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ABSTRACT

PRIVACY-AWARE COLLABORATION
AMONG UNTRUSTED

RESOURCE CONSTRAINED DEVICES

SEPTEMBER 2012

ANDRES DAVID MOLINA-MARKHAM

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Kevin Fu

Individuals are increasingly encouraged to share private information with service

providers. Privacy is relaxed to increase the utility of the data for the provider. This

dissertation offers an alternative approach in which raw data stay with individuals

and only coarse aggregates are sent to analysts. A challenge is the reliance on con-

strained devices for data collection. This dissertation demonstrates the practicality

of this approach by designing and implementing privacy-aware systems that collect

information using low-cost or ultra-low-power microcontrollers. Smart meters can

generate certified readings suitable for use in a privacy-preserving system every 10 s

using a Texas Instruments MSP430 microcontroller. CRFIDs—batteryless devices

that operate on harvested energy from RF—can generate encrypted sub-aggregates

in 17 s to contribute to a privacy-preserving aggregation system that does not rely on

a trusted aggregator. A secure communication channel for CRFID tags via untrusted

relays achieves a throughput of 18 Kbps.
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CHAPTER 1

INTRODUCTION

This dissertation proposes a model for privacy-aware data collection systems that

rely on embedded devices with low-cost or ultra-low-power microcontroller units. In

these systems data remain with individuals who generate the data. Coarse grained

aggregates are provided to analysts or service providers.

Common practice in data collection relies on sending raw data to a trusted aggre-

gator, which analyzes and stores them. Individuals whose data are being collected

have to trust this aggregator to protect their data from others and to respect their pri-

vacy by not analyzing the data beyond what is needed to provide a service. Another

limitation of this model from the privacy standpoint is that once the information from

an individual has been leaked, the individual no longer has control over its use.

The approach in this dissertation challenges current methods by removing the

requirement of a trusted aggregator and by demonstrating feasibility on constrained

devices.1 It demonstrates that privacy-preserving techniques can be practically im-

plemented using constrained devices such as those that depend on low-cost or ultra-

low-power microcontrollers. Research over the last couple of years has converged

in providing a more formal framework for quantifying privacy [49] and in developing

1For the purposes of this dissertation, a constrained device is an embedded system that relies on
an ultra-low-power or low-cost microcontroller unit. In 2012 low-cost microcontrollers range in price
from $0.25 to $9.00 USD Ultra-low-power microcontrollers consume under 1mW/MHz. For example,
the Texas Instruments MSP430F2618 can consume as little as 803µW/MHz; the ARM Cortex-M0+
as little as 11.2µW/MHz; and the ARM Cortex-M0 as little as 16µW/MHz. Microcontrollers in
this class typically operate at a frequency of around 25 MHz and utilize 32-bit, 16-bit, or 8-bit
architectures. MCUs can go as high as 100 MHz.
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cryptographic techniques to support privacy-aware aggregation [140, 33, 37, 145]. The

feasibility of the approach in this dissertation draws from these recent developments,

providing a basis for closing the gap between theory and implementation.

The issue of privacy in data collection is increasingly critical with the spread of

embedded systems that collect personal data. One example is the worldwide deploy-

ment of smart meters—76 million as of 2010 [116]. In the U.S. alone, over 36 million

smart meters have been installed as of 2012, with 675,000 being installed monthly. It

is estimated that by 2015 there will be 65 million [79] in the U.S. These smart me-

ters rely on low-cost microcontrollers. Technological trends suggest that constrained

devices will continue to be involved in data collection applications for a long time.

One reason is that battery technologies and energy efficiency are not evolving at the

same rate as the proliferation of data collection applications. Also, a new class of

batteryless devices offers a promising solution for long-term and low-maintenance de-

ployments [24]; these devices will continue to be subject to severe power constraints.

The successful implementation of the model presented here would allow individ-

uals to gain control over their data. Systems for collection of private data could

be implemented following a principle similar to the least privilege principle in secu-

rity [134]: detailed data would not be shared, unless it were strictly necessary to

receive a service. Future uses of previously collected data by utilities would be more

difficult. For example, finding out that utility metering using measurements every

second reveals sensitive information would not be an issue if data had remained with

the consumer and a utility had only received the total dollar amount owed.

1.1 Thesis Statement

The work in this dissertation provides evidence to support the following thesis:

2



A model for performing distributed privacy-preserving computations without rely-

ing on trusted aggregators can be practically implemented on embedded systems that

rely on low-cost or ultra-low-power microcontrollers.

A careful combination of cryptographic techniques and distributed system tech-

niques may enable ubiquitous data collection of private information, such that in-

dividuals achieve adequate privacy guarantees and analysts obtain information with

adequate utility. This dissertation challenges the idea that the best model for dealing

with embedded constrained devices that collect or generate data is one in which de-

vices pass data verbatim onto a more powerful system for aggregation and analysis.

While this sink model may offer many benefits, such as increased storage and com-

putational capabilities, it may not always be the most appropriate for implementing

privacy-aware applications.

1.2 Contributions

The validity of the thesis is demonstrated by implementing each of the following

systems:

1. Privacy-preserving smart metering with low cost microcontrollers

2. RFID-scale device communication via untrusted relays

3. Privacy-preserving aggregation with RFID-scale devices

This dissertation argues for the potential generalization of these systems to other

applications and suggests research directions. It also identifies limitations of the

approach, such as providing fault tolerance in aggregations and performing complex

analyses with high utility.
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1.3 Privacy-Preserving Smart Metering

A solution to the privacy issue of smart metering relies on the use of Zero-

Knowledge Proof (ZKP) systems to compute billing and other aggregates from a

power trace [108, 126]. However, current smart meters are implemented using low-

cost microcontrollers such as the Texas Instruments MSP430, which has severe com-

putational, storage, and memory limitations.

An approach for the implementation of these ZKP systems in constrained devices

utilizes specific elliptic curve based primitives, which minimize the computational

and memory footprints in a given microcontroller. The practicality of these systems

is evaluated by determining the extent to which a ZKP system could be deployed

on current smart meters and by measuring the performance that should be expected

using newly developing microcontroller and RAM technologies.

A prototype meter equipped with a microcontroller like those in current smart

meters is capable of producing certified readings for ZKP systems every 28 seconds.

If a newer $3.30 USD MSP430 microcontroller is used, readings can be produced

every 10 seconds.

1.4 RFID-Scale Device Communication via Untrusted Re-

lays

Computational RFID tags have evolved from traditional supply-chain RFID tags,

adding a general purpose microcontroller and sensors, which make them well-suited

platforms for developing networks of batteryless nodes. However, the abstractions

provided by current RFID communication are not well suited for CRFIDs. The

current RFID standard of communication treats tags as external memory locations for

reading or writing data. This severely limits the networking capabilities of CRFIDs.

Backscatter Anything-to-Tag (BAT) communication provides an alternative ap-

proach for networking this class of devices. In this networking stack, tags can send
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and receive packets from tags or other computer systems via untrusted relays. These

relays provide power and communication for these more capable tags. In order to pro-

vide secrecy and integrity to communication, BAT encrypts the payload and utilizes

cryptographic message authentication codes (MACs).

The practicality of BAT is evaluated through measuring the throughput and cryp-

tographic overhead of a prototype implementation using the UMass Moo [148], a cur-

rent CRFID prototype, and software radio. The maximum throughput observed was

18 Kbps and data can be encrypted at a rate of 61 Kbps.

1.5 Privacy-Preserving Aggregation with RFID-Scale Devices

CRFIDs are an ideal platform for developing distributed applications to collect

data such as the monitoring of infrastructures. In some cases it is important to

allow an untrusted party to obtain an aggregate from data obtained from multiple

devices such that individual entries are not revealed in the process. A solution to

this problem relies on the distributed calculation of a perturbed answer to provide

distributed differential privacy. However, CRFIDs are highly constrained devices that

have variable power and limited RAM and computational capabilities.

Shi et al. [140] and Chan et al. [33] propose systems in which a group of indi-

viduals collectively generate a noisy aggregate to achieve privacy. The supporting

cryptographic computation that each individual device needs to perform is imple-

mented and measured on the UMass Moo. The feasibility of these approaches is

evaluated based on the time it takes for a CRFID to contribute to the computation

of these noisy aggregates. A Moo needs to make a 17 s computation to contribute to

this aggregate. However, if fault tolerance is implemented, a Moo needs to perform

a 2-minute calculation when 100 other devices are involved or a 4-minute calculation

when 10,000 other devices are involved.
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1.6 Organization

Chapter 2 provides general background and definitions regarding a system model

for data collection using constrained devices. Chapters 3-6 develop the main contri-

butions of this dissertation. Chapter 3 demonstrates the need for providing privacy

in utility metering, and Chapter 4 evaluates the feasibility of implementing privacy-

preserving meters on low-cost microcontrollers. Chapter 5 describes a networking

stack for RFID-scale devices, and Chapter 6 discusses the practicality of implement-

ing a privacy-preserving system for computing aggregates with RFID-scale devices.

Chapter 7 explores the implications of implementing similar privacy-preserving sys-

tems for medical devices that collect medical telemetry with potentially sensitive

information. Finally, Chapter 8 lists research problems for future work.
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CHAPTER 2

BACKGROUND AND DEFINITIONS

This chapter provides background and definitions needed to understand the privacy-

preserving model presented in this dissertation, as well as the techniques to provide

privacy in this context. It begins with a description of constrained embedded systems

and the data collection model. The privacy-preserving building blocks discussed are

zero-knowledge proof systems, distributed differential privacy, and secrecy and in-

tegrity for networking.

2.1 Constrained Embedded Systems

Embedded systems are systems that are designed to perform only a handful of

specific tasks. For example, an electric smart meter is an embedded system designed

to measure the electric load on a home at fixed intervals of time, record these mea-

surements, and display them or transmit them via a wireless channel. A smart meter

is not designed to implement arbitrary functionality or functionality that changes

often.

The techniques in this dissertation are relevant for embedded systems that are im-

plemented using either low-cost microcontrollers or ultra-low-power microcontrollers.

At the time of writing, low-cost microcontrollers are priced below $9.00 USD, and

ultra-low-power microcontrollers consume under 1 mW/MHz. There are a wide range

of microcontrollers that fit into this category with 8, 16 or 32-bit architectures and

that run at a variety of clock speeds from 4-100 MHz. The Texas Instruments MSP430

(16-bit architecture, 4 MHz-25 MHz frequencies) [1], the ARM Cortex-M3 (32-bit
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architecture, 20 MHz-100 MHz frequencies) [130], the ARM Cortex-M0 (32-bit archi-

tecture, 30 MHz-50 MHz frequencies) [2], and the ARM Cortex M0+ (32-bit archi-

tecture, 32 MHz-48 MHz frequencies) [7] are common platforms. Not all embedded

systems fall into this category. Automotive, medical, or military applications may be

implemented using high-performance microprocessors that cost up to $200 USD or

include multicore processors [4].

2.2 Distributed Model for Data Collection and Analysis

This dissertation is concerned with the problem of computing a function on data

that is generated by multiple individuals that do not necessarily trust each other with

their data. Further, individuals may also not fully trust any third party to compute

this function in a centralized fashion, as illustrated in Figure 2.1. This dissertation

will primarily restrict its attention to devices that have computational, power or cost

constraints. For simplicity, this work assumes that all the devices considered in a

single application store their data with a compatible schema—for example, recording

data about a time series.

The term privacy-preserving will be used in two different ways in this dissertation,

depending on the application. The first will apply in the context of utility metering

and the second in the context of aggregation across multiple individuals.

In utility metering, it is important that a function such as the calculation of a bill

on an individual’s usage reflect the exact monetary amount due, but hide the details

of how that individual actually spent the billed resource. In other applications, a

function is calculated using data from multiple individuals; such as calculating the

number of medical devices that have experienced a malfunction in a given device

population. In this case, a desired notion of privacy may be that the result of the

calculation not reveal whether or not a particular device’s input was included in the
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calculation. This concept of privacy will help in quantifying the extent to which an

adversary may learn the actual input from any particular device.

The following sections discuss these two notions of privacy as well as some general

techniques for achieving them. Specifically, Zero-Knowledge Proof systems (§2.3)—

originally introduced by Goldwasser et al. [68]— provide a general cryptographic

technique that would allow a party to disclose the output of a function to another

untrusted party without disclosing additional information, such as the data inputs to

the function. In the process, the party that receives the output of the function obtains

proof with strong guarantees that the function was correctly computed. Differential

privacy (§2.4), originally introduced by Dwork et al. [51, 43, 52] provides a clean

framework for quantifying privacy. This dissertation is concerned with ways to achieve

this notion of privacy in a distributed setting. Distributed techniques to achieve

differential privacy were first introduced by Dwork et al. [50] and shortly thereafter

developed by others, including Rastogi et al. [123], Shi et al. [140] and Chen et al. [37].

The broader term privacy-aware is used to describe system aspects that contribute

to the goal of preventing information disclosure. For example, the networking stack

BAT (Chapter 5), provides secrecy and integrity, and while these properties them-

selves do not preserve privacy per se, this secure channel plays an important role in

implementing a privacy-preserving system.

2.3 Zero-Knowledge Proof Systems

Zero-Knowledge Proof (ZKP) systems [69] were originally developed as challenge-

response protocols that allow a prover to demonstrate the knowledge of a secret to a

verifier, without revealing any partial information that would help the verifier infer

the secret, other than the fact that the prover knows the secret. These protocols

relied on interactive verifications in which the verifier presents a series of challenges

to the prover that can easily be responded to when the prover knows the secret,
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but are extremely difficult to respond to reliably without knowledge of the secret ;

as the number of consecutive challenges increases, the probability of answering these

challenges without knowing the secret decreases exponentially. Zero-Knowledge Proof

Systems can be made non-interactive, for example by using the well known Fiat-

Shamir heuristic [59].

Chapter 4 builds on ZKP systems to implement a privacy-preserving billing scheme

with time-of-use based tariffs for smart electricity metering making use of commit-

ments and Camenisch-Lysyanskaya signatures. In that setting, a customer fitted with

a smart meter proves to a utility provider the amount to be paid for their electricity

consumption within a specific time period, without revealing any details about their

fine-grained consumption. The bill is calculated on the basis of detailed readings,

every half hour or fifteen minutes, that are each billed according to the dynamic price

of electricity at that time, or a pre-defined but time variable tariff scheme. These

protocols are applicable when consumers do not trust the utility with their detailed

electricity usage information, and the utility does not rely on consumers to honestly

report their usage.

2.3.1 Cryptographic Commitments

Commitment schemes are cryptographic primitives that enable a party to create

the digital equivalent of an envelope for a secret. Commitments support two impor-

tant properties: hiding protects the secrecy of the committed message, and binding

ensures it can only be opened to the committed message.

Pedersen commitments [120] are information-theoretically hiding and binding un-

der the discrete logarithm assumption. They rely on a set of global parameters,

namely a group G of prime order p with generators g and h. Under that scheme a

commitment C to message r ∈ Zp is computed as C = grho where o is an opening

nonce chosen uniformly at random in Zp. Opening a commitment C involves disclos-
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ing the values r and o to a verifier. In addition to opening the commitment, efficient

protocols exist for a prover to convince a verifier that they know the committed value

without disclosing it.

Fujisaki-Okamoto commitments [61] are similar to Pedersen commitments, except

that they make use of a group of composite, hidden order instead of a group of prime

order. They allow the committed value to be any integer, including negative integers.

Pedersen or Fujisaki-Okamoto commitments can be used depending on whether a

device needs to encode negative values or not.

2.3.2 Camenisch-Lysyanskaya Signatures

Digital signatures allow a party to show the authenticity or integrity of a message

or document. Different signature schemes may be used to achieve different secu-

rity properties. A standard signature scheme, such as DSA, can be used to ensure

the integrity of any further statement proved on the basis of previous measurements

(e.g. meter readings). When a device is not trusted, a signature scheme such as

Camenisch-Lysyanskaya (CL) signatures [28] can be used to sign messages or docu-

ments individually. For example in the case of time-of-use billing, a meter periodically

commits to meter readings. Those commitments are signed and the customer can use

the signature to prove functions of the bill to a verifier.

CL-signatures allow a requesting party to obtain a digital signature on a commit-

ment from an authorized signer. In particular, Camenisch and Lysyanskaya [28] pro-

vide efficient protocols for computing a signature on a commitment message, as well

as for constructing zero-knowledge proofs of knowledge of a signature on a committed

or encrypted message. Note that there are two digital signature schemes attributed

to Camenisch and Lysyanskaya; their earlier scheme [27] relies on the Strong RSA

assumption, while the later scheme relies on a discrete-logarithm-based assumption
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(the LRSW assumption) [99]. CL-signatures [28] can be implemented using elliptic

curve groups, as long as there is an efficient bilinear map that is non-degenerate.

We describe the key generation function, the signing function and the signature

verification function for CL-signatures using the notation in [129]:

1. CLKeyGen(1k). Given a security parameter k, and the number of block mes-

sages to sign n, the signer generates the first part of their public key: (p,G,H, g, h, e),

such that there is a mapping e : G×G→ H, which is bilinear, non-degenerate

and efficient to compute. The signer then chooses the following parameters for

their private key: x, y, z1, . . . , zn ∈R Zp. Next, the signer uses these parameters

to compute X = gx, Y = gy and Zi = gzi for all i ∈ [1, n]. The public key is

pubkey = (p,G,H, g, h, e,X, Y, {Zi}, {Wi}), and the secret key is the public key

concatenated with (x, y, {zi}).

2. CLSign((x, y, {zi}), {mi}). To sign n blocks {mi}, the signer first chooses a ∈R

G, and computes b = ay. The signer then computes Ai = azi and Bi = (Ai)
y

for all i ∈ [2, n]. Finally, the signer computes σ = ax+xym1
∏n

i=2A
xymi

i . The

signature is sig = (a, {Ai}, b, {Bi}, σ).

3. CLV erifySign(pubkey, {mi}, sig). The verifier performs the following compu-

tations and outputs accept if the following equalities hold: e(a, Y ) = e(g, b);

e(a, Zi) = e(g, Ai),∀i ∈ [1, n]; e(Ai, Y ) = e(g,Bi),∀i ∈ [1, n]; and e(g, σ) =

e(X, a) · e(X, b)m1 ·
∏n

i=2 e(X,Bi)mi.

2.4 Distributed Differential Privacy

Rastogi et al. [124] classify the mechanisms to provide privacy to databases de-

pending on where they are implemented in the lifecycle of the data, from the point

the data is collected to the point some data is presented to an analyst. This classifica-

tion is illustrated in Figure 2.2. The data can be subject to local perturbation where
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individuals trust no one but themselves; alternatively in data publishing, data can

be aggregated by a trusted entity which then transforms the dataset into a different

dataset in a way that it preserves some characteristics of the original dataset while

providing privacy to individuals. Finally, data may be aggregated by a trusted entity

and analysts are only allowed to perform queries. A query processor will compute

the correct answer to the query and will add noise to it according to the sensitivity

of the query.

This last mechanism, known as output perturbation, allows for the implementation

of querying systems that provide differential privacy. This notion of privacy, originally

introduced by Dwork et al. [51, 43, 52] provides a clean definition that allows for the

quantification of loss of privacy in statistical databases in a way that is independent

of the additional information that an adversary may possess.

... Trusted
Aggregator

a. Local 
Perturbation

Query
Processor Analyst

b. Data 
Publishing

c. Output 
Perturbation

Individuals

Figure 2.2. Techniques to provide privacy, implemented at different times in the
lifecycle of the data, from the point the data is collected to the point some data is
presented to an analyst

2.4.1 Differential Privacy with a Trusted Aggregator

Differential privacy is a concept originally developed in the context of statistical

databases, which can be thought of as a way to prevent a query—from an analyst

that does not have direct access to the database— from revealing whether or not
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a particular record was used in the computation of the answer to that query. One

way of providing answers to queries to satisfy this notion of privacy is via an output

perturbation mechanism as illustrated in Figure 2.2.

