Figure 5.c. We highlight regions with notable
similarities and differences to ease the comparison.

It is not practical to expect a user to analyze the error pat-
tern in every approximate output for similarities to the known
error patterns. Thus, this section presents the algorithms used
by Probable Cause to cluster approximate results and iden-
tify host systems based on known system-level fingerprints
and observed approximate outputs. There are three parts to

Algorithm 1 Characterization Algorithm: Creates a finger-
print for a DRAM chip based on the errors from several ap-
proximate results.

CHARACTERIZE(approx[#o f Results][size])

1 for i← 1 to #o f Results
� exact is a bitstring representing an unapproximated result

2 do errorString[i]← XOR(approx[i],exact)
� Fingerprint is the intersection of error bits

3 return ∧#o f Results
i=1 errorString[i]

this problem: Section 5.1 covers generating system-level fin-
gerprints for DRAM chips. Section 5.2 covers correlating
approximate results and system-level fingerprints. Finally,
Section 5.3 covers clustering approximate results with the
same system-level fingerprint and determining the system that
produced them, even when they have not been previously seen
by the attacker.

5.1. Characterization

The first step required for Probable Cause to successfully
deanonymize a user is characterization. To characterize an
approximate memory, Probable Cause needs a series of ap-
proximate results. Based on the adversarial model described
in Section 3, there are two possible paths for the attacker to ac-
quire these: (1) the attacker gets physical access to the system
or DRAM chip and characterizes it completely using their own
inputs, or (2) the attacker collects user-published approximate
outputs from the system by eavesdropping or by scraping the
web.

Algorithm 1 characterizes a DRAM chip by collecting a
series of approximate results from the chip along with their
corresponding exact values. Next, it detects the pattern of
errors in each of the results and records the intersection of
the errors as the fingerprint of the chip. Given that we expect
most of the failed bits to match during different runs, using the
intersection will minimize the effect of noise—keeping only
the most volatile bits. Keeping such a small number errors
around as the fingerprint has several advantages: it makes
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(a) (b) (c)

Figure 5: Three identical images after storage in approximate memory. Image (c) is stored in a different chip than (a) and (b).
Simple visual inspection reveals similar patterns of errors in results coming from the same chip.

Algorithm 2 Identification Algorithm: Compares an approxi-
mate output with fingerprints in a database to identify which
DRAM chip produced the output.

IDENTIFY(approx[size], f ingerprintDB[#o f FPs],exact[size])

1 errorString← XOR(approx,exact)
2 for i← 1 to #o f FPs
3 do if DISTANCE(errorString, f ingerprintDB[i])

< threshold
4 do return i
5 return failed

the fingerprint amenable to lightly approximated systems, it
provides ample information to correctly classify approximate
outputs and identify systems, and it makes DRAM chip clas-
sification fast as it takes little time for the first 1% of bits to
fail.

5.2. Identification

To correctly match an approximate output with a system-
level fingerprint, Algorithm 2 first detects errors in the approx-
imate data by comparing it to the exact data. It then searches a
database of system-level fingerprints to see if any match the er-
ror pattern of the output. For comparisons, the algorithm uses
the distance metric described in Algorithm 3. The algorithm
returns the first system-level fingerprint whose distance to the
error pattern in the output is below a pre-defined threshold.
Section 7 discusses how we experimentally determine this
threshold.

For a distance metric, one might think that using the Ham-
ming distance is suitable. Unfortunately, the Hamming dis-
tance is unable to perform well in cases where the amount
of error in the system-level fingerprint and the approximate
output differ dramatically (e.g., the chip is characterized at
99% accuracy while the data is 95% accurate). In such cases,
an approximate result from the same chip as the fingerprint,
but with much less error will look farther away than an approx-

Algorithm 3 Distance Algorithm based on Jaccard index [12].