A formal definition of this notion is below, as well as a description of a general

technique for achieving it. Related work provides ways to eliminate the requirement

of a trusted aggregator (§2.4.2).

Formally, a computation F on a set of datasets D provides (ε, δ)-differential pri-

vacy if for each pair of datasets D1, D2 ∈ D that differ by at most one record and for

all the outputs in S ⊂ Range(F), the following inequality is satisfied:

Pr[F(D1) ∈ S] ≤ exp(ε) · Pr[F(D2) ∈ S] + δ

Intuitively, this means that the output of the computation is independent of the

inclusion of a particular record, for most records. The parameter ε provides a way

to trade privacy with accuracy, and the parameter δ provides a way to relax the

condition for which achieving (ε, 0) is difficult.

A general mechanism for providing differential privacy to certain kinds of queries

on a dataset is to allow a trusted aggregator to first compute an exact answer to a

query and then add noise drawn from a Laplace or Geometric distribution according

to the sensitivity of the query. As some research has pointed out, it is possible to

combine this approach with a cryptographic solution in order to eliminate the need

for a trusted aggregator. Logically, this is illustrated by Figure 2.3.

2.4.2 Differential Privacy with an Untrusted Aggregator

Several authors have provided cryptographic solutions to eliminate the need for

a trusted aggregator in the process of adding noise after an exact answer to a query

has been calculated [50, 123, 140, 37]. The general idea behind these approaches

is to allow participants to collectively generate the noise to be added to the answer
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while providing partial sub aggregates for that query that when combined output the

answer to the query.
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Figure 2.3. Slight modification to the general collaboration model in which a device
or entity may be selected to aggregate without being trusted.

For example, it is known that with the use of homomorphic encryption, a set

of parties can compute an exact counting query in such a way that each participant

provides an encrypted subtotal to the counting query; adding the encrypted subtotals

will give the ciphertext corresponding to the total counting query. Thus, decrypting

this value would allow for the computation of the total without revealing the indi-

vidual contributions. Of course, this does not provide differential privacy. However,

if instead of asking that each individual return an exact subtotal, each returned a

subtotal plus a small amount of noise, such that the total noise added is drawn from

a Geometric distribution, then the final answer will be the actual answer to the query

plus some noise, just as when a trusted aggregator is used. In this case however, the

individual parts are not revealed until all the contributions are combined.

Actual solutions proposed in the literature are more complex in order to provide

fault tolerance [33] or improve scalability and practicality [37]. Another system that
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uses a distributed approach of a sort is GUPT [104], however, the main purpose of

this system is to maximize the utility of a computation.

2.5 Secrecy and Integrity for Networking

A communication channel that provides secrecy and integrity is an important com-

ponent for creating a distributed system for privacy-aware collaboration. Throughout

this dissertation, it will be required that data from each individual device travels en-

crypted from one place to another to ensure that eavesdroppers are not able to infer

the values that each reports during the computation of an aggregate. Also, some ap-

plications may require an additional mechanism to ensure that data is not tampered

with during travel and that messages come from a verifiable location. This last fea-

ture does not necessarily compromise privacy because one may be able to verify that

a given message came from a particular individual, without seeing what it contains,

e.g. because the payload of the message is encrypted.

We should note that security analyses typically concern confidentiality, integrity,

and availability [20]. However, this dissertation is not primarily focused on ensuring

availability because the devices in question—particularly the RFID-scale devices—

are such that it is relatively simple to jam a channel so that a device can no longer

communicate. Thus, that problem is beyond the scope of this dissertation.

2.5.1 Symmetric Key Primitives

When a pair of individuals share a symmetric key, they can typically communi-

cate more efficiently because the functions to encrypt and decrypt are faster than

their public key counterparts. In fact, the implementations described in Chapters 4

and 5 both use the AES symmetric block cipher to encrypt and decrypt data because

software implementations are fast, and some low-cost and ultra-low-power micro-

controllers implement this cipher in hardware. However, as will be more explicit
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in each of the applications described in this dissertation, the successful utilization

of this block cipher requires that two parties share a key. In that case, keys can

be generated by utilizing key agreements such as the Diffie-Hellman key exchange

or an identity-based encryption key agreement scheme, for example. The latter of-

fers some attractive benefits, including the possibility of generating shared keys in a

non-interactive fashion (§2.5.3).

2.5.2 Public Key Primitives

Identity-Based Encryption provides a useful technique that simplifies the task of

computing pairwise keys to allow devices to establish encrypted pairwise communi-

cation links with other devices. Devices may compute these pairwise keys on demand

without needing to know potential recipients beforehand. In principle, a device may

not know how many other devices are or will be in a network—or even which devices

it will need to communicate with in the future.

An approach with pre-shared encryption keys has several limitations, such as key

revocation, key expiration and an inability to specify recipients. Therefore a public

key encryption scheme is highly desirable in this setting. Identity-based key exchange

offers several advantages over more traditional key exchange methods, like the Diffie-

Hellman key exchange. For instance, the Diffie-Hellman key exchange is particularly

vulnerable to man-in-the-middle attacks, unless a third party authenticates protocol

participants. This limitation is usually addressed by the addition of a Certificate

Authority (CA), but key-management is difficult in CA-based systems [58].

2.5.3 Identity-Based Encryption

Identity-based key agreement schemes allow for the creation of private key/public

key pairs, such that the public key is any string and the corresponding private key

can only be granted by a trusted entity—a private-key generator (PKG). Thus, for

example, it would be easy for a device to encrypt a message so that only another
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device with serial number x could obtain the corresponding decrypting private key

from the PKG. Additionally, the sender device may be able to append an expiration

to the public key.

Sakai, Ohgishi and Kasahara [132] proposed a non-interactive identity-based key

exchange protocol similar in spirit to the Diffie-Hellman key exchange protocol. How-

ever, Sakai, Ohgishi and Kasahara use a pairing on an elliptic curve. A symmetric

pairing is a non-degenerate bilinear map e : G × G → GT that takes two elements

from a cyclic elliptic curve group G and returns an element in another group GT .

The bilinear property implies that

e(P1 + P2, Q) = e(P1, Q) · e(P2, Q)

and

e(P,Q1 +Q2) = e(P,Q1) · e(P,Q2),

for all elements of G. Also, e(aP,Q) = e(P, aQ) = e(P,Q)a.

Thus, given the symmetric pairing e as above, where G = 〈P 〉, and two hash

functions H1 : {0, 1}∗ → G; H2 : GT → {0, 1}n, the setup, key extraction and

key agreement functions for the Sakai, Ohgishi and Kasahara key exchange can be

described as follows:

Setup: A private-key generator (PKG) chooses a secret master key s uniformly

at random from Zp; and sets R = sP as the public key together with the public

parameters, including H1 and H2.

Key extraction: The PKG will compute the private key of a device A as dA =

sQA, where QA is a hash of A’s id QA = H1(idA).

Key agreement: Two devices A and B would create a shared key if they

know each other’s identity strings idA and idB. That is, A would compute KA =
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H2(e(dA, QB)) and B would compute KB = H2(e(dB, QA)). Note that KA = KB

because

H2(e(dA, QB)) = H2(e(sQA, QB))

and

H2(e(sQA, QB)) = H2(e(QA, QB)s);

similarly,

H2(e(dB, QA)) = H2(e(QB, QA)s).

Therefore the equality KA = KB follows directly from the symmetry of e.

This identity-based key exchange offers a simple way of generating shared keys

in a non-interactive manner without the need of a certification authority. There

are more efficient pairing based key agreements—some of them trading efficiency at

the cost of a small interaction, such as the Smart-Chen-Kudla key agreement [36].

Also, it is important to note that the SOK key exchange uses a so-called Type-1

pairing [62]. In general however, it is possible to implement pairing-based protocols

more efficiently using a more general definition of a pairing. That is, given a bilinear

map e : G1 × G2 → GT , where G1 and G2 are cyclic elliptic curve groups and GT is

a cyclic subgroup of the multiplicative group of a finite field of the same order as G1

and G2, a Type-1 pairing is a pairing where G1 = G2. While Type-1 pairings offer the

simplest way to describe a pairing-based cryptosystem, they are often not the most

efficient to implement. A Type-3 pairing is a pairing where there are no efficiently

computable homomorphisms between G1 and G2. The most efficient known pairings

to compute are Type-3. While Type-1 pairings are simpler to design cryptosystems,

Chaterjee and Menezes [34] provide a natural transformation of a Type-1 protocol to

a Type-3 protocol. Chapter 5 discusses further details and performance implications

of using different protocols and primitives in the context of RFID-scale networking.
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CHAPTER 3

PRIVACY ISSUES OF SMART METERING

This chapter shows that even without detailed knowledge of appliance signatures

a priori or prior training, it is possible to extract complex usage patterns from smart

meter data using off-the-shelf statistical methods. The methods outlined in this

chapter are able to label specific types of activity in the home over time based on a

number of characteristics, including the level of power consumption, its intermittency,

and its duration [108].1

Issues of privacy involving smart meter data are becoming increasingly important

due to the widespread deployment of smart meters, which collect and send data to a

centralized location. This model has serious privacy implications since the aggregator

inadvertently gains detailed information about household activities. The current

practice for achieving privacy is simply trusting this aggregator—usually the utility

provider—to protect information from others and respect the privacy of individuals.

In a Facebook-world where users willingly share invasive details of their private lives

with friends and strangers, the ability to extract this information may not appear to

be an egregious violation of privacy. However, with a relatively small amount of data,

it is possible to infer detailed information about household activity—questions such

as how many people are in a home at a given time and whether a resident went out

for dinner on a particular evening, for example.

1This section draws from previously published work: “Private Memoirs of a Smart Meter” by A.
Molina-Markham, P. Shenoy, K. Fu, E. Cecchet, and D. Irwin. In 2nd ACM Workshop on Embedded
Sensing Systems for Energy-Efficiency in Buildings. November 2010.
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Research on nonintrusive load monitoring (NILM) has shown that it is possible to

disambiguate individual appliance usage from an aggregate smart meter power trace

by using prior knowledge of an appliance’s power signature [97]. Such techniques

reduce or eliminate the need for outlet- or appliance-level meters, since they are able

to extract detailed usage information for individual appliances from an aggregate

household power trace. The approach in this chapter shows that prior knowledge is

not required in order to correlate power traces with user activity. Entities that gather

large amounts of data would potentially be able to predict even more detailed facts,

such as residents’ genders and ages. Such information is a foundation for building

powerful analytic tools for predicting behavior that could potentially be misused by

companies or even criminals.

The ability to correlate power segments to human activity increases with the gran-

ularity of the measurements. Therefore this work provides a basis to support the idea

that the data that is reported directly to analysts should have a coarse granularity.

Even if dynamic pricing requires high granularity measurements for calculating a bill,

only information at coarse granularities should be shared with utilities.

Contribution

The work in this chapter is the first to demonstrate that it is possible to identify

power segments without prior knowledge using off-the-shelf statistical techniques. An

analysis of power traces at fine granularity demonstrates potential privacy leakage by

smart meters. Sending power traces with resolution of a few seconds to utility com-

panies would enable them to answer specific questions about individuals’ activities.

While other research on nonintrusive load monitoring has depended on prior knowl-

edge of a business, residence, or set of appliances, this chapter shows that as the

granularity of measurements of a smart meter increases, the need for prior knowledge

to infer information decreases.
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3.1 Smart Metering

Recently, there has been an increasing focus on “greening the home” using a

combination of fine-grained power consumption monitoring, smart appliances, and

renewable energy sources, e.g., rooftop solar panels. The trends have led to the

design of smart electric grids that provide support for various technologies, including

net metering, demand response, distributed generation, and microgrids [94]. An

important component of a future smart grid is the installation of smart (or net)

meters in homes that support both dynamic pricing and a two-way flow of electricity

between homes (or microgrids) and the larger grid. As these meters become more

sophisticated, they are able to measure household power consumption at ever finer

time-scales. Initial deployments of the Advanced Metering Infrastructure (AMI) in

Ontario, Canada support meter readings at 5 to 60 minute intervals [31]. The next

generation of smart meters will reduce these time intervals to one minute or less. For

instance, in July 2010, PECO, one of the largest providers of electricity and gas in

the U.S., selected Sensus to provide an AMI with meters that support one minute

intervals [139] such as the one illustrated in Figure 3.1.

Figure 3.1. Smart meter installed in the state of Pennsylvania in 2012.
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3.2 Dynamic Pricing and Optimizing Distribution

One of the motivations for smart meters is the possibility of implementing dynamic

pricing schemes that provide incentives for consumers to use electricity at times when

the demand is lower. This would result in a significant reduction in infrastructure

over-provisioning, which has been the main approach for dealing with peak demands.

Additionally, utility companies envision that this consumer feedback would allow for

better handling of temporary surpluses and enable collaboration with users to stop

or minimize consumption when the grid is overloaded.

Another goal of implementing smart meters is the ability to collect information

that would allow utilities to perform mid- and long-term planning. For example,

utility companies would benefit from knowing the consumption trends of populations,

such as whether more electric cars are being charged or neighborhoods are switching

to more energy-efficient appliances.

3.3 Implications of Privacy Leakage through Smart Metering

Recent work by Quinn [122] provides an overview of the privacy implications of

fine-grained power consumption monitoring. While Quinn does not present specific

techniques or conduct a detailed data analysis, he posits that those with access to

smart meter data will be able to infer answers to many questions about a house-

hold’s personal, and potentially private, activity. While the answers to some of these

questions may seem innocuous, e.g., when do people watch TV, others are quite dis-

turbing, e.g., is there a newborn in the house. Table 3.1 highlights a few of these

private questions, along with the power consumption pattern that may reveal their

answer. The table also lists the monitoring granularity we believe a smart meter

requires to accurately identify the necessary pattern. For instance, a relatively low

level of power consumption and variation may indicate that no one is home, while

power activity every few hours throughout every night may indicate regular nighttime
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Question Pattern Granularity

Were you home during
your sick leave?

Yes: Power activities during the day Hour/Minute
No: Low power usage during the
day

Did you get a good
night’s sleep?

Yes: No power events overnight for
at least 6 hours

Hour/Minute

No: Random power events
overnight

Did you watch the game
last night?

Yes: Appliance activity matching
TV program

Minute/Second

No: No power event in accordance
with game showtime

Did you leave late for
work?

Yes: Last power event time later
than Google maps estimated travel
time

Minute

No: Last power event time leaves
enough time for commute

Did you leave your child
home alone?

Yes: Single person activity pattern Minute/Second
No: Simultaneous power events in
distinct areas of the house

Do you eat hot or cold
breakfast?

Hot: Burst of power events in
the morning (microwave/coffee ma-
chine/toaster)

Second

Cold: No power event matching hot
breakfast appliances

Table 3.1. Private questions and answers that fine-grained power consumption data
reveals.

feedings for a newborn. Even answers to seemingly innocuous questions may prove

valuable to third-parties, e.g. for adjusting insurance rates, targeting advertising

campaigns, resolving legal disputes, or conducting criminal investigations.

3.4 Methodology to Estimate Privacy Leakage

Revealing complex usage patterns is not difficult with an approach that opaquely

labels different types of household activity. This approach leverages simple off-the-shelf

clustering and pattern recognition techniques on 2 months of power consumption data

from 3 homes. To gather the data, each home’s main circuit breaker is instrumented
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Figure 3.2. Architecture using a TED monitor as a smart meter.

with a TED energy monitor [8] that logs household power consumption every second.

Figure 3.2 graphically depicts the architecture. The TED monitor uses the home’s

power circuits to transmit power readings to a TED gateway that makes them avail-

able via a built-in web browser. An embedded SheevaPlug computer in each home

downloads second-level data each hour from the TED gateway and transmits it to a

central repository for analysis. Each entry in the TED data log consists of a power

tuple (t, p) that includes a timestamp t and the average power consumption p in kilo-

watts over the previous second. The one-second logging granularity is smaller than

that of existing smart meters [9], which allows for the identification of many patterns

that are not possible with current meters.

This analysis consists of four steps: 1) pre-process power traces using an off-the-

shelf clustering algorithm to identify and label similar types of power events, 2) tag

each power event with one or more defining characteristics, 3) filter out automated

appliances by observing their signatures during periods of low power activity, and

4) map opaque labels to real-life events using a small amount of externally gathered

knowledge.
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Figure 3.3. Example day-long second-level power trace with labels from the day’s
activity log.
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Figure 3.4. Identification of human presence with high probability for each day of
the month.
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3.5 Results

Label Power Events. First each power trace is pre-processed using a density-

based clustering algorithm (DBSCAN [56] as implemented by WEKA [74]) to group

together power tuples into power segments. A power segment is simply a collection

of tuples with a particular pattern of power consumption values that are adjacent in

time. Power segments often have a constant power consumption over a given time

period, although this is not required. In some cases, events of the same shape are

identified, such as a steep ramp-up and then leveling off. The algorithm labels the

power segments such that segments with a similar pattern receive the same label.

In many figures, these labels are distinguished using different colors. DBSCAN was

chosen because of its simplicity. There are other potentially more sophisticated,

algorithms, such as CLIQUE [12], MAFIA [65], DENCLUE [76]. However, even this

simple approach is able to detect household activities with high accuracy.

      2010-05-15 2010-05-21 2010-05-27 2010-06-02 2010-06-08 2010-06-14 2010-06-20 2010-06-26 2010-07-02 2010-07-08 2010-07-14

160,000

0

20,000

40,000

60,000

80,000

100,000

120,000

140,000

Time (Days)

Po
w

er
 U

sa
ge

 (K
W

h)

Unusual Events
Regular Events
Complete Absence
Partial Absence

Figure 3.5. Low power periods correspond to little human activity over a two-month
trace for one home.
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Tag Power Events. Each power segment is appended with a few distinguishing

attributes. The primary attributes are each power segment’s duration and its power

step, i.e, the power increase or decrease at the beginning of the segment. Power

segments are also labeled with a particular shape if the power level was not constant.

In this case, non-constant shapes are identified and labeled manually, although it is

possible to automate the process. The result is a 6-tuple that includes the segment’s

label, start time, average power, duration, beginning power step, and shape label.

These 6-tuples can be automatically processed to answer different types of queries on

the data. For example, repetitive usage patterns are identified by filtering for power

segments with the same duration, beginning power step, and shape. Figure 3.3 shows

power segments (appended with labels from our activity logs) in a typical day for one

of the homes. In this figure, a high variation in color corresponds to human activity,

e.g., periods between 8:00 AM - 9:30 AM and 6:30 PM - midnight. Using the intuitive

observation that relatively high power consumption and variation indicates human

activity, Figure 3.4 reveals when people were in one of the homes over the course of

a month with weekends highlighted.

Filter Automated Appliances. Figure 3.3 also demonstrates that while nearly all

human-triggered power events correspond to the beginning of a power segment, there

are many segments that do not correspond to any human interaction. To obtain only

power segments associated with human activity, the power signatures of automated

appliances, such as refrigerators, heating or air conditioning, are filtered out. The

intuitive observation that periods of low power activity correlate well with periods

of little human activity is leveraged to isolate signatures. Figure 3.5 illustrates this

point, identifying periods of low activity in a home over the 60-day trace. Likewise,

periods of high activity correlate with more people being inside the home, i.e., for

a get-together or party. Figure 3.6 shows power signatures for appliances during an

absence from the home. In this case, the signatures correspond to a dehumidifier that
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Time (Hours) vs Power Usage (kW)

Figure 3.6. Power signatures for a dehumidifier and an air re-circulator. Note that
the dehumidifier shuts off after it fills up.

runs for 2 hours every 4 hours, and an air re-circulator that runs for 20 minutes every

hour.

Map Events to Real Life. After collecting and analyzing a sufficient amount

of data, it is possible to identify patterns of recurring clusters according to their

characteristics. Powerful data mining techniques could be applied to the obtained

power segments. For example, the grouped power segments shown in Figure 3.6 could

be filtered out automatically by entering them in a clustering algorithm, this time in

supervised mode. Alternatively, tagged power segments could also be classified and

matched to future occurrences. Further, pattern matching can be improved and past

instances can be re-analyzed when new appliances are disambiguated. To illustrate

this, Figure 3.7 shows in detail the disambiguation of power segments (identified

by different colors). In this case, clustering distinguishes opaque events but not

specific appliances or activities. An entity that had access to large amounts of data

could then classify these events based on prior knowledge. In this case, knowledge

from activity journals is utilized. Each home manually kept detailed power activity
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Figure 3.7. Power segments from eating breakfast. The clustering algorithm auto-
matically generates the color scheme. The labels are from the activity logs.
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Figure 3.8. Example of the power segments from taking a shower, including labels
from our activity logs.
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Figure 3.9. An example of the same power segments from Figure 3.7, but at a 30
second logging granularity.

journals for at least 3 days over the 60 day period to provide some knowledge of

activities in the home. These journals were as accurate as possible, and recorded

rough timestamps for turning on and off every light switch and appliance throughout

the day. Using the data from these activity journals, the opaque power segments are

mapped to specific types of real-life events. The segments in Figure 3.7 that were

identified by the clustering algorithm have been marked with arrows corresponding

to activities logged by the individuals living in the home. The clustering algorithm

finds power segments for the stove, coffee maker, toaster and two computer screens,

which is enough to answer the question in Table 3.1 about whether a person had a

hot or cold breakfast that morning. Note that the algorithm is able to delimit these

segments despite the simultaneous operation of other appliances. To demonstrate the

importance of the logging granularity, Figure 3.9 shows the same trace as Figure 3.7,
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but with a 30-second logging granularity. In this case, the pattern reveals little about

the usage of each separate component.

3.6 Conclusion

This chapter highlights the issue of privacy in smart metering. A simple approach

to label usage patterns using off-the-shelf statistical techniques illustrates the po-

tentially private information that can be learned from power traces, such as when

occupants are home, the number of occupants in a household, and their eating and

sleeping patterns. Questions such as: Did you leave your child home alone? or Did

you get a good nights sleep? can be answered by analyzing these traces. As the gran-

ularity of the measurements increases, the capability of obtaining more information

will grow, especially when a centralized entity has access to data from thousands or

millions of households.
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CHAPTER 4

PRIVACY-PRESERVING SMART METERING WITH
LOW-COST MICROCONTROLLERS

This chapter discusses a solution for implementing a privacy-preserving smart

meter architecture that enables an electric utility to achieve its net metering goals,

while respecting the privacy of its consumers. The approach leverages the notion

of Zero-Knowledge proofs and provides cryptographic guarantees for the integrity,

authenticity, and correctness of payments, while allowing variable pricing without

revealing the power measurements gathered during a billing period.

A key impediment to the widespread adoption of privacy-preserving billing pro-

tocols is the computational and memory constraints of smart meters, which, due to

cost, size, and power considerations, typically use embedded microcontrollers. Prior

work does not measure these resource constraints, and, thus, implicitly assumes that

meters are capable of executing protocols in a reasonable amount of time. This chap-

ter1 explores the economic feasibility of implementing the cryptographic techniques

required for privacy-preserving smart metering and proposes a general methodology

for evaluating the cost of a solution [107]. This analysis takes into account current

smart meter deployments and looks at the hardware technologies utilities are adopting

over both the short- and long-term. The focus is on implementing cryptographic tech-

niques on smart meters such as those proposed by Rial et al. [126], Molina-Markham

1This chapter draws from previously published work: “Designing Privacy-preserving Smart Me-
ters with Low-cost Microcontrollers” by A. Molina-Markham, G. Danezis, K. Fu, P. Shenoy, and D.
Irwin. In Proceedings of the 16th International Conference on Financial Cryptography and Data
Security. February 2012.
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et al. [108], Kursawe et al. [92] and Jawurek et al. [82]. However, this methodology

also applies to estimating the cost of similar metering systems that require privacy,

including natural gas, water, and toll roads, such as the one proposed by Balasch et

al. [14].

Contributions

The contributions of this chapter are:

System. This chapter describes the results of designing and implementing a privacy-

friendly smart meter using low-cost microcontrollers from both the Texas Instruments

MSP430 and the ARM families. It presents the first experimental results that actu-

ally measure the performance of a Camenisch-Lysyanskaya [28] (CL) based scheme

using elliptic curves in constrained environments. Previous work [126] discusses and

estimates, but does not include implementation results. The most comparable real-

ization of a CL based scheme uses a Java Card [18] and does not include an elliptic

curve version.

Cost Evaluation. This chapter outlines a cost evaluation strategy for implement-

ing privacy-preserving smart meters that accounts for the special characteristics of

low-cost microcontrollers and industry trends. In particular, it lists a set of system

variables that designers may modify to balance security, privacy, and cost. This is the

first discussion of the issues surrounding ultra-low-power implementations, which in

some applications may make the difference between a meter that requires a battery

replacement every few years versus every few days.

Feasibility Analysis. This chapter presents evidence to support the hypothesis

that ZKP billing protocols are feasible on current deployments of smart meters and

cost effective on deployments over both the short- and long-term. Because some

smart meters can be remotely updated, it is plausible that a deployment may be

implemented in one of these updates. In the long-term, these experimental results
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may help system designers to assess the performance and cost benefits of utilizing

elliptic curve primitives. This analysis takes into account the evolution of the storage

and computational capabilities of low-cost microcontrollers and contrasts it to the

evolution of personal computer processors.

4.1 A Zero-Knowledge Proof System for Billing

The study in this chapter focuses on the efficient implementation of the meter

cryptographic components for the Rial and Danezis [126] privacy preserving smart

metering protocols. Proposals by [82] can be adapted to use the same meter compo-

nents.

We illustrate the protocol with an example that includes three principals, as de-

picted in Figure 4.1: the smart meter, the prover, and the verifier. The smart meter

first measures and certifies consumer electricity readings, and then communicates

them to the prover using a secure channel. The prover, a consumer-owned device,

computes a bill along with a non-interactive ZKP that ensures the bill’s validity. The

prover sends the bill and the proof to the utility company, which verifies the bill’s

correctness before accepting it. Below, we describe in detail the computations the

meter has to perform, and provide a brief outline of the protocols between the prover

and the verifier.
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Figure 4.1. Architecture of the privacy-preserving smart metering system. A smart
meter, in addition to its metrologic unit, has a microcontroller capable of encrypt-
ing and certifying its readings. The meter also has a wireless transceiver used to
send encrypted readings to the consumer’s device. The consumer uses the informa-
tion from the meter for consumption planning, and in the computation of bills and
corresponding proofs.

Smart Meter Computations. To support privacy protocols, smart meters need to

perform the following computations: sensing and measuring electricity usage, deriving

session keys, certifying and encrypting readings, and finally transmitting readings to

the consumer.

Sensing and measuring electricity. The meter’s primary function is sensing and mea-

suring electricity usage. Thus, other computations must not interfere with this funda-

mental task. We denote ∆t as the measurement interval, such that duration between

meter readings ti+1 − ti = ∆t.

Deriving session keys. The protocol encrypts readings using a symmetric encryption

algorithm before passing them to the user. To ensure the encrypted reading’s secrecy,

each reading is encrypted with a distinct session key. For every ti the meter encrypts

reading ri using key Ki = H0(K, ti), where H0 is a secure hash function and K is a

master symmetric key known by the consumer. Additionally, the meter derives from

the master key an opening value for the commitment oi = H1(K, ti) where H1 is a

hash function.

Certification and encryption. After deriving Ki and oi, the meter both encrypts the

reading ri using Ki and computes a commitment ci for the reading. More formally,
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the meter generates an encrypted reading Eri = E(Ki, ri) using a symmetric encryp-

tion algorithm, and a commitment ci = gri · hoi using globally known constants g, h,

and their group. The protocol also requires the meter to generate cryptographic sig-

natures for each commitment ci. To reduce the necessary computations, the protocol

computes batch signatures Sigj for multiple commitments ci, ci+1, . . . , ci+k.

Network transmission. After the meter encrypts readings and computes batches of

signatures, it transmits the batches to the consumer’s device (the prover) via the local

network. More formally, for each batch j, the meter transmits the following tuples

to the consumer: {{ti}j, {Eri}j, Sigj}. The commitments need not be transmitted,

which keeps the overheads of the protocol low.

Consumer Prover Computations. The prover computes the bill’s payment and

its corresponding proof of correctness. First, the prover derives the session keys

Ki = H0(K, ti) on the basis of times ti and the master key K; decrypts the readings

ri from Eri = E(Ki, ri), and derives the opening values from each commitment as

oi = H1(K, ti). Then all commitments to readings can be reconstructed as ci =

gri · hoi using the public parameters of the commitment scheme and the recovered

readings and openings. Finally, a batch of commitments are accepted as authentic

after checking the signature Sigj. This ensures that the received encrypted readings

have not been tampered with. After the readings and their signed commitments are

available, an arbitrary billing function can be applied to each reading (or aggregates

of readings) to establish the final bill. The prover calculates a ZKP of correctness

and provides it to the verifier.

The details of those computations, and families of functions that can be prac-

tically proved and verified in zero-knowledge are provided in [126] along with the

detailed security proofs for the protocol. To summarize, fine-grained meter readings

are only available to the consumer, while simultaneously allowing the consumer to

self-calculate their bill and ensuring the utility that the consumer has not manipu-
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lated or under-reported the payment. Thus, the utility has a guarantee over each

bill’s authenticity, and the consumer has a guarantee over their data’s privacy. To re-

solve disputes, the meter may optionally store readings and decryption keys to permit

audits by a trusted third party.

4.2 Background on Microcontrollers

The computational capabilities of low-cost and ultra-low-power microcontrollers

have not developed at the same pace as high-performance microprocessors employed

in servers and personal computers. System designers should, therefore, use different

means to evaluate the economic feasibility of a cryptographic solution in the low-cost

spectrum of embedded devices. This section presents the set of design variables of the

various implementations considered in this chapter with the purpose of illustrating

their effects on performance and cost.

Moore’s law predicted that the number of transistors placed in an integrated cir-

cuit would double approximately every two years. This prediction, however, does

not directly address two issues that are pertinent to microcontrollers. First, the pro-

duction costs associated with maintaining this trend have not remained constant.

Second, with the addition of more transistors, the problem of efficient power man-

agement has significantly increased [47]. As a consequence, microcontrollers that are

often constrained by production costs and power budgets have not increased their

computational capabilities at the same rate as microprocessors for servers and per-

sonal computers. Figure 4.2 illustrates this by showing the evolution in processing

capabilities across different technologies.

4.3 Anatomy of a Smart Meter

Figure 4.3 shows the schematics of a smart meter. In general, they are equipped

with an analog front end, which is part of the metrologic unit used to convert the
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Figure 4.2. This graph provides a visual representation of performance improve-
ments as seen across a few popular architectures. The trends in microprocessors
targeting desktop computers and servers, as well as the performance improvements
observed in ARM application microprocessors have followed exponential curves. How-
ever, the performance improvements observed in embedded ARM microprocessors and
MSP430 microcontrollers have followed linear curves [10, 35, 80]. Note that a com-
parison based on microprocessors using millions of instructions per second does not
capture all qualities of a microprocessor, but it helps to illustrate general trends.
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data coming from the load sensors and preprocess the measurements before they are

passed to the microcontroller unit. The microcontroller unit handles this stream of

data as well as the general functionality of storing the data in flash memory, and

driving an LCD screen. More modern microcontrollers replace the analog front end

with an integrated embedded signal processor. Current deployments of smart meters

use microcontrollers that run at clock speeds ranging from 8-25 MHz and have storage

ranging from 32-256 KB [116].

MCU
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Figure 4.3. Main components of a smart meter. On the left: A simple meter
with a single microcontroller unit (MCU) that controls the metrologic unit, storage
and communication interfaces. On the right: A smart meter that replaces the analog
front end with an embedded signal processor (ESP) and has an additional application
processor that controls communication, OS, power monitoring, and analytics.

4.4 Meter Design Variables

Below is the set of design variables that are considered in the implementations.

Some of these design variables correspond to features, such as qualitative privacy or

security guarantees, e.g. properties of a trust or security model. Other design vari-

ables correspond to quantitative properties, for example computation performance,

storage and communication requirements. The design variables in these implemen-

tations are in one of two categories, system variables or crypto variables. System

variables include the selection of an MCU platform and a multitasking approach.

Crypto variables include the selection of a digital signature scheme, and the se-

lection of cryptographic primitives that rely on large integer multiplicative groups
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or elliptic curve cryptography. Note that a complete analysis of the economic feasi-

bility of a metering solution should also include a variety of economic variables,

for example, the costs of implementation, deployment, maintenance and customer

support. These economic variables are not considered explicitly in this work. The

assumption is that if a solution can be implemented using microcontrollers, such as

those in currently deployed meters, and those meters support software updates, then

the solution is economically feasible given that it does not require a complete change

in infrastructure. For example, rather than forcing millions of deployments, utility

companies could offer concerned customers the option to request a meter update that

implements the privacy features mentioned here.

4.5 A Privacy-Preserving Smart Meter

The meter needs to compute the algorithms Commit, CLSign and DSA, using

either large integer multiplicative groups or elliptic curve cryptography. Also a meter

needs to compute a symmetric key derivation algorithm DeriveAESKeys to encrypt

readings with AES for on-site wireless transmission. These algorithms together pro-

duce certified readings. The libraries to perform integer or elliptic curve arithmetic are

bnlib [121] and Miracl [32] respectively. Additionally, one of the following Real-Time

Operating Systems may be used: FreeRTOS [16], SYS/BIOS [142] and MicroC/OS-

III [93]. The rest of the implementation is in C, with some minimal amount of

assembly code. The focus is on the MSP430 family of microcontrollers with a 16-bit

RISC architecture because current deployments already include microcontrollers in

this family. The implementations use the evaluation board MSP-EXP430F5438, in

combination with the microcontrollers MSP430BT5190 and MSP430F5438A with the

radio stack CC2567-PAN1327. The board includes an LCD screen and connectors for

radio components. Both microcontrollers are from the same family (MSP430x5xx).

Shared characteristics include the availability of a hardware multiplier supporting 32-
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bit operations, size of flash (256 KB), frequency (25 MHz), and power consumption

(∼ 230 µA/MHz in active mode). The manufacturers designed the MSP430BT5190

for use with the radio stack; however, the MSP430F5438A has a larger RAM (16 KB).

The evaluation compares a few ARM microcontrollers and processors. ARM ports are

readily available for the arithmetic libraries mentioned above. The code is compiled

using IAR Embedded Workbench for ARM version 6.30 [78]. The most significant

difference is that the word size for the multi-precision arithmetic is 32 instead of 16 as

in the MSP430 implementations. The other microcontroller board is the TI Stellaris

Evaluation Board EKB-UCOS3-EVM. The ARM processors measured—intended for

smartphone development—are capable of running full Linux distributions; neverthe-

less, they are measured using IAR Workbench as well.

The full ZKP based billing protocol requires the selection of various building

blocks, such as commitment schemes and signatures. The security of these building

blocks may depend on either the strong RSA (SRSA) assumption [27], or on the dis-

crete logarithm (LRSW) assumption [28]. One important side-effect of the selection

of these building blocks is that in order for the SRSA assumption to hold, the crypto-

graphic operations need to be performed over multiplicative groups of integers with

large moduli (1,024 to 2,048 bits in length). However, by leveraging modern Elliptic

Curve Cryptography, the designer can use building blocks that rely on the discrete

logarithm assumption employing considerably smaller key sizes. Therefore, for the

ECC based commitments and ECDSA implementations, the NIST curves P-192 and

P-224 [40] were used. For the ECC versions of the CL Signatures, the implemen-

tation uses the pairing-friendly elliptic curves E(F2379) : y2 + y = x3 + x + 1 and

E(Fp) : y2 = x3 + Ax+B with a 512-bit prime p as presented in [138].

The criteria for choosing curve parameters for ECDSA and the commitment

scheme in this implementation are well known. However, choosing appropriate pa-

rameters for pairing-based cryptography is still an active area of research. That is,
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using an elliptic curve implementation for CL-signatures requires an appropriate bi-

linear map e : G×G→ H that is non-degenerate and easy to compute. There is no

unique way to obtain this map using elliptic curve groups G,H. While most proto-

cols, such as signatures and identity based encryption protocols are designed using a

type-1 pairing, it is often possible to use a type-3 pairing. The latter are typically

more efficient in practice. In other words, protocols often assume the existence of a

pairing e : G×G→ H (type-1). However, in some cases the designer can implement a

protocol that assumes the existence of a pairing e : G1×G2 → H with G1 6= G2 such

that there is no isomorphism ψ : G2 → G1 (type-3). This implementation uses type-1

pairings on a super-singular curve defined over GF (2m) using the ηT pairing [15] and

on a super-singular curve defined over GF (p) using a modified Tate pairing [137].

In order for the curves to provide an adequate security guarantee, the size of the

key must be large enough so that the corresponding dilogarithm problem in H is hard.

For the purposes of the particular billing protocol described in this chapter, a smart

meter needs to compute signatures and not necessarily verify them. Therefore, one

would want to make operations on the curve as cheap as possible, even if that means

computing more expensive parings on the consumer’s device. For more details on

pairings see Devegili et al. [42].

4.6 Experimental Evaluation

The experimental results here show that a range of microcontrollers are capable

of generating certified readings in a few seconds. Using ECC primitives, it is possible

to achieve the best performance. In the case of a Texas Instruments MSP430F5438A,

a reading can be computed in under 10 seconds. The use of ECC also allows for

adequate security key sizes. The larger the precision of the numbers that are used,

the larger the RAM requirements; therefore due to the limitations on microcontrollers,

using traditional primitives with integers with large precisions is not possible.
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4.6.1 Impact of Platform Selection

The cryptographic operations Commit and CLSign are implemented using mi-

crocontrollers from two of the most popular families, specifically, a microcontroller

MSP430F5438A with 256 KB flash, 16 KB RAM and a microcontroller Stellaris

LM3S9B92 (ARM Cortex M) with 256 KB flash, 96 KB SRAM; and two ARM appli-

cation microprocessors OMAP3 (ARM Cortex A8) and OMAP4 (ARM Cortex A9)

capable of running full Linux operating systems. These two microprocessors are com-

monly used in smart phones. The performances of these operations on these platforms

are summarized in Table 4.6.2.

4.6.2 Impact of Multitasking Approach

Meters need to be able to interrupt cryptographic computations periodically to

perform measurements, logging and communication. One way of handling multi-

tasking is with the use of an RTOS. Another way is the modeling of an application

using a finite state machine and the implementation of it using timers and interrupts.

Generally, the footprint of an RTOS is larger than the footprint of a state machine

approach. The following three RTOS are considered here: FreeRTOS, SYS\BIOS and

µC-OSIII. The configurations for each of the RTOS uses 4 KB, 16 KB and 12 KB of

code size respectively. The finite state machine requires approximately 2 KB of code.