DISTANCE(errorString[size], f ingerprint[size])

1 Initialize d← 0
� Count the number of errors in fingerprint which are ab-

sent in errorString
2 for i← 1 to size
3 do if f ingerprint[i] = 1 and errorString[i] = 0
4 do d← d +1
5 return d

HAMMINGWEIGHT(errorString)

imate result from another chip that has much more error than
the fingerprint. To compensate for this, we designed a custom
distance metric (detailed in Algorithm 3) based on Jaccard’s
index [12]. Our metric looks for errors that exist in the fin-
gerprint, but are absent in output’s error pattern2. This result
is then normalized to the number of errors in the fingerprint.
The result is a distance that ranges from [0,1]. Our distance
metric does not suffer from the varying approximation prob-
lem as it only looks for error bits that should be present if data
originated from the fingerprinted memory and ignores any ad-
ditional errors that could have happened because of mismatch
in level of approximation. Our metric is also less prone to
noise as it similarly ignores random bit flips that might have
occurred because of noise.

5.3. Clustering

To support the second attack where the attacker has not pre-
emptively fingerprinted devices, Probable Cause must be able
to cluster results of unknown or previously unseen devices in
addition to identifying approximate outputs created by known
devices. Our clustering algorithm is similar to the approach
discussed in Section 4. Each approximate result creates an er-
ror string that is compared to each of the previously identified

2Without loss of generality, we assume that the fingerprint has less error
bits. When the approximate output has less error bits, it can be treated as the
“fingerprint”.
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Algorithm 4 Clustering Algorithm: Creates a fingerprintDB
based on a set of approximate results.

CLUSTER(approx[#o f Results][size],exact)

1 Initialize cluster← 0
2 for i← 1 to #o f Results
3 do j← 0
4 errorString←MARKERROR(approx[i],exact)
5 while j < cluster
6 do if DISTANCE(errorString, f ingerprintDB[ j])

< threshold
7 do f ingerprintDB[i]

← f ingerprintDB[i]∧ errorString
8 goto 2
9 f ingerprintDB[cluster]← errorString

10 cluster← cluster+1
11 return f ingerprintDB

clusters using the distance metric. If the error string matches
any of the clusters, it will be intersected with the fingerprint of
the cluster to augment it (similar to approach used in the char-
acterization algorithm). In cases where the error string does
not match any of the clusters, it will be assigned to a new clus-
ter (representing the system-level fingerprint of a new system).
Algorithm 4 describes the pseudo-code of this algorithm. This
algorithm has three main benefits: (1) it requires minimum
supervision from the user, (2) it is low cost compared to more
complicated machine learning techniques, and (3) the chance
of a mismatch is low due to the performance of our modified
Jaccard distance metric.

6. Experimental Setup
We evaluate our system on both an older DRAM and a DDR2
platform. Because of similarity in results, we postpone our
description of the DDR2 setup and the effect of process tech-
nology on Probable Cause to Section 8.1. Our DRAM ex-
periments consist of a set of 10 32KB KM41464A DRAM
chips [33]. This DRAM stores data as 64K 4-bit words, ar-
ranged in 256 columns and 256 rows. We disable automatic
refresh, thus the only way to refresh a row is through memory
accesses. Other relevant blocks and their roles are,
• The MSP-FET430UIF [38] JTAG Programmer is responsi-

ble for programming the microcontroller and later transfer-
ring the results back to the analysis computer.

• The MSP430-F2618 [37] microcontroller orchestrates the
experiments. Its duties include writing and reading data to
and from the DRAM, controlling the timing of refreshes,
and analyzing the data from the DRAM for decay.

• The Sun Electronics EC-12 thermal chamber [35] allows us
to control temperature for the DRAM experiments. Temper-
ature is the most important environmental factor to control
as the rate of decay in DRAM heavily depends on its varia-
tions [27].

• The Agilent power supply powers the DRAM.

Power SupplyMicrocontroller

DRAM

JTAG 
Programmer

Control Bus

Thermal Chamber

Data Bus

Figure 6: Probable Cause experimental platform. The MSP430
microcontroller controls DRAM read/write functions. The tar-
get DRAM is placed inside a thermal chamber to ensure envi-
ronment consistency across experiments. The JTAG program-
mer allows us to program the microcontroller and extract the
results.