RTOS have the capability of managing memory; some by reserving particular regions

of the stack for different applications, and some by allowing for the use of dynamic

memory allocation even with multiple heaps, such as SYS\BIOS. It is typically not

a trivial engineering exercise to fit each cryptographic algorithm in RAM. Note that

the system designer should probably base the decision of whether or not to use an

RTOS on the necessity of additional required functionality, such as occasional tasks

like secure updates, secure audits, key exchange and key revocation, etc.
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MSP430F5438A LM3S9B92 Cortex-A8 Cortex-A9
Operating Freq 25 MHz 80 MHz 720 MHz 1 GHz

Operating Power 330 - 690 µW 333 - 524 mW 0.4 W 1.9 W
Family Price Range $0.25 - $9 $1 - $8 $41 - $46 +$50

Commitments - Key Size 1,024 bits
Avg. Running Time 19.56 s 0.82 s 51 ms 36 ms

DSA Signatures - Key Size 1,024 bits
Avg. Running Time 2.71 s 0.13 s 8 ms 6 ms

CL Signatures - Key Size 1,024 bits
Avg. Running Time 43.1 s 2.3 s 150 ms 81 ms

Table 4.1. Running time of commitments and signatures across multiple platforms.
The tasks are run exclusively and uninterrupted on each of the platforms. The sig-
natures are performed on 16 bytes of data. DSA uses a 1,024-bit prime p, a 160-bit
prime q, and SHA-256. The timing does not include the generation of randomness,
which depends on the source. Prices are in USD (Sept., 2011).

4.6.3 Impact of ECC Utilization

The code sizes of the bnlib [121] and Miracl [32] libraries and their RAM require-

ments depend on which features that are included. In the experimental setting using

a microcontroller MSP430F5438A, the code size of Miracl was 23 KB and the code

size of bnlib was 18 KB. The performance of bnlib and Miracl on non-ECC arith-

metic is comparable. The running times of the same operation using either library

differed by less than 5% of the total computation time of the operation. The RAM

footprint for various functions is summarized in Table 4.3. As one can see, given a

security level, ECC cryptographic primitives utilize RAM more efficiently. Similarly,

Table 4.2 shows that given a microcontroller and a security level, an improvement in

performance of about one order of magnitud can be achieved by using elliptic curve

primitives.

4.6.4 Impact of Signature Scheme Selection

Table 4.2 shows running times for performing a CLSign algorithm with four read-

ings. Note in particular the benefit of using an elliptic curve based library. If a
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Algorithm Key Size Library Time
Commit 1,024 bnlib 19.9 sec
Commit 2,048 bnlib 303.0 sec

ECC Commit 192 miracl 5.6 sec
ECC Commit 224 miracl 8.3 sec

CLSign 1,024 bnlib 41.2 sec
CLSign 2,048 bnlib 313.8 sec

ECC CLSign 379 miracl 6.7 sec
ECC CLSign 512 miracl 35.6 sec
AES Key Gen 128 miracl 0.1 sec

Table 4.2. Running time of commitments (single reading) and signatures (4 reading
batches) on an MSP430F5438A at 25 MHz. These times are obtained when the
algorithms are running exclusively and uninterrupted. Miracl is used for the elliptic
curve versions (§4.5). The key sizes are in bits.

designer uses elliptic curves, he or she can reduce a monthly batch signature with

1,440 readings (one reading every half hour) from 15.6 hours to 2.5 hours. If the

designer assumes a different trust level in which zero-knowledge is not required, sig-

natures are less expensive. On an MSP430F5438A at 25 MHz, signing a 16-byte

message using regular DSA with a 1,024-bit prime p, a 160-bit prime q, and SHA-256

takes 2.71 seconds excluding the generation of randomness, which depends on the

source. Signing a 16-byte message using ECDSA using a curve in GF (p) for a 192-bit

prime and SHA-256 takes 3.78 seconds excluding the generation of randomness. DSA

signatures scale better than CL-signatures because the only overhead for a larger

message would be the cost of the hash, which for the computations above is less than

0.01% of the computation.

4.7 Feasibility and Costs in Real-World Deployments

This section discusses a strategy for estimating the cost of deploying privacy pre-

serving smart meters according to the system variables discussed previously (§4.5).
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Algorithm Key Size RAM
Commit 1,024 5.8 KB
Commit 2,048 10.2 KB
CLSign 1,024 6.3 KB
CLSign 2,048 11.3 KB

ECC Commit 192 2.2 KB
ECC Commit 224 2.5 KB
ECC CLSign 379 3.1 KB
ECC CLSign 512 3.6 KB
AES Key Gen 128 2 KB

Table 4.3. RAM utilization for the various algorithms we implement on an
MSP430F5438A all using the Miracl library. The measurements do not include RAM
utilization by an RTOS, a radio stack or I/O.

4.7.1 Cost Estimation Strategy

Step 1: Determine the performance and power requirements. The first step

is to determine the acceptable levels of general computational performance and the

power requirements of the meter. Depending on the specific application, meter read-

ings may need to be certified with a frequency of seconds, minutes or hours. Also, the

meter may need to operate on a battery. Thus, using an ultra-low-power microcon-

troller may be the difference between replacing the battery every few years or every

few days. For example, the performance of an LM3S9B92 MCU may seem attractive

for its ratio of cost/performance. However, the power consumption is roughly three

orders of magnitude greater than the MSP430 MCU. Mobile processors are still far

from being ultra-low power, although their computational and storage capabilities

are increasing faster than those of the MCUs.

Step 2: Determine the code and RAM requirements. Once the performance

and power requirements are met by a family of microcontrollers, it is then necessary

for the designer to estimate the code size and RAM requirements for the implemen-

tation of the reading certification functions in a meter, taking into account whether

multitasking needs to be supported.
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Figure 4.4. Memory requirements on an MSP430F5438A.

4.7.2 Economic Feasibility

Existing smart meters that have the ability to be remotely updated rely on mi-

crocontrollers similar to those used in the implementation in this chapter. If a micro-

controller in the MSP430 family is used, it is possible to generate commitments and

CL-signatures every 10 seconds when running at 25 MHz or every 28 seconds when

running at a more conservative 8 MHz. Thus, a remote update that enables meters

with privacy preserving functionality appears feasible.

Other metering applications may require that readings be certified at a finer granu-

larity, for example every one or two seconds. This would require higher computational

performance and larger storage than is currently available on low-cost ultra-low-power

microcontrollers. For this reason, while obtaining certified readings at fine granular-

ities is technologically feasible, it is to this date a feature that may incur a greater

cost. Finally, in some circumstances, billing transactions may be required to take mil-

liseconds. In that case, only high-end mobile processors could provide the required
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performance, and thus the cost of that application would be high based on current

technological trends.

While the analysis in this section does not cover all manufacturers of low cost

MCUs, other leading manufacturers have similar offerings. For example Atmel also

has AVR ultra-low-power microcontrollers, and various ARM based MCUs compara-

ble to those discussed here. Microchip has the PIC microcontroller line with 8-, 16-

and 32-bit MCUs. 8-bit microcontrollers are not considered because they are perhaps

too constrained for the kind of crypto application described here.

Best Utilization of Resources

The best security/cost ratio can be achieved by using ECC primitives (§4.6). If

current MCUs are targeted, maximizing the use of RAM can be achieved via ECC.

Looking toward the future, performance will most likely regain importance due to the

increasing economic feasibility of Ferroelectric RAM (FRAM), a kind of memory that

enables high-performance on ultra-low-power microcontrollers, with a unified memory

model. Texas Instruments has started to ship MCUs with 16 KB of FRAM ($1.20

USD), and they are already producing chips with 4 MB of FRAM [119].

4.8 Related Work

Prior work exists on distilling information about appliance usage from power

traces. However, prior approaches assume knowledge of the appliances in a home

or take appliance measurements in order to use supervised learning techniques to dis-

ambiguate events. For example, Patel et al. [118] use individual traces from USB

oscilloscopes to disambiguate power traces of particular appliances. Jiang et al. [85]

solve a similar problem by using a wireless sensor network to monitor building en-

ergy usage. Similarly, Lam et al. [95] classify appliances based on fine-grained load

signatures. More accurate monitoring for utilities has many benefits, as prior work
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Figure 4.5. Impact of ECC on computation using an MSP430F5438A.

discusses, e.g., [102], [39], [91] but they do not propose techniques to preserve privacy.

An alternative approach to protect privacy is adding noise to load signatures using

rechargeable batteries [87].

Besides the cryptographic solutions described by Rial et al. [126] and Molina-

Markham et al. [108], there are other proposals to provide privacy in the context of

smart grids, including [82]. Methods from the field of differential privacy have been

suggested to provide privacy in this setting, for example [140, 33, 37]. None of these

works explores the feasibility of using low-cost or ultra-low-power microcontrollers.

4.9 Conclusion

This chapter demonstrates that ZKP based solutions to mitigate the problem of

smart metering information leakage are economically feasible. Evaluating the cost of a

cryptographic solution in an embedded system such as a smart meter depends first on

the family of microcontrollers used, then on the storage and RAM requirements, and
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finally on additional features such as communication and user interface. An empirical

analysis shows that with the use of Elliptic Curve Cryptography, it is possible to

reduce the RAM requirements by about 50% and obtain performance improvements

of one order of magnitude, in comparison with using primitives over groups of integers

with large moduli—thus obtaining a better performance/cost ratio.
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CHAPTER 5

BAT: BACKSCATTER ANYTHING-TO-TAG
COMMUNICATION

This chapter presents BAT, a networked system designed from the ground up

to enable RFID applications beyond inventorying [106].1 Computational RFID pro-

totypes are limited by networking abstractions that impose narrow preconceptions

about topologies and applications. These prototypes support programmability and

integrate a wide array of sensors, which open the door to more varied applica-

tions [24, 25, 147, 125, 86]. The implementation of these applications on constrained

platforms will need primitives that seamlessly support communication among tags

and also with other devices. While overlays on top of existing protocols are possible,

they introduce inefficiency because of packet formats designed explicitly for the tag

inventory paradigm.

Supply-chain RFID technologies were developed with narrow design goals in mind,

primarily inventorying or data collection. The EPC Gen 2 protocol—the de-facto

standard for UHF RFID communication [55]—reflects these design goals by offering

a limited set of commands not well-suited for bulk data transfers [71]. The assumption

that tags will not implement any functionality locally and will instead act as simple

static identifiers in most cases also imposes other restrictions. Tags must conform to

1This chapter draws from previously published work in:“BAT: Backscatter Anything-to-tag Com-
munication” by A. Molina-Markham, S. S. Clark, B. Ransford and K. Fu. Chapter in Wirelessly
Powered Sensor Networks and Computational RFID. Springer Signals and Communication. J. R.
Smith (Ed.) December 2012. To appear.
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a rigid state machine allowing no time to sense or process data. They are instead

required to respond to reader commands rapidly whenever in range.

Without protocols that present appropriate abstractions for richer applications,

computational RFIDs (CRFIDs) must use limited resources to shoehorn these new

applications into a suboptimal paradigm [86]. Unlike supply-chain RFID tags, CR-

FIDs have their own microcontroller units: they are capable of running their own

application logic and managing their own memory and communication links. They

are, therefore, able to participate in radio protocols that are more flexible than Gen 2.

Table 5.1 summarizes some key differences between CRFIDs, supply-chain tags, and

battery-powered sensor nodes (motes).

The BAT protocol and software stack provides fast and flexible backscatter anything-

to-tag communication. The key insight is that BAT separates tag applications from

the networking stack by ensuring that the networking layer does not impose unnec-

essary constraints on abstractions. BAT separates memory management from the

networking stack such that tag applications can efficiently store data in arbitrary

locations without needing several interactions with the network stack. This logical

detachment between the networking stack and applications does not impede secure

anything-to-tag communication even using current CRFID prototypes.

In order to evaluate BAT’s practicality, it was implemented on a current CRFID

prototype and a relay using software radio (§5.4). BAT allows tags to send and receive

data via untrusted relays with a maximum throughput of 18 Kbps. CRFIDs generate

encrypted payload at a rate of 61 Kbps.

Contributions

The contributions of this chapter are:

Networking Stack. This chapter presents the design of a networking stack for

backscatter devices via untrusted relays that offers more appropriate abstractions for
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Characteristics Deployments
Supply Externally powered Inventorying applications
Chain No MCU/OS Inexpensive
Tags Externally managed memory Low maintenance

Minimal network interoperability Long term
Tags do not pull data Physically accessible or inaccessible

Star-like topology
CRFIDs Externally powered Sensor networks

Short power cycles Payment tokens
Have an MCU Inexpensive

Could run an OS Low maintenance
Self-managed memory Long term

Networking through BAT Physically accessible or inaccessible
Tags can pull data Complex topologies

Motes Battery powered Sensor networks
Long power cycles More expensive

Have an MCU Higher maintenance
Run an OS Shorter term

Self-managed memory Physically accessible
Various IP stacks Complex topologies

Nodes can pull data

Table 5.1. CRFIDs differ from supply-chain tags in that CRFIDs can manage their
own memory and application logic. CRFIDs also differ from motes in that CRFIDs
have shorter power cycles and depend on RFID readers for power and communication.

tags that can manage their own memory and application logic, but depend on relays

for power and communication. This networking stack allows computational RFIDs

to send and receive messages to and from systems across the Internet to implement

a variety of applications.

System. This chapter describes the results of implementing BAT using a UMass

Moo [148] and software radio [5]. It demonstrates that a networking stack for CRFIDs

using untrusted relays may be implemented while adding marginal computational cost

for providing secrecy and integrity. Prior work implicitly assumes that RFID-scale

devices adhere to a model in which tags gather data that is collected by a trusted

reader and tags do not act as independent systems.
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Figure 5.1. BAT Overview: Relays collect packetized messages from tags and for-
ward them through other relays, which deliver them. Packets are split into frames
locally to maximize throughput.

Key Management. This chapter shows that identity based key agreements such as

the the non-interactive Sakai, Ohgishi, and Kasahara (SOK) [132] key agreement are

feasible on CRFIDs. This is one of the first works that implements a key agreement

suitable for RFID-scale systems that does not require the on-line verification of a

public key during a key agreement.

5.1 Anything-to-Tag Communication

The prevailing protocol for supply-chain RFID systems, EPC Class 1 Gen 2 [55], is

designed around the abstraction of RFID tags as remotely addressable memory. The

Gen 2 commands a reader may use fall into two categories. Readers use singulation

commands to search a tag population for a single tag; then they may issue memory

access commands to read or write its protocol-defined memory banks.

The tags-as-memory abstraction is entirely appropriate for supply-chain applica-

tions, but it imposes several hindrances on applications running on CRFIDs. First,

it restricts communications to those that can be formulated in terms of reader-to-tag

memory access commands and simple tag responses. It is possible to reuse fields of ex-

isting commands to carry information—for instance, the Gen 2 write command takes
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an arbitrarily long WordPtr parameter intended to specify where to start writing—

but reader support for embedding arbitrary data in these fields varies. Second, the

tags-as-memory abstraction as implemented in Gen 2 readers lacks the notion of a

shared device-address space, so it cannot express useful mainstream networking con-

cepts such as multicast, anycast, or peer-to-peer (tag-to-tag) communication. Finally,

it offers no facility for rich tag messages. Tags respond to most commands with short

fixed-length status messages and to read commands with the requested data. Tags

cannot address messages to other tags.

In contrast to Gen 2, BAT comprises a set of abstractions designed to enable

anything-to-tag communication, in which multiple tags can communicate with one

another and with external entities such as Internet resources. Figure 5.1 depicts BAT

at a block level.

BAT’s increased flexibility and efficiency in comparison to Gen 2 result from sev-

eral key distinctions. In terms of flexibility, tags are addressable network nodes rather

than simple memory stores. Each tag and each relay has an address in a shared ad-

dress space. In addition, tags and relays formulate their communications as explicitly

addressed messages (packets) rather than implicitly addressed responses. Finally,

BAT enables confidential tag-to-tag communication via untrusted relays.

In terms of efficiency, BAT conceptually replaces supply-chain RFID readers with

BAT relays that maintain message queues. As in an IP network, interactions between

relays and tags consist mainly of packet-exchange commands. Also, tags and relays

negotiate message sizes to adapt to lower- or higher-quality links. Messages from tags

and relays have the same message format; a relay can forward messages to other tags

without altering them.
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Figure 5.2. Hardware used to implement BAT. The relay (foreground) is a USRP
with RFX900 daughterboards driven by GNU Radio. The UMass Moo (background)
is a CRFID tag derived from the DL WISP 4.1 [135].

5.2 BAT Design Overview

BAT’s basic model consists of relays that move into the vicinity of tags and offer

to provide power and communication. Messages follow a path conceptually similar to

mail in the U.S. postal system: items to be delivered are picked up at their sources

(BAT tags) by mail carriers (BAT relays), routed through the postal system (pow-

ered networks of BAT relays), and delivered by local carriers (BAT relays) to their

destinations (BAT tags).
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Figure 5.3. Gen 2 requires messages to achieve singulation before Read/Write com-
mands are issued. In order to implement custom round-trip messages as in BAT
(R→ T , T → R), a Write command would have to be followed by a Read command.

A BAT system comprises a set of CRFID tags, all of which are programmed

initially by a trusted tag programmer, and a set of interchangeable relays that un-

derstand common frame and packet formats. A relay is a powered device akin to the

RFID readers used in supply-chain applications. It powers tags by transmitting RF

energy and can exchange messages with them via BAT’s link layer. Multiple relays

may be connected to a centralized application controller that knows the network’s

topology and can coordinate message routing; relays may also independently query

their surroundings for tags for which they have messages. The organization and op-

eration of relays is application-dependent. Figure 5.5 summarizes a BAT interaction

between a relay and a tag.

Experimental results demonstrate the benefits of BAT’s packet-framing and frame-

size-negotiation mechanisms. When there is a high-quality link between relays and

tags, larger frame sizes may result in higher throughput (§5.4). However, when the

link is lossy or noisy, frame sizes must be smaller in order to achieve sustained com-

munication.
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Figure 5.4. The framed packet format accommodates up to 28 = 256 bytes of data
payload per packet by breaking packets into one or more frames of variable size.

The packet format depends on the higher network layers that are used above BAT.

In this prototype implementation, we chose to follow a format similar to that proposed

by Karlof et al. for sensor networks [89]. Another option could be 6LoWPAN [110]. A

packet is split into frames as illustrated in Figure 5.4. A frame includes a group ID, a

frame-counter, and the payload. All frames with the same group ID are concatenated

sequentially. The frame-counter gives the position of the frame within the packet.

Once all frames are concatenated, the IV together with the source and destination

fields provide a unique packet identifier. The source and destination fields consist of

an ID, a group and a specified domain in order to facilitate routing: when a tag A

has a message for a tag B, A sends the message addressed to B’s ID at the specified

domain. Then, B retrieves messages addressed to it opportunistically. When a tag

A wants to send a message to a particular group of tags in the local domain, it can

simply post a message to the given group at the local domain. BAT implements the

retrieval and collection of messages in a given domain, and the network layer routes

and delivers messages between domains.
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Figure 5.5. BAT messages. A tag may request a relay to: deliver a message, provide
power, or check for messages addressed to the tag. In some cases singulation may be
necessary, but not always.

In order to facilitate the use of untrusted readers, BAT encrypts message payloads.

A per-packet message authentication code (MAC) allows the recipient to detect tam-

pering or transmission errors upon receipt of a packet (§5.5).

5.3 Applications

BAT’s abstractions are more closely matched to conventional networking abstrac-

tions than those of Gen 2, and they consequently enable a variety of functions. For

example, multiple tags that need to collaborate toward a larger goal, such as col-

lective time synchronization, can exchange messages with relays and tags to reach

consensus using Paxos [96]. Tag-to-tag messaging could also enable tags to solve op-

timization problems collectively with ant algorithms, biologically inspired algorithms

that harness the power of collective behavior in solving complex problems using sim-

ple agents [109]. Ants are known to collectively compute the shortest path between

their nest and a source of food by each depositing a certain amount of pheromone
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on their paths while walking, attracting other ants to follow the same path. Similar

mechanisms can be generalized to allow swarm agents to solve problems collectively,

such as the traveling salesman problem [46]. The coordinated action of multiple in-

dependent agents has also been studied as amorphous computing [11], inspired by

metaphors in biology and physics.

Some applications for CRFID networks, such as those listed below, could benefit

from a network stack that provides secrecy and integrity. The feasibility of using these

tags to compute an aggregate in a privacy-preserving manner is also considered (§6).

Infrastructure Monitoring

Infrastructure monitoring is currently a time-consuming and largely manual task.

Many infrastructure elements are only subjected to periodic spot checks that allow

engineers to gauge the overall condition, but this type of information is not always

sufficient. The collapse of the Mississippi River Bridge in Minnesota, which killed 13

people, is one striking example of this problem. While a 2005 inspection rated the

bridge as “structurally deficient,” repairs were delayed while other bridges thought

to be in worse condition were fixed [143].

A persistent sensor network deployment offers a seemingly simple solution to this

problem. With constant, automated monitoring, sudden changes in infrastructure

condition could be detected and addressed quickly. Unfortunately, deploying wireless

sensors that each operate on a battery introduces a new maintenance problem. Every

monitoring point on the infrastructure will require battery replacement eventually.

One way of shielding sensors from the environment would be to actually embed them

in concrete at the time of construction, but the need to replace batteries precludes

the possibility of embedded deployments.

CRFIDs using BAT could support fine-grained sensing without the need for reg-

ular maintenance, as they forgo batteries. The most straightforward approach would
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Figure 5.6. Bridge with a monitoring system in Flint, MI. Data is collected and
transmitted to a remote computer once per hour. System and photo by Fondriest
Environmental [60].
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be for users to collect data about a structure’s condition by moving along the infras-

tructure with a relay, collecting data from individual tags. A more versatile system

could be constructed by leveraging the tag-to-tag communications enabled by BAT.

In this model, tags could exchange encrypted data among themselves and privately

aggregate the data for general release. This approach would allow the tags themselves

to enforce data-release policies. Any relay could query a tag and get a generic reply,

such as an overall safety rating, but could not determine which tag sensed faults or

the exact nature of those faults. Only trusted relays could elicit detailed reports

indicating which tags have sensed structural weaknesses and what the exact sensor

readings were. In this way, the public could have visibility into infrastructure state,

but saboteurs interested in destroying infrastructure would still be prevented from

gaining any sensitive information. To be more specific, we could use BAT to imple-

ment the protocol proposed by Shi et al. [140], which allows untrusted aggregators to

compute privacy-preserving aggregation using data generated by CRFID tags (§6).

Body Area Networks.

BAT could benefit Body Area Networks (BANs) by allowing implanted sensors

and actuators to intercommunicate via an untrusted relay, rather than expending

their limited battery reserves to communicate with one another directly. Currently,

implantable medical devices, such as pacemakers, leverage the same non-rechargeable

battery responsible for lifesaving operations to communicate with device program-

mers. Replacing the battery in an implantable device requires the surgical replace-

ment of the whole device, so reducing the load on the battery is a major goal for

implantable medical devices [75].

A glucose monitor and injection system for diabetics is one example of a non-

implantable BAN device that could benefit from CRFIDs using BAT. Rather than

using a single large, heavy piece of hardware to sense, report, and inject insulin, it
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would be desirable to decompose the system into smaller, discrete sensor and actu-

ator devices. A CRFID could serve as the insulin sensor, allowing for more discrete

placement. The sensor could continuously report readings to a mobile phone capable

of presenting them to the user in a digestible manner. The phone would also act

as a router, triggering the discrete insulin pump to deliver medication when neces-

sary. While battery-powered sensors also allow the glucose monitoring system to be

decomposed in this manner, creating two devices that require batteries exacerbates

the issue of battery replacement. CRFIDs running BAT would allow the lightweight,

flexible decomposition of this BAN device.

BAT can provide both confidentiality and integrity for BANs, but, depending on

the application requirements, confidentiality may be optional. When the functions

performed by the tags are vital, confidentiality may be a priority. In some situations,

however, the relay could also display information to the user, such as readings from

one of the sensors. BAT can also support this model, which could allow partially

trusted relays to decrypt packets, but not to create packets that can be successfully

verified by a tag.

Roadway Monitoring

Real-time data on road safety can prevent many accidents. Approaching cars

could be alerted of a dangerous pothole or piece of detritus on the highway so that

drivers have the opportunity to react appropriately. The standard monitoring tech-

nique for road safety is a combination of opportunistic checks by municipal workers

and notifications from the public. When those responsible for maintaining roads even-

tually become aware of problems, drivers must wait until a worker can be dispatched

to put up a warning sign before they are finally notified of obstacles in advance.

A network of CRFIDs using BAT could provide real-time data directly to passing

vehicles and also report conditions to the local highway department or other respon-
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sible parties. Tags embedded directly in the roadway could monitor road conditions

via vibration sensors, for example, and report data to passing vehicles without any

human intervention. The passing vehicles would provide the tags with both power

and routing. Vehicles could also send notifications back to tags as they move along

the road to propagate warnings along the roadway so that future vehicles receive ear-

lier warnings. This would allow the tags to not only notify drivers of obstacles, but

to forward messages back to a trusted endpoint like the local highway department.

The opportunistic use of vehicles as routers would obviate the need for a large and

expensive deployment of dedicated RFID relays to act as routers.

While road condition information is not generally considered private, authentica-

tion and integrity would be necessary for this application. Without both properties,

malicious parties could falsify packets to overload the network or misdirect drivers

and repair workers. BAT’s use of CMAC to ensure integrity guarantees that adver-

saries cannot forge arbitrary messages. Because BAT uses keys shared only by a pair

of tags, a receiver tag would be able to verify that the message received was sent

by one other tag. The identity based key exchange allows for the specification of an

expiration date.

5.4 BAT Evaluation

The practicality of BAT is evaluated via a prototype implementation using a

UMass Moo. The implementation shows that BAT’s networking abstractions do

not add significant communication overhead in comparison to supply-chain RFID

networking, and BAT’s mechanisms to enable the negotiation of optimal frame size

generally result in an increased bidirectional throughput.
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Figure 5.7. Roadway monitoring via video cameras [141]. The use of CRFIDs could
allow for the monitoring of larger areas with less maintenance and infrastructure than
video monitoring.

5.4.1 Prototype Implementation

The relay implementation uses the GNU Radio software-defined radio platform to

drive Universal Software Radio Peripheral (USRP) hardware [5, 57]. This hardware

and software combination allows complete specification of message structure in both

directions. It builds upon Buettner’s RFID reader implementation [26]. Tags are

implemented using the UMass Moo [148], see Figure 5.2. This prototype has an

MSP430F2618 with 8 KB of RAM and a maximum operating frequency of 4 MHz

under harvested power. The tag prototype fixes some transmission options to specific

values for simplicity of implementation; in particular, it uses phase-reversal amplitude

shift keying (PR-ASK) modulation with pulse interval encoding (PIE) from relay to

tag, and phase-shift keying (PSK) modulation with Miller-4 encoding from tag to

relay. Tags are implemented so that facilitation of power requests and rate adaptation

are transparent to applications; individual applications on tags do not need to be

aware of physical conditions or power budgets.
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5.4.2 BAT’s Throughput

BAT negotiates optimal frame size at the beginning of an interaction to maximize

throughput. When a tag needs to receive more than a few bytes of data on a regular

basis, using a fixed, conservative frame size adds significant overhead. The optimal

frame size may vary considerably depending on operating conditions, the tag’s internal

memory speed, or the particular combination of reader and tag. Experiments show

that the throughput increases linearly with the frame size to achieve the highest

throughput of 18 Kbps with a frame size of 112 bytes. With larger frame sizes, the

error rate increases, and, therefore, the goodput decreases. Figure 5.8 illustrates the

average throughput for this prototype using BAT when sending data split into frames

of various sizes.

Because there is not yet a wide variety of CRFID prototypes, one can use high-

capacity Gen 2 tags and readers to further illustrate the need for variable frame sizes.

In this experiment, the payload of the Gen 2 BlockWrite command carries data from a

reader to a tag. Two commercial tags were used: the Xerafy Sky-ID and the Ramtron

MaxArias, which can store up to 8 KB and 2 KB of user data respectively. The size

of the payload was varied and the throughput was recorded. The readers in the

experiment are the ThingMagic reader M5e and a Ramtron MaxReader Development

Kit.

When using the User memory bank of the Xerafy Sky-ID, the number of Block-

Write commands necessary to fully write the payload value increases linearly with

frame size, except when the tag is placed less than 3 mm from the reader’s antenna.

In order to achieve a high successful-write rate, a BlockWrite command should carry

at most 4 bytes of data. MaxArias tags would achieve the best throughput when

using BlockWrite commands with 56 bytes of data at a time. In order to implement

BAT-style communication atop Gen 2, a BlockWrite command would have to be fol-
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Figure 5.8. The throughput of BAT depends on the size of frames. Shorter frames
result in an increased number of round trips, overhead in frame responses, and inter-
frame processing. Larger frames are more likely to result in a corrupted frame. The
figure shows the average throughput accounting for retransmissions using different
frame sizes. The maximum throughput observed in the current prototype is 18 Kbps,
achieved when using a 112-byte frame. Larger frames significantly reduce throughput
due to larger error rates. BAT uses Tari = 13 µs. Frame size does not significantly
affect throughput when a Gen 2 M5e reader is used with two different Gen 2 high-
capacity tags because of their low success rate—the number of attempts required for
a write increases proportionally with the frame size. The M5e reader uses Tari =
12.5 µs. Tags are placed approximately an inch from the antenna.

lowed by a Read command (with ∼ 4 bytes of data) in order to allow a tag to reply

with a non-Gen 2 protocol response as illustrated in Figure 5.3.

BAT’s abstractions do not add a communication overhead. Its frame-size negoti-

ation happens only once per transmission and its overhead is approximately 50 ms,

roughly the time it takes to perform a Gen 2 read. Gen 2 does not negotiate optimal

frame size, but there is still some overhead associated with transmission, as illustrated

in Figure 5.3. For example, Gen 2 requires tag singulation because it is meant to be

used in tag-dense environments. However, BAT may or may not need this singulation.

Gen 2’s overhead typically involves three initiating messages before each command is
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sent to a tag. In addition, Gen 2 Read and BlockWrite commands have fields that are

unnecessary from the standpoint of a protocol designed to facilitate anything-to-tag

communication.

The throughput of BAT will likely scale with improvements in prototypes and the

physical layer. For example, one of the parameters of the physical layer, the Tari

(the time interval to encode a bit in the R → T direction), significantly impacts

throughput. In experiments, no errors were found when the Tari was greater or equal

to 13µs. When Tari was equal to 11µs, only 2 of 100 128-bit frames contained no

errors. In this case, errors consisted of missed bits and not bit flips. When Tari

was less than 11µs, all frames had missed bits and flipped bits. The limiting factor

hindering communication with Tari values smaller than 13µs is the MCU in the

UMass Moo. The MSP430F2618 in the UMass Moo can process an interrupt no

more than every 7µs regardless of the operating clock speed, and the time required

to process the input is around 5µs. The demodulator, however, supports higher rates.

In contrast, other non-CRFID tags such as the MaxArias use a 6 µs Tari.

5.5 Using Untrusted Relays

CRFIDs are well-suited for network applications that require long-term deploy-

ments because of their low maintenance requirements. In many cases it may be

important to provide message secrecy and integrity for such deployments (§5.1). The

ability to use untrusted relays for message routing minimizes the size of the trusted

computing base and simplifies key management problems. Untrusted relays are only

required to understand how to route packets in the network.

In order to support the use of untrusted relays, BAT encrypts packet payloads

using AES. To ensure packet integrity, each packet includes a 32-bit message authen-

tication code (MAC) to prevent tampering. Karlof et al. [89] provide arguments for

the sufficiency of this MAC size for sensor network applications. Preliminary results
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Operation Cycles Time
(calculated)

AES-128 setup 144,677 36.1 ms
AES-128 enc (per block) 7,795 1.9 ms
AES-128 dec (per block) 8,003 2.0 ms
CMAC (AES-128 80 B) 39,669 9.9 ms

Table 5.2. The cycle count for each security operation was measured using a hard-
ware debugger and a UMass Moo. The reported time is calculated assuming a typical
sending clock speed of 4 MHz.

show that CRFID prototypes are capable of performing state-of-the-art cryptographic

operations to support encrypted communication at the link layer. The most expensive

operations correspond to the public-key cryptography necessary when shared keys are

not distributed in advance. Once these keys have been established, providing secrecy

and integrity is relatively inexpensive, as shown in Table 5.2. Opportunistic encryp-

tion allows for 61 Kbps of throughput, higher than the maximum 18 Kbps link speed

achieved in experiments. Once a shared key has been constructed, tags must encrypt

the packet payload using a symmetric block cipher (AES-128) and then calculate a

MAC (we use CMAC [53]) over an initialization vector (IV) and ciphertext. This sort

of computation is also possible because BAT allows tags to request additional power

to encrypt/decrypt as needed.

5.5.1 Performance on Future CRFID Prototypes

The ratio of the computational performance of cryptographic operations over the

overall throughput of BAT’s communication will continue to decrease with improved

microcontroller capabilities, such as power-efficiency and higher clock-speeds. This

implementation was based on a current CRFID prototype with an MSP430F2618

microcontroller, the UMass Moo [148]. In the near future, we may see other CRFID

prototypes with ARM microcontrollers or other MSP430 microcontrollers with higher

clock speeds, which will enhance the performance of BAT’s cryptographic operations.
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There are MCUs in the MSP430F5xx series that would allow a CRFID to operate

at 8 MHz using harvested energy or at a maximum of 25 MHz using an alternative

source of energy. There are also several MCUs in the ARM Cortex-M0 and ARM

Cortex-M0+ families that are even more power-efficient than MCUs in the MSP430

family, while providing higher clock speeds. For example, the ARM Cortex-M0+

may consume as little as 11.2µW/MHz compared to 803µW/MHz consumed by the

MSP430F2618. An ARM Cortex-M0 may consume 16µW/MHz in its lowest-power

setting. Table 5.3 forecasts BAT’s performance on these MCUs.

Primitive MCU Clock Freq. Time
(calculated)

AES Setup MSP43F5310 8 MHz 18 ms
AES Setup Cortex-M0+ 30 MHz 1.2 ms
AES Setup Cortex-M0 50 MHz 0.7 ms
AES Enc MSP43F5310 8 MHz 978 µ s
AES Enc Cortex-M0+ 30 MHz 74 µ s
AES Enc Cortex-M0 50 MHz 44 µ s
AES Dec MSP43F5310 8 MHz 1004 µ s
AES Dec Cortex-M0+ 30 MHz 80 µ s
AES Dec Cortex-M0 50 MHz 48 µ s

Table 5.3. Computation times for cryptographic operations on the following MCUs:
(1) MSP430F5310 @ 8 MHz; (2) ARM Cortex-M0+ @ 30 MHz; (3) ARM Cortex-M0
@ 50 MHz.

5.5.2 Shared-Key Generation

Shared-key generation is the most expensive security operation required by BAT.

However, micro-benchmarks show that identity-based key agreements are feasible on

CRFID tags. The Smart-Chen-Kudla (SCK) key agreement [36] is less computation-

ally expensive than a traditional Diffie-Hellman (DH) approach. However, the non-

interactive Sakai, Ohgishi, and Kasahara (SOK) construction [132] is only marginally

more expensive than DH.
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Identity-based key-agreement schemes allow for the creation of private–public key

pairs, such that the public key is an arbitrary string and only a trusted entity—a

private-key generator (PKG)—can compute the corresponding private key. Thus, for

example, it would be easy for a tag to encrypt a message so that only a tag with serial

number x could obtain the corresponding decryption key from the PKG. Additionally,

the sending tag can include an expiration time in its public key. SOK key exchange is

also desirable because DH is vulnerable to man-in-the-middle attacks unless a third

party authenticates protocol participants. This limitation is usually addressed by the

addition of a Certificate Authority (CA), but key management is difficult in CA-based

systems [58]. Table 5.4 lists the times necessary to compute a shared key using the

approaches described above and the elliptic curve pairing implementations by the

Miracl Crypto SDK [32].

Key Agreement Security Time
(calculated)

Diffie-Hellman 2048-bit 208 s
Diffie-Hellman 1024-bit 50 s
Diffie-Hellman 640-bit 21 s

ECC Diffie-Hellman ∼ DL 1024-bit 27 s
SOK with Type-1 ∼ DL 1024-bit 53 s
SOK with Type-1 ∼ DL 640-bit 30 s

Table 5.4. Computation times for key agreements on the MSP430F2618 @ 4 MHz.
All multi-precision arithmetic, EC arithmetic, and pairings are implemented by Mir-
acl [32]. The Diffie-Hellman key exchange based on the ECDLP uses the NIST curve
P-192. The Type-1 pairings use supersingular curves E(Fp) for a 512-bit prime and
E(F2379).

It should be noted that tags must be re-keyed periodically for revocation of expired

devices. In a solution without certificates, like the one discussed in this chapter, the

public key of a tag may be an arbitrary string. This is one important simplification

that comes from using identity-based encryption. Therefore, when a tag A wants to

talk to a tag B, there is no need for tag B to request the verification of the public

77



key of tag A. Despite this advantage, identity based key agreements still require that

a trusted authority distributes private keys. There are elegant solutions based on

hierarchical identity-based encryption (HIBE) that allow for the implementation of

this re-keying process in a distributed fashion [64]. The discussion of these schemes

is outside of the scope of this chapter. Obtaining private keys and computing shared

keys for pairwise communication is relatively expensive. A tag must be provided with

power for tk ≈ 53 seconds to generate one of these shared keys. However, a traditional

approach is not considerably less expensive. If the number of tags |T| is small, tags

can also be instructed to precompute every pairwise key they can use to communicate

with other tags.

5.6 Related Work

Networks of RFID tags [24] or CRFIDs have been of interest in the last few years,

and other authors have proposed applications including building instrumentation [147]

and user activity inference [25]. This past work assumes that tags are not capable

of communicating with one another and that the network is actually composed of

readers that report data to a central database where all computations occur. Other

work has focused on enhancing supply-chain RFID-style backscattering. For example,

Wang et al. [146] describe how to reduce singulation overhead by allowing multiple

tags to communicate simultaneously in spite of collisions.

Reynolds has suggested the use of semi-passive tags capable of intercommunica-

tion, but these tags abandon backscatter in favor of traditional radio technology, so the

network model is much different from that in this chapter [125]. Application-specific

communication between backscattering RFID tags has been explored previously by

Juels [86]. Nikitin et al. [114] propose tag-to-tag communication by allowing passive

tags to listen to one another’s transmissions. Their approach is restricted by requir-

ing close proximity. BAT could be implemented atop this physical layer to improve
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throughput. CCCP [133] supports tag-to-tag communication of a sort, but it is lim-

ited to storage and retrieval of data from a single tag to an untrusted reader. It does

not give tags the ability to exchange data.