For experiments not involving image data, we load data that
charges every memory cell in the DRAM. Section 2 discusses
how each DRAM cell has a charged state which corresponds
to logical 1 or 0, depending on the row. Using the charged
value of cells has the advantage that it gives every cell the
possibility of losing state by decaying to the default value—a
worst case scenario.

7. Evaluation

To evaluate Probable Cause, we start by examining it with
respect to five factors that affect the performance of DRAM
fingerprinting. All of these experiments run on the approxi-
mate memory platform presented in Section 6. The five factors
are

1. Uniqueness: How distinguishable are the fingerprints of
different chips from each other?

2. Consistency: How much variation exists in the fingerprint
of a single chip across multiple trials, given the same con-
ditions?

3. Thermal effect: How does temperature impact the relative
volatility of DRAM cells?

4. Order of failure: How do fingerprints coming from data
produced on the same chip, but with different levels of
approximation correspond to each other?

5. Accuracy versus privacy: How do changes in the level
of approximation impact the ability of Probable Cause to
successfully identify the outputs of a chip?

Then, using the results from the generalized evaluation,
we create a mathematical model to evaluate the end-to-end
deanonymizing effects of approximate memory using a com-
modity system with an approximate computing benchmark
program.
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Figure 7: Histogram of fingerprint distances for within-class
(same chip) and between-class (other chips) pairings.

7.1. Uniqueness

The goal of this experiment is to show that Probable Cause
correctly associates an approximate output to the DRAM chip
that produced it, given a system-level fingerprint of all DRAM
chips. To evaluate the uniqueness of fingerprints, we first
create a system-level fingerprint for each chip by taking the
intersection of the error bits in three outputs created at 1% error
and different temperatures. We then create 9 approximate data
outputs from each of our 10 DRAM chips, where each output
comes from a different combination of temperature (40◦C,
50◦C, and 60◦C) and level of approximation (99%, 95%, and
90%).

For each of the 90 results, we calculate the error bitstring
and use Algorithm 3 to calculate the distance between the
output and every system-level fingerprint. Figure 7 is a his-
togram of the within-class (belonging to same chip) and the
between-class (belonging to different chips) distance of ev-
ery pair of fingerprints. The between-class distances are two
orders-of-magnitude larger than within-class distances; this
allows Algorithm 2 to trivially deanonymize chips from their
approximate data.

Uniqueness can also be evaluated theoretically by reasoning
about the space of possible fingerprints. If the possible number
of fingerprints is low compared to the number of devices, it
would be likely for fingerprints of two devices to match or be
close enough to make them indistinguishable using our metric.

Assuming an approximate memory of size M bits where A
bits of error are tolerated, the total number of unique finger-
prints is given by the binomial coefficient in Equation 1.

Max unique f ingerprints =
(

M
A

)
(1)

Given the existence of noise, fingerprints will not match
exactly, and a threshold of T bits is used for matching two fin-
gerprints. Using this threshold, every fingerprint is matchable
with ∑

T
i=0

(M
i

)
fingerprints that are within Hamming distance T .

One page of memory
M = 32768 bits, A = 1%, T = 32 bits

Max possible fingerprints 8.70×10795

Max unique fingerprints ≥ 1.07×10590

Chance of mismatching ≤ 9.29×10−591

Total Entropy 2423 bits

Table 1: Results for a page of memory

Taking into consideration that the noise threshold exists for
both the system-level fingerprint and the approximate output,
the range of possible distinguishable fingerprints is calculated
using the Hamming bound [20]:

(M
A

)
∑

2T
i=0

(M
i

) ≤Max distinguishable f ingerprints≤
(M

A

)
∑

T
i=0

(M
i

)
(2)

and the chance of two fingerprints being mistakenly
matched is in the range of:

∑
T
i=1

(M
i

)(M
A

) ≤Chance o f mismatching≤ ∑
2T
i=1

(M
i

)(M
A

) (3)