5.7 Conclusion

BAT allows CRFIDs to communicate with computer systems as well as other tags

using relays that can be easily replaced and do not need to be aware of application in-

formation. A preliminary implementation demonstrates that BAT’s abstractions are

better suited for RFID-scale sensor networks than communication protocols designed

for supply-chain tags because it eliminates the need for relays to manage tags’ internal

memory and facilitates bidirectional communication that treats the up-link and the

down-link with equal priority. Micro-benchmarks show that offering a secure network

layer that uses untrusted relays to exchange information does not add a significant

overhead, which is attractive for applications that require tags to be left exposed and

unattended.
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CHAPTER 6

PRIVACY-PRESERVING AGGREGATION USING
CONSTRAINED DEVICES

This chapter explores the problem of performing distributed privacy-preserving

aggregation using constrained devices. In applications such as infrastructure moni-

toring, it may be beneficial to allow an untrusted entity to learn an aggregate value

without revealing the individual entries that contributed to the aggregate. A tra-

ditional way of allowing an untrusted party to learn these aggregates is through a

trusted aggregator that does not expose the individual entries. In some cases, such

as in the event of a disaster, it may be important not to rely on a trusted aggregator.

The model of aggregation presented here, initially developed by Shi et al. [140]

for large-scale systems, does not require a trusted aggregator. To achieve distributed

differential privacy, a set of devices coordinates to collectively perturbate the output

of an aggregation. This chapter shows that Shi et al.’s cryptographic construction for

achieving distributed differential privacy is feasible using computational RFID devices

by implementing it on a UMass Moo. It also discusses limitations of extensions of

Shi et al.’s model designed to provide fault tolerance [33]. A Moo needs to make

a 17 s computation to contribute to an aggregate. However, if fault tolerance is

implemented, a Moo needs to perform a 2-minute calculation when 100 other devices

are involved or a 4-minute calculation when 10,000 other devices are involved.

Contribution

This chapter demonstrates the feasibility of distributed CRFID systems for the

collective computation of aggregates without relying on a trusted aggregator. This
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chapter presents the implementation of Shi et al.’s [140] protocol on a CRFID proto-

type and describes the limitations of techniques in current CRFIDs that allow fault

tolerance. The computational overhead of one such approach by Chan et al. [33]

is estimated. These results provide a basis for measuring the performance of new

distributed privacy-preserving systems for CRFIDs that do not require a trusted ag-

gregator. Prior work in this area has restricted attention to implementations on

full-fledged computer systems.

6.1 Privacy-Preserving Aggregation with an Oblivious Ag-

gregator

In the example discussed earlier (§5), a bridge may be monitored by a series

of devices equipped with sensors such as vibration, temperature, pressure or other

sensors. While a typical approach for data collection in this example involves a

centralized entity that collects data and analyzes it, in some situations, it could be

desirable that non-trusted entities be able to query the system to obtain aggregate

information without going through the centralized entity. For instance, the link to

the centralized entity may not exist—e.g. in the case of a disaster area or a battle

zone—or it may be useful to allow the public to verify the condition of bridges and

request that a particular one be serviced because the aggregate shows that the bridge

is not structurally sound. In either situation, it may be important to protect the

individual entries of an aggregation. These could expose details about a vulnerability

that should not be made public.

Another example that may need the kind of privacy-preserving aggregation dis-

cussed here is untrusted inventory inspections. For example, when dealing with phar-

maceutical shipments, it may be important to know that no more than a certain

percentage of medications has been exposed to undesirable conditions. An untrusted
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inspector should not be able to gain any knowledge about the specific inventory of a

shipment.

6.2 A Mechanism for Privacy-Preserving Aggregation

Let us consider the problem of computing a sum
∑n

i=1 xi over n values from n

client devices while providing differential privacy. A solution to this problem was

proposed by Shi et al. [140]. Their general technique is illustrated in Figure 6.1, and

the assumptions for the simpler case are described below.

6.2.1 Simple Model Assumptions

Listed below are Shi et al.’s assumptions for a distributed system that enables

the computation of sums using data from multiple clients. Each client is assumed

to have a device that contains data that belongs to the client and that is under his

or her control. Subsequently, possible ways to relax some of these assumptions are

discussed.

The problem is to compute a sum
∑n

i=1 xi over n values, each the result of com-

puting a statistical query over data that resides on each client’s device. Clients are

semi-honest, but they do not trust others with their data; thus, they would like to

be guaranteed differential privacy. While clients may want to participate in the col-

laborative computation of a sum that includes their data, they do not wish to reveal

their individual values. They are not expected to falsely report information or will-

ingly avoid participation. In particular, they are assumed to always respond when

queried by a designated aggregator. However, clients may collude with the aggregator

by revealing their individual values. The designated aggregator is oblivious, and it

is assumed to have access to auxiliary information. The aggregator adheres to the

protocol and is trusted to learn the answer to the sum, but not the individual entries

from each client’s device. Aggregators may gain additional knowledge because they
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may have other means of knowing particular individuals’ values or because they have

access to a related database. Clients and aggregators that participate in the protocol

have previously obtained their private keys from a trusted entity. It is assumed that

there is no churn. That is, there are no dynamic joins or leaves. All participants are

known beforehand, and they all need to participate in order to successfully compute

a sum. Finally, note that the model does not address security properties related to

availability. It is assumed that there is always a communication channel between the

aggregator and each of the devices.
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Device
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Individual
Device

n

Individual
Device 

1Individual 
Device

2
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Device

n-1

...
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nX

i=1

xi + ri
Combine

sub-aggregates

Figure 6.1. Computing a sum via a distributed model to achieve differential privacy.

6.2.2 Basic Construction

Shi et al.’s basic construction can be described as follows. The reader is referred

to [140] for additional details, proofs of security, and bounds on utility. Given G

a cyclic group of prime order p for which the Decisional Diffie-Hellman (DDH) as-

sumption holds, and H : Z → G a hash function modeled as a random oracle, the
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computation of the aggregate takes place in three steps. First, in a setup step, a

trusted dealer selects a public parameter and encryption keys for each of the partici-

pants and the aggregator. Then, each of the participants uses the public parameter

and his or her key to encrypt his or her individual value previously perturbed with

some noise drawn from a geometric distribution. Finally, when an aggregator receives

all the encrypted pieces, he or she combines them to obtain the final aggregate with-

out obtaining the individual contributions in the process. More explicitly the three

steps correspond to the following three procedures:

1. Setup(1λ): The trusted dealer selects a generator g ∈R G as a public parameter

and secret keys sk0, sk1, . . . , skn ∈R Zp such that
∑n

i=0 ski = 0. sk0 is the secret

key for the aggregator, and ski is the secret key for participant i.

2. NoisyEnc(g, ski, t, x̂i): At each time step t, the participant i with value xi adds

noise ri from a geometric distribution, such that x̂i = xi + ri mod p. Then the

participant computes ci = gx̂i ·H(t)ski .

3. AggrDec(g, sk0, t, c1, . . . , cn). The aggregator computes V = H(t)sk0
∏n

i=1 ci

and then S, the discrete log of V base g.

Note that V =
(∏n

i=0H(t)ski
)
g
∑n

i=1 x̂i and because
∑n

i=0 ski = 0 then V = g
∑n

i=1 x̂i

and therefore S =
∑n

i=1 x̂i.

To provide (ε, δ)-differential privacy, the noise ri is chosen as follows:

ri =





Geom(α) with probability β;

0 with probability 1− β.

Where α = exp( ε
δ
), β = 1

n
log 1

δ
, and Geom(α) is the symmetric geometric distribution

that takes integer values such that the probability mass function for the support k is

α−1
α+1
·α|k|. Therefore, when V is decrypted, the resulting value will contain roughly one
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copy of geometric noise in addition to the aggregate in order to achieve differential

privacy. The proof that this scheme is computationally (ε, δ)-differentially private

against compromised users can be found in Shi et al.’s paper [140]. Also note that

the communication is O(n), the total computation for a client is O(1), and the error

in the aggregate is also O(1).

6.3 Implementation Using RFID-Scale Devices

The feasibility of implementing a distributed system to perform privacy-preserving

aggregation of time-series of data using RFID-scale devices is explored here. The

approach applies the system proposed by Shi et al. [140], which is then used by Chan

et al. [33] as a building block for an alternate construction that allows for dynamic

node joins and leaves.

As described above, in Shi et al.’s basic construction, each participant’s device

needs to compute a hash, two modular exponentiations, and a multiplication in a

Diffie-Hellman group. Decrypting the aggregate using this construction requires the

computation of a dilogarithm, and therefore, significantly more computational power.

Thus this chapter shows that this model can be realized even when the individual

devices are constrained, provided that the aggregator is sufficiently powerful.

6.3.1 Implementation Details

An implementation of the cryptographic algorithms with the UMass Moo [148]

is used to evaluate the feasibility of implementing a system such as Shi et al.’s with

RFID-scale devices. This CRFID prototype has an MSP430F2618 microcontroller

unit with 8KB of RAM and runs at 4 MHz using harvested power and up to 16 MHz

using an additional source of power, such as a solar panel or a vibration harvester.

The implementation of Shi et al.’s basic algorithms uses the Miracl [32] library

for multi-precision arithmetic and elliptic curve arithmetic. The code was compiled
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using the IAR Embedded Workbench for TI MSP430 [6] version 5.40.7 for measuring

running times, memory footprint, and code size. Miracl was configured to use static

memory allocation, i.e. functions such as malloc were not used in this implementation.

The code is in C and does not use assembly optimizations.

For comparison, six DH groups were used: DH G1 is a classic Diffie-Hellman group

with a 640-bit prime; DH G2 is a classic Diffie-Hellman group with a 1024-bit prime;

and EC G3,G4,G5,G6 are the elliptic curve groups associated to the NIST curves

P-192, P-224, P-256, P-384 respectively [23].

The implementation was also integrated in Contiki [48] to explore issues of inte-

gration with an RTOS and a micro database such as Antelope [144]. Some of the

issues considered are RAM utilization and additional code size. This integration was

evaluated using Cooja [115], a Java based simulator for MSP430 devices.

6.3.2 Measurements

Group Comparable Cycles Time Time RAM
Strength (calculated) (calculated)

@ 4Mhz @ 16Mhz
DH G1 – 13,4225,440 33.5 s 8.3 s 3379 B
DH G2 SKIPJACK 333,209,546 83.3 s 20.8 s 4675 B
EC G3 SKIPJACK 67,849,396 16.9 s 4.2 s 3463 B
EC G4 Triple-DES 89,254,793 22.3 s 5.5 s 3571 B
EC G5 AES-128 115,877,960 28.9 s 7.2 s 3679 B
EC G6 AES-192 244,316,066 61.0 s 15.2 s 4111 B

Table 6.1. The cycle count for encrypting a noisy value (ci = gx̂i ·H(t)ski) measured
using a hardware debugger and a UMass Moo. The underlying hash function was
derived using SHA256. As a reference, the second column lists a block cipher with
comparable strength based on the key size [112, 23]. The reported time is calculated
assuming a clock speed of 4 MHz, typical when using harvested energy, and 16 MHz,
the maximum when an additional source of power is available. The RAM requirements
do not include the networking stack or any other additional application logic and are
measured using IAR’s IDE and compiler tools V.5.40.7.
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Table 6.1 shows the time it would take a CRFID tag to produce an encrypted

noisy value (§6). As we can see, it is possible to encrypt a noisy value on a Moo in

under 17 s using an acceptable level of security. For higher levels of security, using

classic Diffie-Hellman groups has a prohibitive cost, not only computationally, but the

memory requirements are greater than those of the current UMass Moo prototype.

An implementation for an MSP430 using a classic Diffie-Hellman group with a 2048-

bit prime requires 13 KB of RAM, more than the 8 KB of RAM of the current UMass

Moo prototype. This total amount of RAM has to be shared with the networking

stack and other application logic.

6.3.3 Additional System Considerations

It is important to note that in addition to being able to generate a noisy encrypted

version of a local query result, a device should be able to store its data locally on

a system that resembles a relational database. One example of such a system for

constrained devices is Antelope [144]. This system allows for the computation of

queries such as:

>> SELECT MEAN(humidity), MAX(humidity) FROM samples

WHERE year = 2010 AND month >= 6 AND month <= 8;

or

>> contacts <- JOIN device, rendezvous ON device_id

PROJECT address, year, mon;

SELECT COUNT(*) FROM contacts WHERE year = 2011 AND mon = 4

AND address = aaaa::1;

It is also necessary to allow some basic multitasking to coordinate communication,

computation, sensing, and possibly actuating. Over the years multiple RTOSes have

been developed for sensor nodes, such as TinyOS [98] or Contiki [48]. Currently,
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there is no operating system with comparable functionality for RFID-scale devices.

Instead multitasking is implemented using finite state machines. Switching between

states happens using timers and interrupts. One reason contributing to the non-

existence of real-time operating systems for RFID-scale devices may be their highly

erratic power cycles. An RTOS suitable for these devices would have to have faster

suspend and resume functionality than RTOSes for battery-powered systems, which

for the most part assume longer power cycles.

With this in mind, it is important to ensure that the code sizes of an RTOS,

database system, and cryptographic implementation do not exceed the total size

of ROM available. The implementation of Shi et al.’s generation of noisy encryp-

tions (§6.3.1) was integrated with Contiki and Antelope to illustrate that the to-

tal integration of the system may fit within the 116 KB available for code in an

MSP430F2618. The cryptographic components require approximately 31 KB de-

pending on the DH group selected, and Contiki and Antelope require 4 KB and

17 KB respectively in their minimum configurations. Finally, there needs to be suf-

ficient code space to implement networking and drivers for additional storage (i.e.

external flash). In the case of this prototype, these require under 4 KB; however,

other networking stacks such as ip or ipv6 may have significantly higher code size

requirements.

In practice, a greater challenge is to accommodate RAM requirements. Because

the implementation of the cryptographic components requires approximately 4KB of

RAM and a database system such as Antelope requires just over 4KB of RAM, there

is barely enough room to fit both of these components in the 8 KB of total RAM avail-

able. To ameliorate this issue, a custom implementation of the crypto components

was developed from scratch using EC G3 and only including the arithmetic operations

needed to perform arithmetic on the NIST curve P-192 [23]. This implementation

requires approximately 11 KB of code size and approximately 2 KB of RAM.
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6.4 Fault Tolerance

Shi et al.’s basic approach suffers from the requirement that each participant

must take part in the aggregation. It is easy to see that if a single encrypted entry

ci = gx̂i ·H(t)ski is missing, then V ′ =
(∏

i∈S H(t)ski
)
g
∑

i∈S x̂i will not decrypt to the

sum
∑

i∈S x̂i of all the remaining values.

Chan et al. [33] built on Shi et al.’s basic approach to create a solution that

provides fault tolerance and dynamic joins and leaves by using binary trees. While

this solution may be appealing when using traditional computer systems such as

workstations or servers, it may not always be practical on constrained devices. The

main reason is that a client in this system has to perform O(log n) encryptions rather

than a single encryption. For example, a device needs to perform 14 encryptions when

the number of devices is approximately 10,000 or 7 encryptions when the number of

devices is approximately 100. Thus, in practice, computing a noisy aggregate using

constrained devices such as CRFIDs will require minutes rather than seconds. In

some applications, however, this penalty may be acceptable.

6.4.1 Utility

Shi et al.’s approach produces an answer with an error of size O(1). However,

Chan et al.’s produces an error1 of size Õ((log n)3/2) in order to deal with missing

participants [33]. These bounds do not take into account the issue of requiring privacy

budgets for multiple related queries.

6.5 Related Work

Related work in networking and distributed systems has aimed to improve the per-

formance of aggregations. For example, Chen et al [37] propose a system for achieving

1The authors use the simpler Õ(·) notation to hide a log log n factor and other factors that depend
on the number of failed users and the differential privacy factors.
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distributed differential privacy using the Goldwasser-Micali bit-cryptosystem [67]. In

such a system, encrypting a bit requires a squaring and a multiplication. When the

local answer to a query is small, this encryption system is significantly more efficient.

A drawback of their approach is that they assume the existence of a proxy that is

honest but curious between the analysts and the participants. This proxy controls

which clients participate in a given aggregation. Chen et al. discuss a way to deal

with malicious proxies through the use of trusted hardware, such as Trusted Platform

Modules (TPMs).

Another system that guarantees differential privacy using a distributed model

of a sort is GUPT [104]. However, Mohan et al.’s distributed model has the goal

of achieving parallelism to improve performance without compromising the utility

guarantees. This parallelism also allows for the transparent division into computation

blocks that can be independently calculated. The purpose of this is to enhance

practicality even when programs are not written with privacy in mind. In GUPT the

aggregator is trusted and the private output is the result of computing an answer to

an aggregate and adding Laplacian noise afterwards.

McSherry [103] developed PINQ, a system that provides a programing interface to

perform queries on a database obtaining responses that provide differential privacy.

McSherry shows how to deal with the issue of composing multiple queries and how

this composition affects both utility and privacy. As a result, he develops a privacy

calculus such that an agent sets and verifies the proper differential privacy parameters

for each analyst according to a policy and the various queries made by that agent.

6.6 Conclusion

This chapter shows that techniques to achieve differential privacy can be imple-

mented using CRFIDs, opening the door to a variety of privacy-aware applications.

However, there are important issues that need to be addressed to improve the prac-
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ticality of large deployments. The issue of allowing fault tolerance may require a

considerable number of additional expensive encryptions, which may cross the line

of acceptable performance. Other system aspects that require further development

include the design and implementation of supporting system components such as a

real-time operating system for RFID-scale devices. From the theoretical standpoint, it

is important to develop more practical models that address malicious clients, privacy

budgets, and high utility guarantees without relying on trusted aggregators.
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CHAPTER 7

PRIVACY-PRESERVING AGGREGATION OF MEDICAL
TELEMETRY

Medical devices are increasingly collecting telemetry to monitor patients’ well-

being as well as device functioning. The collection and storage of this telemetry

are often performed by device manufacturers, who then make aggregate information

available to caregivers. The information gathered from this telemetry could also be

used to study the effectiveness of devices and their reliability. However, a challenge lies

in being able to compute statistical analyses on telemetry from multiple manufacturers

and institutions such that the privacy of individual patients is protected.

An alternative approach is one in which caregivers collect and store telemetry from

medical devices and participate in multi-institutional protocols to perform statistical

analyses [105].1 Homomorphic encryption schemes can be used to facilitate the cal-

culation of statistical functions while preventing the disclosure of individual entries,

thus allowing for the computation of analyses using data from multiple institutions

and manufacturers.

The feasibility of this approach is judged on the basis of how well an analysis

is performed rather than how fast an answer is computed. The rational is that the

computation of a privacy-preserving counting query in a distributed fashion can be

done sufficiently fast when performing an analysis over a period of several weeks.

1This chapter draws from previously published work: “HICCUPS: Health Information Collabora-
tive Collection Using Privacy and Security” by A. Molina, M. Salajegheh, and K. Fu. In Proceedings
of the ACM Workshop on Security and Privacy in Medical and Home-Care Systems. November 2009.
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This chapter shows that a number of useful statistical analyses may be performed

via this approach, including counting queries, averages, sums, maxima, minima and

linear regressions; which allow for the evaluation of the effectiveness and reliability of

medical devices.

Contributions

The contributions of this chapter are:

Model. This chapter proposes an alternative model that does not rely on device

manufacturers as mediators between the collection of telemetry and analysts. In the

resulting trusted computing base, only caregivers have full access to patients’ data.

Because patients in a single institution may have devices from multiple manufacturers,

institutions will be in the position to perform analyses across manufacturers. Multiple

institutions could then collaborate in the computation of analyses.

Design. This chapter designs Health Information Collaborative Collection Using

Privacy and Security (HICCUPS), a system that could allow for the collaborative

computation of aggregates across institutions via homomorphic encryption.

Definition. This chapter defines a metric for evaluating a system that computes

statistical aggregates while preserving patients’ privacy. A suitable metric for a system

should be based on the utility of analyses rather than the computational overhead

required to protect privacy, provided that a computation is done sufficiently fast.