The surprisingly low chance of misidentification is due to
the high amount of entropy in the fingerprints. Assuming that
noise and other external factors cause no more than T bit-flips
(A > T ), the amount of entropy per bit of memory is given by
Equation 4.

entropy/bit ≥
log2 (

(M
A)

∑
2T
i=0 (

M
i )
)

M
≥

log2
( M

A−T

)
M

(4)

To put these equations into perspective, Table 1 presents
these result for a page of memory (M = 32768 bits) with a
A = 1

100 M (328 bits), and threshold of T = 10
100 A (32 bits).

This threshold value is a safe upper bound chosen based on
our experiment results.

7.2. Consistency

The goal of this experiment is to show that, given the same
operating conditions, DRAM cells fail in a repeatable fashion.
To evaluate the consistency of errors in an approximate DRAM
across different runs, we record 21 outputs of a DRAM chip
at 99% accuracy and 40◦C, then compare the error locations
in each output. Figure 8 presents a heatmap of the bits that
are not predictable across different trials. In the heatmap, the
darker the cell, the more it behaves like noise. Our results
show that 98% of bits that fail in any one trial, will also fail
in the other 20 trials. This suggests that the errors created by
approximate DRAM are mostly repeatable.
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7.3. Thermal effect

Temperature variation is known to have a significant effect on
the rate of charge decay in DRAM [10]. DRAM refresh rates
account for this either by assuming a worst-case operating
environment [13] or by dynamically adjusting the refresh rate
to compensate for environmental changes while keeping cur-
rent consumption minimized [22]. Our approximate DRAM
implementation similarly adjusts its refresh rate to maintain a
desired accuracy across changes in temperature. To explore
whether the change of temperature affects the relative DRAM
cell decay rates, we run experiments under different tempera-
tures (40◦C, 50◦C, and 60◦C) and different levels of approxi-
mation (99%, 95%, and 90%). Figure 9 shows how variations
in temperature affects between-class (different chips) pair dis-

tance. Even though the increased temperature causes DRAM
cells to decay faster, our approximate DRAM system accounts
for these changes to maintain the desired level of approxima-
tion. The results show that the relative decay rate of DRAM
memory cells is robust to temperature change and thus, does
not impact Probable Cause.

7.4. Order of failures

Based on the consistency of errors in approximate DRAM,
we hypothesize that the decay of cells within each DRAM
chip follows a particular order that is mostly consistent across
experiments. To verify this, we record failed bits of a chip at
three different levels of approximation (99%, 95%, and 90%)
and evaluate the overlap in error locations in these results.
Figure 10 presents a Venn diagram of the overlaps. Aside
from a single outlier, all erroneous cells at 99% accuracy are a
subset of the cells that are erroneous at 95% accuracy, which,
aside from 32 cells, are a subset of those at 90% accuracy.
This result supports our hypothesis about the existence of an
ordering in DRAM cell failures.

7.5. Accuracy versus privacy

Depending on the application, an approximate system may
use different levels of accuracy. As the accuracy of data de-
creases, the number of errors increase proportional to the
size of the memory. In contrast, the increased number of er-
ror bits creates greater chance of overlap with the fingerprint
from out-of-class chips, decreasing the distance between two
distinct chips. Going back to our mathematical model from
Section 7.1, lowering the accuracy is expected to result in an
exponential increase in the fingerprint state space—making a
misclassification exponentially more likely. Table 2 presents
the maximum chance of mismatch at different accuracies for
a page of memory.
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Figure 10: Overlap of a DRAM error locations at different lev-
els of approximation. The results support a rough subset rela-
tion 99%⊂ 95%⊂ 90%.
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Figure 11: Histogram of between-class chip distance grouped
by approximate memory accuracy. The increased chance of
bit error overlap causes the average distance to shrink with
increases in approximation. Note that these distances are still
two orders larger than the largest within-class distance.

We also evaluate the effect of varying accuracies on our
distance metric. Figure 11 presents the histogram of between-
class (other chips) distances at three different accuracies. As
expected, the greater chance of overlap causes the distance
to decrease as the accuracy decreases, but at the levels of
approximation used in the literature, there is still a vast divide
between within-class distances and between-class distances.

7.6. Eavesdropping attacker evaluation

The results up to this point make it clear that it is possible to
identify the DRAM chip that produced an approximate output
in a variety of operating conditions. The goal of this experi-
ment is to understand the end-to-end deanonymizing effects
of approximate memory given the constraints of a commodity
system, an approximate computing benchmark, and the more
difficult post-deployment attack model. The setup for this

Accuracy Chance of mismatch

99% ≤ 9.29×10−591

95% ≤ 8.78×10−2028

90% ≤ 4.76×10−3232

Table 2: Chance of mismatching two pages of memory for dif-
ferent accuracies. Decreasing accuracy causes an exponen-
tial increase in fingerprint state space.

Figure 12: Sample input (left) and output (right) of CImg gradi-
ent edge-detection code used to evaluate Probable Cause.

experiment is an iMac running Ubuntu 14.04 inside a virtual
machine with 1 GB of memory allocated. On this platform,
we run a Valgrind [23] instrumented edge-detection program
from the CImg open-source image processing library [39].
Figure 12 shows a sample input and output of this program.
We run the program and analyze the report from Valgrind
to uncover the physical pages the program used to store its
approximate outputs. Using this data, along with the mathe-
matical model presented in Section 7.1, we emulate the result
of this computation on approximate DRAM.

Our observation using Valgrind is that the operating sys-
tem’s memory mapping causes the edge-detection program to
store its results in different memory pages during different runs.
Uniqueness of data placement during different runs, makes
stitching possible. This allows Probable Cause to create larger
fingerprints of memory by observing different samples using
the technique described in Section 4. Furthermore these exper-
iments verified our original assumptions that data is stored in
consecutive physical pages in main memory and that it does
not get remapped to different physical pages during a single
run.

As the number of sample data collected increases, Probable
Cause stitches together different fingerprints to create larger
system-level fingerprints. Figure 13 presents the relation be-
tween number of samples and number of clusters identified by
our system using 10MB data samples (one photo from a digital
camera). Because of lack of overlap, Probable Cause clusters
the initial fingerprints as unique chips. As the number of ap-
proximate outputs observed increases, Probable Cause is able
to use overlaps to stitch fingerprints together, decreasing the
number of suspected chips. In our experiment, Probable Cause
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was able to begin fingerprint convergence after approximately
90 samples.
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Figure 13: Number of distinct fingerprints generated from a
chip of size 1GB based on collected samples of size 10MB
for our edge detection program. As the number of samples in-
crease, Probable Cause is able to connect different partial fin-
gerprints together to create a single system-level fingerprint.

8. Discussion
After presenting the design and evaluation of Probable Cause,
there are three issues that require more in-depth discussion.
First, for controllability reasons, our evaluation uses DRAM
chips two decades past their prime. Do our results hold for
more recent DRAM technologies? Second, what are possible
defenses against Probable Cause? Third, all of the results in
the paper assume that the error locations in an approximate
output are known. How can an attacker identify potential error
bits from the approximate output alone?

8.1. Effect of DRAM technology

To verify that Probable Cause is not limited to the dated
DRAM that we use in our evaluation platform, we construct
an FPGA-based platform that uses DDR2 memory. While
it is possible to confirm all of our results using this DDR2
platform, running all of our experiments on this platform is
cost and time prohibitive. Due to this fact and the similarity
of the results, we limited the presentation in Section 7 to the
older DRAM platform. Here, we cover the DDR2 platform.

Our DDR2 platform consists of a Xilinx Virtex-5 FPGA
with an altered soft-core memory controller. We alter the
memory controller to expose an automatic refresh disable
signal to the software layer. For memory, we use a Micron
MT4HTF3264HY 256MB DDR2 DRAM chip [21]. To con-
trol everything, we implement an OR1200-based System-on-
Chip [24] on the FPGA. To avoid contaminating program code
and data, we add a scratchpad memory to the FPGA fabric
that we use as the program’s main memory.