7.1 Case for a Distributed Model for Aggregating Medical

Telemetry

Preserving the privacy of aggregated medical data currently focuses on manual

removal of personal information or rigid processing of data by highly trusted infor-

mation brokers. While such systems can work well on a small scale, drawbacks include

the ad-hoc nature of manual redactions and the placing of power in the hands of a
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single entity that could be compromised. An alternative approach to secure aggre-

gation could instead protect the privacy of individuals using a distributed model.

Aggregate information could be used to identify trends and system-wide causes of

disease, procedural mistakes, or device malfunction.

HICCUPS: Andres Molina, Mastooreh Salajegheh, Kevin Fu

New TCB

8

Patients Caregiver
Institution

Researchers

Figure 7.1. An alternative trust model would place researchers—including device
manufacturers—in a position where they can submit privacy preserving queries. Only
patients and their caregivers have full access to patients’ telemetry.

Medical telemetry generated by home monitoring is an example of an instance in

which patient privacy could be at risk due to current practices that do not limit the

amount of data given to device manufacturers. The trend toward remote monitoring

allows patients with implanted devices to ensure proper functioning without the in-

convenience of having to travel frequently to a clinical office. The current mechanism

employed to make this remote monitoring possible involves sending all of the medical

telemetry directly to the manufacturers, which then make it available to a patient’s

caregiver remotely (Figure 7.4). As of 2012, patients with medical implants such as

implantable cardio-defibrillators and pacemakers do not have access to the informa-
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Figure 7.2. Data flow that prevails currently. Patients upload their telemetry to
the manufacturer’s servers, from which it is made available to caregivers for analysis.

tion that is collected from their devices and manufacturers treat these data as their

own [29]. There is also no formal infrastructure to allow clinical researchers to gain

access to key pieces of data of a statistical nature.

Solutions such as making it easier for researchers to access de-identified data,

as proposed by Gostin and Nass [113], may still pose unanticipated problems. For

example, Biel et al. [19] show that it is possible to identify an individual in a pre-

determined group by using ECG data. Moreover, centralized locations that even

briefly have access to unencrypted data create single points of failure where entire

national databases could be compromised by clever hackers or conspiring insiders.

As an alternative, this chapter proposes that both device manufacturers and clini-

cal researchers be able to obtain the information that they need about the data via

computing aggregate functions on encrypted data.

Medical Implant Reliability Studies

In 2006, cardiologist Dr. William Maisel [100] published a meta analysis of pace-

maker and ICD registries to assess the rates of pacemaker and ICD malfunctions in

order to be able to identify trends in the reliability of these devices. Another similar

study also aimed at counting the malfunctions of pacemakers and ICDs examined

data from multiple years included in the annual reports of the Federal Drug Admin-

istration of the U.S. [101]. The authors of this study pointed out that the database
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HICCUPS: Andres Molina, Mastooreh Salajegheh, Kevin Fu
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Figure 7.3. The current trust model requires that a manufacturer gather all patient
data and deliver it to their corresponding caregivers. Patients do not currently have
access to their data.

registries that monitor the performance of these devices are limited primarily by their

small size or by their voluntary nature. Both of the studies cited above concluded

that ongoing surveillance of pacemaker and ICD performance should be required. A

system like the one described in this chapter could allow institutions such as the

FDA to conduct reports that provide a more detailed aggregation of device malfunc-

tions including device model numbers and types of malfunctions. The data-sets made

available using this model could be larger, and the aggregation could potentially be

computed more frequently and in an automated way. If manufacturers published their

parameters for identifying a malfunctioning device without extracting them from the

patient, then not only the caregiver, but also the FDA, would be able to react to

reliability or safety issues.
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Identifying the Impact of Low Income on Preterm Birth Risk

Developments in the implementation of distributed methods for analysis may go

beyond medical devices. In 2009 the Center for Democracy and Technology in the

U.S. published a document to encourage the use of de-identified and anonymized

health data and to rethink the protection of this data by regulations such as the

HIPAA Privacy Rule [127]. This document notes that one of the common uses for

this kind of data is research. In particular, the document mentions as an example that

de-identified data has been used to perform research on the prevention of premature

births. One such research study, performed by DeFranco et al. studied the effect

of living in a socioeconomically deprived area on the risk of preterm births [41].

In this study, a number of counties in Missouri were identified as being below the

U.S. poverty line based on census information. These counties were then classified

according to various levels of poverty. The number of pregnancies that resulted in

various periods of preterm birth were counted using de-identified records, and the

aggregates were analyzed. The study concluded that above other underlying risk

factors, women residing in socioeconomically deprived areas are at an increased risk

of having a preterm birth. A distributed system for aggregation could help in the

validation or extension of DeFranco et al.’s analysis to regions all over the nation.

Homomorphic encryption could allow researchers to aggregate device malfunctions or

calculate the number of preterm births for women living below the U.S. poverty line

in various counties. These aggregates could also be computed for different preterm

birth periods and then analyzed to determine the impact of low income conditions.

7.2 HICCUPS

This section presents Health Information Collaborative Collection Using Privacy

and Security (HICCUPS), a distributed system that uses homomorphic encryption to

allow only caregivers to have unrestricted access to patients’ records and at the same
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Figure 7.4. The figure illustrates the data flow that prevails currently. Patients
upload their telemetry to the manufacturer’s servers, from which it is made available
to caregivers for analysis.

time enable researchers to compute statistical values and aggregate functions across

different patients and caregivers.

7.2.1 Background on Homomorphic Encryption

Modern cryptography allows for computation on encrypted values through a tech-

nique developed in the 1970s known as homomorphic encryption [128], which became

popular in the 1990s for secure tallying of encrypted votes [117, 63]. Algorithms from

number theory allow arithmetic on encrypted data.

Homomorphic encryption allows an information aggregator not to be trusted.

That is, the aggregator could not easily violate individual patient privacy in a math-

ematically provable sense. The scheme prevents rogue insiders from violating privacy

and prevents accidental leakage of private information. The tradeoff is that homo-

morphic encryption requires sophisticated computation on a modern computer, which

is feasible on commodity hardware for workloads common to medical telemetry.

The potential of computing on encrypted data has promising theoretical results,

especially after the recent findings of Gentry [63] that prove fully homomorphic en-

cryption schemes can be implemented using lattices. This discovery suggests that the
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research community may be close to extending the capabilities of this technique to

essentially allow arbitrary computations on encrypted data.

7.2.2 Access Model

The assumption is that direct caregivers need access to all of a patient’s med-

ical data in order to perform proper treatment. Under this assumption, there is

an unrestricted data flow between patients and their direct caregivers. In such a

model, multiparty computation techniques can be applied to allow distinct caregivers

to compute collective answers to queries posed by clinical researchers and manufac-

turers (Figure 7.5).

For simplicity, it is also assumed that a patient does not have multiple caregivers

in this model. Multiple associations could lead to false aggregates due to duplication.

However, such a situation can be addressed by requesting that each patient has only

one caregiver that reports data on his behalf.

The queries required by researchers and manufacturers can be classified into the

following types:

1. Selective individual disclosure: Queries to obtain a list of records.

This type of query would present the problem of returning a set of records

that match a set of criteria from data distributed across the set of caregivers

{C1, C2, . . . Cn}. The result of such a query can be seen as a matrix, the rows of

which are the union of the rows of the sub-matrices that each of the caregivers

returns to the query posted. For example, a query could request the age, gender

and number of critical events in a given month for all the patients that have an

ICD and that use a home monitor nationwide. Then each caregiver Ci would

return a matrix (query table) with three columns and as many rows as patients

are being treated by Ci. The final result to the query should be a union of all

these records. The result can be thought of as a matrix with the same three
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columns and with as many rows as the total number of relevant records found

nationwide.

2. Queries to obtain aggregated disclosures. This type of query would

present the problem of computing an aggregate function on data distributed

across the set of caregivers {C1, C2, . . . Ck} while preserving the privacy of the

data between any two different caregivers.

The main focus of this chapter is to design a system using homomorphic encryption

to address the queries of the second type (aggregation), which are posed when clinical

researchers and device manufacturers need to compute aggregates and other similar

statistical information. The objectives for obtaining data may differ between clinical

researchers and device manufacturers, and it is important to note that this model

requires that both researchers and manufacturers specify clearly and openly the kind

of information that they require.

7.2.3 Threat Model

The goal of HICCUPS is to prevent unnecessary disclosure of large collections

of medical telemetry. It is assumed that locations with transient access to plaintext

records (e.g., caregivers) are relatively small collections such that a compromise will

result in only localized disclosure of information rather than system-wide disclosure.

The threat model for HICCUPS considers both external and internal adversaries.

For instance, an external hacker who gains unauthorized access to a machine should

cause at worst a localized disclosure of patient information. An external entity should

not be able to cause a catastrophic disclosure of the entire collection. Potential in-

siders include medical researchers and aggregators. When these players follow the

established protocol, it is expected that they will have access to aggregated informa-

tion. However, if the players act maliciously they should not be able to compromise

the entire system, but at worst delay the availability of information. In this model,
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caregivers are fully trusted by their corresponding patients. That is, caregivers are

not considered potential insiders but are potential targets of external adversaries.

7.2.4 Desired Properties

In order to answer queries for aggregated information, it is necessary to solve the

problem of computing aggregates from encrypted values using the public key Rp of

a researcher R by caregivers {C1, C2, . . . Ck}. Desirable properties for such a solution

include:

1. Anonymity of Data Provider. Given a set of ciphertexts

{EncRp(a1),EncRp(a2), . . . ,EncRp(ak)},

provided by a set of entities {Cj}, the probability of determining that EncRp(ai),

for a given i, was computed by Cj for some j should differ by a negligible quantity

from guessing this association.

2. Distributivity. It is important to emphasize that a proposed solution should

be implemented using a distributed model as opposed to a centralized model.

A centralized approach would give too much power to the holder and would

create a single point of failure. As discussed by Jefferson et al. [83] centralized

systems introduce several privacy risks in voting systems [84] for example.

3. Semantic security. A final implementation of HICCUPS should be done

using an encryption system that is semantically secure to avoid chosen plaintext

attacks (§7.5).

7.2.5 Design

This section shows how having an encryption scheme with the homomorphic prop-

erty may provide an answer to the problem of computing aggregate functions with

102



Patient 1

Patient 2

Patient n

. . .

Caregiver 1

Caregiver 2

DB

DB

Researchers/
Manufacturers Aggregator

DB

Query

Response

Figure 7.5. A researcher or manufacturer needs to compute an aggregate function
from data across various caregivers. The query can be handled by an aggregator
chosen among the caregivers that computes on encrypted data.

data that is distributed among various caregivers. Sample aggregation functions that

can be computed using the homomorphic property are presented (§7.3). The number

of functions that can be computed using this technique is dramatically extended if a

fully homomorphic encryption is used.

Unless stated otherwise, the existence of a public key infrastructure with a se-

mantically secure homomorphic encryption scheme with key generation algorithm,

encryption algorithm, and decryption algorithm (Gen,Enc,Dec respectively) is as-

sumed.

The model proposed here is one in which patients give all of their medical data to

their caregivers. In this model, various patients’ data clusters around caregivers. The

tasks of computing aggregates across caregivers in order to answer the questions of

manufacturers and researchers could then be thought of as a multiparty computation

(Figure 7.6).
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Figure 7.6. The aggregator is chosen at random to eliminate the probability of
a compromised aggregator systematically leaking data. The rest of the caregivers
compute sub-aggregates, which can be combined by the aggregator to produce a
total aggregate for the manufacturers and researchers.

Consider the problem of computing a publicly known aggregate function f for a

variable x with data distributed among a set of caregivers {C1, C2, . . . , Ck} from sub-

aggregates a1, a2, ..., an, pre-computed by the caregivers Ci. That is, f(a1, a2, ..., an)

is the aggregate value needed for the publicly known function f . Aggregates can

be combined to compute functions such as sample mean, sample variance, maxima,

linear regression, and sample correlation (§7.3).

A global aggregate could be computed as follows:

1. Request for an aggregate. A researcher R interested in computing a global

aggregate submits the request specifying one of the possible aggregate functions

f . For example, the function could be a simple aggregate sum f(xij) =
∑

i,j xij,

over a defined set of values xij distributed among all the set of participant

caregivers {Ci}.

2. Selection of an aggregator. All the caregivers run a distributed algorithm

to determine a random aggregator within the set of participant caregivers {Ci}.
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At the end of this step, one of the participant caregivers is designated the

aggregator for the request. This aggregator is denoted A. Note that having a

fixed aggregator could lead to an attack in which the privacy guarantees could

be reduced to essentially those of handing over the sub-aggregates per caregiver

directly to the researcher R. This may be undesirable, for example, if a query

is asking for the age of the oldest patient in a group distributed nationwide. By

exposing sub-aggregates, the researcher would obtain not only the age, but also

potentially the name of the patient’s caregiver. The selection of an aggregator

randomly can be done using distributed techniques similar to those proposed

by Kapron et al. [88].

3. Computation of sub-aggregates. Each caregiver Ci receives the request

and computes its corresponding sub-aggregate ai and encrypts it first using the

public key of the researcher Rp, and then using the public key of the aggregator

Ap. The caregiver Ci can then use a bulletin board style protocol to share the

encrypted result EncAp(EncRp(ai)). Coming back to the example, the caregivers

would create the ais such that
∑

i ai =
∑

i,j xij, but would not send the ais

unencrypted.

4. Unwrapping. The caregiver A chosen to compute the aggregate obtains the

encrypted values {EncRp(ai)} by decrypting the first layer of

EncAp(EncRp(ai)) for each i. This is needed to ensure that only the designed

aggregator A is able to compute the aggregate. A complimentary technique can

be used to ensure participation; for example, the outer wrap can be signed by

the corresponding caregiver.

5. Aggregation. The caregiver A computes

f ∗(EncRp(ai)), where f ∗ can be obtained from f using the homomorphic prop-

erty. Subsequently A destroys each individual EncRp(ai). Implicitly, this as-
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sumes that the majority of the caregivers are honest. If that were not the

case, and the majority of the caregivers were willing to forward the individual

EncRp(ai), then the probability of falling victim to an attack like the one in the

case of having a fixed aggregator could not be considered negligible. Also note

that the aggregator was not in the position to learn anything about the sub-

aggregates from the other caregivers since the sub-aggregates were encrypted

using the researcher’s public key. In the example f ∗ corresponds to adding en-

crypted aggregates with the operation ⊕, while f corresponds to the addition

of plaintexts, thus f ∗(EncRp(ai)) = ⊕iEncRp(ai).

6. Handing over. The aggregator A returns the encrypted aggregate value

EncRp(f(ai)) to the researcher R, which can be decrypted using its correspond-

ing secret key Rs.

Note that in an alternative approach this aggregation could be done by encrypting

each of the values {EncRp(xi,j)} distributed among caregivers C1, C2, . . . , Ck, where xi,j

is a value known to Ci and j ranges from 1, . . . , ni the sample size in Ci. However, in

the case of computing aggregates for medical data nationwide this could potentially

involve transmitting millions of values to the aggregator A, instead of sending only

one sub-aggregate ai per caregiver. Thus, the proposed approach could potentially

avoid a large unnecessary overhead.

7.3 Computing Aggregates through Counting Queries

Multiple aggregates can be combined to calculate common statistical functions,

although there are some challenges in generalizing the examples below to complete so-

lutions for privacy-preserving aggregation (§7.5). The ability to extend the techniques

described here will depend on whether a singly homomorphic encryption scheme or

a fully homomorphic scheme is used. That is, whether one or two operations (addi-
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tion and/or multiplication) on ciphertexts with the homomorphic property may be

performed.

Consider a homomorphic encryption scheme that is IND-CPA secure with key

generation algorithm, encryption algorithm, and decryption algorithm (Gen,Enc,Dec

respectively) and with semigroups of plaintexts and ciphertexts M and C respectively.

That is, the homomorphic property is such that for m1,m2 ∈M and a pair of public

and secrete keys Ap,As

EncAp(m1 +m2) =p EncAp(m1)⊕ EncAp(m2)

where ⊕ is the corresponding operation to + on C and =p denotes indistinguishability

of distributions. An adversary would not be able to tell that EncAp(m1 + m2) and

EncAp(m1)⊕ EncAp(m2) correspond to the same plaintext. However

DecAs(EncAp(m1 +m2)) = DecAs(EncAp(m1)⊕ EncAp(m2)).

A randomly selected caregiver computes an aggregate such as the sample mean

and variance of a sample of values {xi,j} distributed among caregivers C1, C2, . . . , Ck,

where xi,j is a value known to Ci and j ranges from 1, . . . , ni, the sample size in Ci.

This procedure does not require the actual knowledge of the values {xi,j}. Instead

the knowledge of appropriate encrypted sub-aggregate values suffices.

In this case, the mean of xi,j over all Cis is given by

x̄ =

∑k
i=1

∑ni

j=1 xi,j∑k
i=1 ni

And the variance of the sample is given by

s2 =

∑k
i=1

∑ni

j=1(xi,j)
2 − (

∑k
i=1

∑ni
j=1 xi,j)

2∑k
i=1 ni

(
∑k

i=1 ni)− 1
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Now, denote ai =
∑ni

j=1 xi,j, and

bi =
∑ni

j=1(xi,j)
2 then the formulas can be rewritten as:

x̄ =

∑k
i=1 ai∑k
i=1 ni

and

s2 =

∑k
i=1 bi −

(
∑k

i=1 ai)
2∑k

i=1 ni

(
∑k

i=1 ni)− 1

Thus, given the additive homomorphic scheme, researcher R can compute these

aggregates preserving privacy as follows: In order to compute aggregates such as the

mean and the variance, the aggregator A first collects the encrypted values of ai, bi, ni

(using the public key, Rp of the researcher R) from the caregivers. More explicitly,

if each of the Cis provides EncRp(ai), EncRp(bi), and EncRp(ni), then the aggregator

A computes a =
⊕k

i=1 EncRp(ai), b =
⊕k

i=1 EncRp(bi), and n =
⊕k

i=1 EncRp(ni)

and sends these three values to researcher R. Finally, the researcher R, using the

corresponding secret key Rs, would simply compute:

x̄ =
DecRs(a)

DecRs(n)

since
k⊕

i=1

EncRp(ai) =p EncRp(
k∑

i=1

ai).

Similarly,

s2 =
DecRs(b)−

DecRs (a)

DecRs (n)

DecRs(n)− 1
.

These ideas can be extended to compute a linear regression y = β0 + β1x and a

sample correlation rxy. The problem of estimating β0, and β1 can be obtained from

the sums
∑
x,
∑
x2,
∑
y,
∑
y2, and

∑
xy as follows:

108



β1 =

∑
y ·
∑
x− n ·

∑
xy

(
∑
x)2 − n · (

∑
x2)

and

β0 =

∑
x ·
∑
xy −

∑
y
∑
x2

(
∑
x)2 − n · x2

and

rxy =
n ·
∑
xy −

∑
x
∑
y√

n ·
∑
x2 − (

∑
x)2
√
n ·
∑
y2 − (

∑
y)2

.

It may also be useful to compute maxima or minima. The following shows how

to compute maxima; the computation of minima is completely analogous. While this

described method is not optimal, it serves to illustrate the feasibility of computing

such functions using aggregates.

In order to compute a global maximum for a variable among a set of caregivers

{Ci}, the problem must first be redefined in a convenient way. In particular, it will

be necessary to have an idea of the range (rmin, rmax) and precision d for these values.

For example, if it were required to find the maximum temperature for all the patients

meeting certain conditions, one could specify the range to be between 35 and 48

degrees Celsius. Precision may need to be obtained up to one decimal place.