We port the MSP430 test code to the OR1200 and run with
the same levels of approximation and temperatures that we
use in Section 7. The results of these experiments show that,
as in the older DRAM, the spatial distribution of volatility
is robust to both temperature changes and different levels of
approximation. We do notice that the probability distribution
of cell volatilities in the DDR2 chip is skewed toward higher
volatility where the older DRAM had no skew. While our anal-
ysis shows that this difference does not impact the clustering
or classification abilities of Probable Cause, it could mean that
it is harder to fine-tune the desired level of approximation on
DDR2-based systems.

8.2. Defenses against Probable Cause

Probable Cause leverages a side channel that allows an attacker
to correlate approximate data to its origin. In this section,
we examine three possible methods to protect users against
Probable Cause.
8.2.1. Data segregation One possible defense is to to separate
sensitive data and general data in memory. This approach
suffers from three major drawbacks:
1. It relies on user intervention to identify sensitive data.
2. It does not provide either backward or forward secrecy:

there is no way to take back approximate outputs or to
change how approximation affects future outputs.

3. It sacrifices system resources by segregating how much
memory system can use based on its privacy requirements.

8.2.2. Noise Addition of noise is one of the main approaches
researchers use to counteract side-channels [16]. Defending
against Probable Cause using this approach requires addition
of random noise to the data which further degrades the accu-
racy of the results. This trade-off is undesirable for a system
designer, because it imposes heavy penalties both on possible
energy and computational time savings, while deteriorating
output quality. Accumulating noise through movement of data
in approximate memory also suffers from the same shortcom-
ings. In the end, adding noise only slows the attacker down.
8.2.3. Data scrambling Page-level Address Space Layout
Randomization (ASLR) can prevent Probable Cause from
deanonymizing data by preventing the stitching of page-level
fingerprints into system-level fingerprints. If the granularity of
ASLR is at most the size of the smallest fingerprint (e.g., page
size for our system), there will be no overlap for Probable
Cause to detect. This reduces Probable Cause’s classification
and clustering accuracy and forces it to flag any page-level
fingerprint as a potential match if it was within the threshold
distance of any chunk of system-level fingerprint. This can
result in an increase in false positives as it makes random
matches more likely. Using page-level ASLR comes at the
cost of a significant increase memory management overhead.

8.3. Error localization

There are multiple approaches that an attacker can use to esti-
mate the precise outputs based on an approximate output. In
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scenarios were the output is the result of a computation on
known inputs, an attacker can recalculate the exact outputs
from the inputs. Another approach has the attacker leveraging
the white Gaussian noise properties of the error due to DRAM
approximation. An attacker can use one of various noise de-
tection algorithms to detect potential bit error locations. A
final approach works in-conjunction with the previous two ap-
proaches. It is possible for an attacker to perform speculative
distance calculations to see if any case produces a distance
below the threshold with one of existing system-level finger-
prints. Probable Cause can leverage any of these techniques
to detect potential error patterns in approximate outputs and
reconstruct an exact version.

9. Related Work
This section frames Probable Cause with respect to previous
research on using physical attributes of digital devices as an
system identifying side channel and highlights recent works
on approximate memory.

9.1. Analog artifacts in a digital World

Previous research has shown that it is possible to identify
image and video recording devices using sensor noise [19, 15]
and pixel defects [7]. These works are similar to Probable
Cause in that they both exploit stable analog properties that
are imprinted on outputs to identify devices, but Probable
Cause has greater potential impact on users as it can operate
on any output stored in main memory—including data coming
from analog sensors.

Manufacturing variations of volatile memory have been sug-
gested as a type of Physical Unclonable Function (PUF) for
chip identification. FERNS [11] introduced power-up SRAM
state as a method of system identification and also a source
of random numbers. Recent work by Rosenblatt et al. [29]
extends the idea of FERNS to DRAM to create a DRAM PUF.
Like our work, Rosenblatt et al. use the variability in DRAM
cell decay times and their spatial stability as the basis for their
DRAM PUF. Although the underlying physical mechanism
used in a DRAM PUF and Probable Cause are the same, the
goals of a PUF and our system are at odds: PUFs use inten-
tional manipulation of digital components for attestation while
our work shows how manipulations aimed at achieving ap-
proximation create a side channel that unintentionally attests
for the machine. Additionally, PUFs rely on complete char-
acterization of DRAM, while our experiments show that it is
possible to identify a system by capturing approximate results
and stitching them together to form a device fingerprint.

Besides using DRAM cell decay time variation for system
identification or random number generation, in the Cold-Boot
attack [9], researchers exploit the ability to control decay time
through temperature variation to maintain state in DRAM
while it is transported between a victim machine and an at-
tacker’s machine. This allows attackers to search the victim’s
DRAM for secret keys in an offline manner. Using the same

mechanism as the Cold Boot attack, but swapping controlled
and uncontrolled variables is TARDIS [28]. TARDIS is a time
keeping scheme for security protocols that uses the relation-
ship between the amount of data decayed in SRAM memory
and the amount of time the SRAM has been in a powered-off
state to track the amount a time a device has been powered off.

9.2. Approximate memory

Approximate memory is a well studied concept in the field
of approximate computing. Esmaeilzadeh et al. [6] proposed
a general hardware structure for approximate programming
with approximate memory as one of the main components.
EnerJ [32] is a model for allowing programs to use both ap-
proximate and exact variables safely in the same program.

Various works have proposed energy saving schemes target-
ing main memory. Most approaches control DRAM refresh
rate to save power. The driving insight behind these works
is that the refresh rate is set based-upon the fastest decaying
memory cell—an outlier. Flikker [18], partitions memory into
high-refresh and low-refresh zones and stores error-tolerant
data in the low-refresh zone. RAPID [40] ranks and popu-
lates memory locations by their data retention time and sets
DRAM’s refresh rate based on the worst retention time of the
populated memory locations. Similar to RAPID, RAIDR [17]
leverages the idea that adjacent rows have similar retention
times to create a unique refresh rate for groups of rows.

Refresh rate is not the only knob available for reducing
memory power consumption. David et al. [3] and Deng
et al. [4] propose dynamic voltage/frequency scaling to save
energy. Half-wits [30] explores the effects of voltage scaling
on Flash memory by writing data at a reduced voltage and
checking to see if the write succeeded to avoid pumping the
charge to a higher voltage and expending more energy. Samp-
son et al. [31] propose using multi-level non-volatile memory
cells as approximate storage using reduced-cost imprecise
write operations.

10. Conclusion

In this paper, we expose the deanonymizing aspects of emerg-
ing hardware-based approximate computing systems. To
deanonymize a host machine, we leverage the observation
that each DRAM chip imprints its own unique physical prop-
erties in the errors of an approximate result. Our experiments
show that it is possible to both identify the host machine that
produced an approximate result and to cluster approximate
results by host machine. In our experiments, we have 100%
success in both host machine identification and clustering us-
ing a basic distance metric. This success rate is a product
of the two orders-of-magnitude difference in similarity be-
tween the error patterns in approximate results produced by
the same DRAM chip compared to the approximate results
produced by other DRAM chips. Lastly, experiments show
that our identification and clustering algorithms are robust
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against changes in operating conditions, i.e., temperature, and
level of approximation.

The ability to reliably identify the host machine that pro-
duced an approximate result shows that current DRAM-based
approximate memory systems are not appropriate for situa-
tions where the user wishes to preserve their anonymity. To
maintain anonymity, future hardware-based approximate com-
puting systems must facilitate exact computation of privacy
sensitive data and expose that decision to the user or future
research must design anonymity preserving hardware approx-
imation techniques. At a higher level, our results motivate
the need for privacy to be a primary design criteria for future
approximate computing systems.
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