Given these two values, one can define a vector with l entries where l is equal to

the number of intervals of size d in the interval (rmax, rmin), or simply l = rmax−rmin

d
if

rmin, rmax ∈ Z. Then each of the entities in {Ci} can return a vector

vi = (EncRp(c0), . . . ,EncRp(cj), . . . ,EncRp(cl−1))

where cj = 1, if rmin + cj is the maximum value within the caregiver Ci’s data, and

cj = 0 otherwise.
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Adding the vectors {vi} across caregivers produces a vector v =
∑

i vi such that

the last non-zero entry of the decrypted vector DecRs(v) (decrypted entry by entry)

corresponds to the global maximum.

This approach would require the computation of l sum aggregations, and, there-

fore, the complexity of this algorithm increases linearly with the number of possible

values for the maximum. This complexity can be greatly reduced by using a typical

tree-like approach to determine if the maximum is on the left or on the right of a given

interval. That is, one can run this aggregation scheme with only two possible values

for the maximum, implementing it so that the participant caregivers return either

one or the other as being closer to the maximum. After one side has been chosen, the

algorithm would be used recursively on this selected subinterval to again determine

if the maximum is on the left or on the right side of the interval until the desired

precision has been achieved. This approach would require a logarithmic number of

sum aggregations on l, but there would be an overhead in the communication caused

by multiple protocol interactions.

Now consider a fully homomorphic encryption scheme that is IND-CPA secure

with key generation algorithm, encryption algorithm, and decryption algorithm (Gen,Enc,Dec

respectively) and with sets of plaintexts and ciphertexts M and C respectively with

ring structures. Then, the homomorphic properties are as follows: For m1,m2 ∈ M

and a pair of public and secret keys Ap,As,

EncAp(m1 +m2) =p EncAp(m1)⊕ EncAp(m2)

and

EncAp(m1 ·m2) =p EncAp(m1)� EncAp(m2),

where (+, ·) are the operations in M and (⊕,�) are the corresponding operations on

C. =p denotes indistinguishability of distributions.
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This structure dramatically increases the type of functions that can be computed.

In particular, one can see that matrix multiplication with encrypted data is easy

to compute. This would allow the computation of multiple regression models, for

example. The challenge, however, is to eliminate the need for communicating the

large matrices to an aggregator, and instead, think of subdividing the problem into

smaller problems that each of the caregivers can compute separately.

7.4 Defining Evaluation Metrics

This work is a preliminary attempt to learn the problems and limitations of em-

ploying homomorphic encryption techniques to aggregate medical telemetry. This

section argues for a reconsideration of the metrics for evaluating a solution to the

problem of privacy-preserving aggregation of medical telemetry.

The Case for Expressibility

In biomedical image analysis, processing a single fMRI brain image may take a few

hours or more if processing the image requires tasks such as manual skull stripping or

manual selection of areas of interest by an expert. Gathering the appropriate medical

data to perform research may involve contacting multiple institutions and having

different IT departments gather the data according to multiple parameters—a task

that may take days. Therefore, running time of homomorphic encryption likely should

not serve as the primary metric of quality given that instantaneous results are not

expected. If gathering medical telemetry for research purposes using homomorphic

techniques does not require days of processing, then computation time may not be

the only performance metric, or even an important one.

Determining the extent to which a system like HICCUPS is useful should involve

measuring its expressibility. That is, if a system allows the computation of only one

type of aggregate, then the capability to express an aggregate problem is limited.
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On the other hand, if a system allows the computation of most types of aggregates,

or even further, most types of functions on aggregates, this would mean that the

capability of expressing an aggregate problem is high.

The Case against Strict CPU Metrics

Future systems designed with purposes similar to HICUPPS should not solely be

evaluated with computational performance metrics. Note that the overhead added

by computing aggregates on encrypted data is minimal in comparison to other as-

pects such as communication costs. Compare the following scenarios for computing

aggregates on medical telemetry.

Current Practice. With the current infrastructure, researchers and manufacturers

acquire statistical data by accessing patients’ medical data directly. This scenario

requires that all relevant data be gathered and aggregated under the management

of one institution. Manufacturers query a patient frequently and collect all of the

patients’ data. Researchers must submit their requests to manufacturers or doctors

to obtain the statistical data—potentially taking months to access aggregated data.

Distributed aggregation without privacy. An improvement to the above system

would result from the distribution of the workload among caregivers. A manufacturer

or researcher submits a request for an aggregate to a designated aggregator. This ag-

gregator broadcasts the manufacturer’s request to all of the caregivers. Each caregiver

computes the sub-aggregate of his patients’ medical data and sends back one single

value to the aggregator. Finally, the aggregator combines these sub-aggregates into

one aggregate value that will be returned to the manufacturer or researcher. The

designated aggregator could be the manufacturer itself, one of the caregivers, or an

external entity.

An estimate of the time that is required to compute an aggregate under this

scenario is made up of: the time needed to submit the request to the aggregator;
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the time needed to broadcast the request to the caregivers; the time caregivers need

to compute the sub-aggregate value; the time needed to transmit and process the

data from all the caregivers; and finally, the time needed to compute and return the

aggregate value to the manufacturer or researcher. If caregivers work in parallel, then

the time required to compute the sub-aggregates can be assumed to be the maximum

time needed by any one caregiver.

HICCUPS. In practical terms, the hypothetical performance of HICCUPS differs

from the distributed aggregation scenario mentioned above in that each sub-aggregate

computed by the caregivers is encrypted using, first the researcher’s or manufacturer’s

public key and then using the aggregator’s public key. Additionally, the aggregator

would have to be chosen randomly for each request.

In order to estimate the computation overhead added by HICCUPS, it is possible

to compare the time overhead of this protocol to the second scenario. There are

essentially four pieces of overhead: the time that it takes to perform two encryptions

of a single value; the time that is needed by the aggregator to decrypt the first layer

of encryption; and the time that is needed to perform k operations on encrypted

data, where N is the number of caregivers. Operations on encrypted data include,

for example, additions on a group of elliptic curve points. The performance of HIC-

CUPS can be estimated by calculating the encryption overhead and adding it to the

performance time of the distributed aggregation scenario above.

HICCUPS could be implemented using a variety of encryption schemes. For the

purposes of this argument, only two of the more commonly used encryption schemes

that have the homomorphic property are considered. These schemes are RSA and

ElGamal based on ECC.

Using data provided by Gupta et al. [73], it is possible to estimate the time over-

head of HICCUPS due to security. As Table 7.1 shows, a manufacturer or researcher

would need to tolerate only a delay on the order of 100 milliseconds in order to
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protect the security and privacy of patients’ data. The addition operation is about

0.59 µseconds and 0.71 µseconds for ECC-160 and ECC-224 bits respectively [38].

Protocol RSA-1024 ECC-160 RSA-2048 ECC-224
Time Overhead 901.309 ms 380.66 ms 5786.611 ms 527.431 ms

Table 7.1. Estimated overhead added by HICCUPS for performing a simple aggre-
gation with 100 caregivers with 1000 records each. The table shows the overheads
using four different primitives: securely equivalent RSA-1024 and ECC-160, as well
as RSA-2048 and ECC-224.

7.5 Related Work

Related work on secure aggregation includes applications of homomorphic en-

cryption to electronic voting and advances in understanding the theoretical limits of

homomorphic encryption.

Homomorphic Encryption Applications

Homomorphic encryption has been highly studied since its introduction by Rivest

et al. [128]. Their paper proposed the idea of being able to compute on encrypted

data without the need to decrypt. The desired property was to be able to construct

an encryption scheme such that you would obtain the same result by multiplying two

plaintexts and then encrypting the result, or, by first encrypting two plaintexts and

then multiplying their corresponding ciphertexts.

Castelluccia et al. have shown that it is possible to compute aggregates such

as averages, variances, and standard deviations in a scenario similar to the one de-

scribed, using only a single homomorphic operation [30]. However, due to the re-

source constraints of sensor networks, their work uses symmetric key cryptography

which imposes a different set of requirements than those in this chapter. For instance,

aggregation in sensor networks is hierarchical as opposed to the one-layer aggregator

in HICCUPS.
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The research problem addressed by HICCUPS shares similar goals with electronic

voting designs. Both systems aim to protect user (patient vs. voter) privacy while pro-

viding aggregated result of the private data (statistical function vs. count). However,

the solutions for voting systems cannot be easily applied to the telemetry systems

because of two major differences in the problems: (1) The constraints of voting sys-

tems (voter privacy and result verifiability) are believed to be self-contradictory. This

is not the case in telemetry systems. (2) While the voting system requires only one

fixed query (counting), it is not feasible to require medical researchers to completely

fix their queries. Homomorphic encryption schemes have been successfully applied to

voting [117]. However, HICCUPS ’ desired properties and conditions pose different

problems. For example, the problem of generating ballots, aggregating votes individ-

ually and allowing individual verifications may impose a non-negligible overhead for

computing queries on a regular basis. Also, homomorphic encryption has been used

in the implementation of universal re-encryption for mixnets [70].

There have been attempts to provide privacy-preserving systems for sharing med-

ical data. Au and Croll propose a privacy-preserving centralized e-health system to

provide access to health record data from medical databases distributed across var-

ious clinics and hospitals [13]. However, Jefferson et al. [83] exposed some of the

privacy risks introduced by a centralized system, such as the voting system studied in

their work [84]. Furthermore, Sahai suggested that the existence of an efficient and

practical semantically secure public key encryption scheme that is also algebraically

homomorphic, would enable minimally interactive distributed data-mining and secure

computation [131].

Theoretical Advancements

Goldwasser and Micali introduced the term semantic security when they were

defining the first probabilistic cryptosystem to formalize the fact that determinis-
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tic cryptosystems are not secure against chosen ciphertext attacks [66]. That is, if

a deterministic encryption scheme is used, then it is possible that an eavesdropper

observing several messages may be able to detect ciphertexts coming from identical

messages. This first probabilistic system, proposed by Goldwasser and Micali [67]

was a homomorphic encryption system that, while impractical, served as the basis

for many other homomorphic encryption systems. This implies that the highest se-

curity level cannot be reached by a deterministic homomorphic cryptosystem. Even

further, Boneh and Lipton showed that any deterministic algebraically homomorphic

cryptosystem can be broken in sub-exponential time [22].

Homomorphic encryption does not provide the nonmalleability security require-

ment. For a cryptosystem to be nonmalleable it is necessary that given a ciphertext

c = E(m), it should be hard for an adversary to create a ciphertext c′ = E(m′) such

that a relationship between m′ and m can be established. It is clear that homomorphic

encryption schemes do not satisfy this property since a relationship between m′ and

m would be given by the homomorphic property [44, 45]. Bellare et al. [17] showed

that if a cryptosystem does not provide the nonmalleability security requirement, then

chosen plaintext indistinguishability IND-CPA is the strongest requirement that may

be satisfied by it. In fact, there are homomorphic encryption schemes that satisfy

IND-CPA, for example Elgamal [54] and Pallier [117] cryptosystems.

The question of the existence of a fully homomorphic cryptosystem, i.e. one that

commutes with both addition and multiplication efficiently, was an open problem

until recently. Craig Gentry proved that it is possible to create a fully homomorphic

encryption using lattices [63]. The work of Boneh et al. [21] presents a homomorphic

encryption scheme that allows the evaluation of 2-DNF formulas on encrypted boolean

variables. The defined encryption function supports addition and one multiplication.

The same technique can be used in this chapter to enhance the system capabilities

for researchers and manufacturers. The assumption of having honest majority of
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caregivers made in this chapter can be relaxed by applying the techniques from the

work of Ishai et al. [81]. Their work proposes several solutions to perform secure

arithmetic computation with no honest majority.

Achieving Differential Privacy with Adequate Utility

A challenge in computing distributed counting queries is that when computing

exact answers, it is possible to infer an individual entry by either using a collection

of queries or by using external knowledge. For example, consider the case when an

analyst requests an answer to the computation of a sum
∑n

i=1 ai, where ai is the

entry associated to individual i. Now, if somehow the analyst is able to request the

computation (
∑k−1

i=1 ai) + (
∑n

i=k+1 ai), i.e. because a SELECT query would exclude

individual k, then the analyst would be able to infer the value ak. Differential privacy

gives a formal definition that prevents an adversary from manipulating a system in

this way.

Because achieving differential privacy requires that an answer has a small distor-

tion, one of the main challenges is to ensure that systems that provide differential

privacy also provide good answers ; that is, answers that are very close to an exact

answer. Dinur et al. [43] provide bounds for the minimum amount of noise that must

be added in statistical databases in order to achieve differential privacy. Also, Gupta

et al. [72] provide a bound on the minimum number of statistical queries that are

needed to answer all queries in a given class. However, the problem is more compli-

cated in practice because analyses can be decomposed into simple queries in a variety

of ways. As a result, the final answer to an analysis that is computed with a set of

simpler queries, each answered providing differential privacy, may have different util-

ity than the same analysis computed using a different set of simpler queries. In other

words: “it depends on how you ask.” The issue of decomposing a complex analysis
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into the best set of queries to achieve maximum utility when queries are answered via

a system that provides differential privacy is an open problem.

7.6 Conclusion

This chapter proposes an alternative model for collecting medical telemetry from

medical devices to allow privacy-preserving analyses across institutions. This ap-

proach may be used for monitoring for malfunctions and enabling multi-institutional

research. This chapter also argues that given the time-line of medical studies, sys-

tems to perform multi-institutional analyses should be evaluated on the basis of the

usefulness of the information that can be learned and the privacy that they provide

rather than the computational overhead that may be incurred.
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CHAPTER 8

FUTURE WORK

Recent theoretical advancements have provided robust definitions for characteriz-

ing privacy. There is still more work needed to determine how to attain privacy with

high utility. The notion of utility is to some extent application dependent; for exam-

ple, in the context of statistical databases, Rastogi et al. [124] consider a definition

of utility that relates to the accuracy of computing counting queries. However, there

is ongoing research towards quantifying utility in a more general way, independent

of the application. For instance, Sankar et al. [136] study the problem of quantify-

ing the privacy-utility tradeoff using rate distortion theory. Kasiviswanathan, et al.

address the question of identifying what can be privately learned [90]. Thus, there

are a number of rich intellectual problems whose solutions would improve the current

practice of data collection and analysis.

Additional problems may be of particular interest for systems that are deployed

more ubiquitously while still relying on constrained devices. For example, an interest-

ing issue is computing privacy preserving aggregates in the presence of high churning

rates. In the case of CRFIDs, this could involve calculating aggregates when most

tags do not participate in a given aggregation. This would allow, for instance, a

transportation authority to compute an aggregate query involving only the trans-

portation tokens currently present on a given bus. Chan et al.[33] propose a solution

to perform privacy-preserving aggregation with fault tolerance to address the issue

of aggregation with nodes that occasionally join and leave. Not only is this solution
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somewhat impractical on CRFIDS, but it also assumes that a majority of the tags

will be present in any given aggregation.

Another compelling question relates to determining the extent to which partial

computations can be off-loaded from constrained devices to more powerful computing

systems without leaking potentially private data. Lauter et al. [111] show promising

results with regards to the efficient implementation of fully homomorphic encryption

from ring-LWE. More work is needed to explore what such techniques would make

possible in the near future on highly constrained devices. For example, if the compu-

tation of certain functions could be privately outsourced from constrained devices to

more powerful systems, it may be possible to better design distributed systems that

limit data leakage while enabling high computational workloads.

At a lower level, there is still more research needed to improve general system sup-

port for some particularly constrained devices. In the case of CRFIDs there is room

for designing operating systems, distributed or otherwise, that are adequate in highly

transient power conditions. It is important to continue to improve application sup-

port for these devices, particularly to ensure that they operate securely. Future work

could also affect other related areas in computer systems. Personal devices such as

smart phones, tablet computers, or other handheld devices could potentially improve

the ways in which they collect and aggregate data across individuals. Developments

in distributed techniques to provide privacy in aggregations offer an alternative model

in which individuals do not have to trust providers with their data.

8.1 Privacy-Preserving Dynamic Queries for Smart Metering

Further work is needed on privacy-preserving smart meters to enable flexible

queries. It is possible to use zero-knowledge proofs to compute sophisticated billing

and other aggregates while providing privacy. However, this approach is limited in

its ability to offer flexibility to request different aggregate functions over time. An
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electric utility company may be interested in knowing: How many people in a given

neighborhood charge an electric car during the day? or How many people in a given

neighborhood have underperforming appliances? These questions may be answered in

a privacy-preserving manner using an approach similar to that discussed in Chapter 6.

A challenge is limiting the knowledge that any given analyst may obtain. A query

preprocessor needs to implement a policy that applies privacy parameters according

to the history of queries that a given analyst has requested. Such a technique has

been applied in systems such as GUPT [104]. A related issue may be in implementing

a system that allows individuals to have an input in deciding the extent to which they

would like to participate in such aggregates. For example, some individuals may opt

to enroll in a benefit program where they are required to participate often in this

kind of query. Others may choose to decline all participation.

8.2 Smart Phones and Other Personal Data Relays

Using networking stacks such as the one described in Chapter 5, smart phones

could take on the role of data relays, obtaining data from CRFIDs that are either

attached to a person or a place. A key aspect of providing privacy within the model

of this dissertation is that the raw data remains with the individual; both the individ-

ual and the service provider can benefit from the data without the service provider

having direct access to them. Thus, in this case, a highly constrained device, such

as a medical device, may communicate its data to a smart phone, which would then

respond to a query for an aggregation. Also, this smart phone would potentially ob-

tain an aggregate from the medical implants of other individuals. In this way, smart

phones could take on the role of personal systems that actually interface with service

providers and devices from different individuals. Therefore, the techniques discussed

in this dissertation may be further extended by the additional capabilities of smart

phones. Note that smart phones are members of a more general class of data relays.
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For example, Chapter 4 suggests that in the near future each household will have

small devices that can control all appliances in the home, e.g. lighting, tempera-

ture, vehicle charging, washing appliances, etc. This kind of device would also be a

candidate for mediating aggregation between service providers and other individuals.

Thus, it is possible that the work in this dissertation will motivate further research

with the purpose of developing techniques that allow an individual’s data to stay

with him or her as much as possible to protect location data, participation in social

networks, preferences about places, movies, books, etc.

8.3 Transportation Payments Using CRFIDs

E-cash protocols are related to the techniques discussed in Chapter 4. These pro-

tocols typically involve three parties: banks, users, and merchants and are meant

to enable financial transactions that provide privacy guarantees to users and secu-

rity guarantees to banks and merchants. Thus, users can be guaranteed anonymity

or unlinkability in transactions. Banks and merchants would like to attain strong

guarantees that ensure that transactions are properly backed by real money.

Many of the cryptographic blocks required for e-cash schemes share commonalities

with the cryptographic blocks used in the billing protocol in Chapter 4, such as

cryptographic commitments, CL-signatures and ZKPs. However, the protocols differ

slightly. Typically, users have accounts with banks and withdraw e-coins, which can

be given to merchants in exchange for goods or services. Then merchants, who also

have accounts with banks, can deposit the obtained e-coins to obtain financial credit

for the coins.

An important feature of e-cash is that transactions between users and merchants

may happen off-line. That is, e-coins can be spent without requiring that merchants

communicate to the bank to verify the validity of the e-coins. E-cash protocols instead

discourage double spending by ensuring that when a user double spends an e-coin, he
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or she reveals his or her identity in the process. Thus, when a user creates an account

with a bank, the bank knows the identity of the user but not how he or she spends

e-coins.

The work in this dissertation may serve as a foundation for using CRFIDs to

implement various payment tokens. Hinterwälder et al. [77] have explored the

possibility of implementing an e-cash scheme using a UMass Moo. Hinterwälder et

al. do not discuss the networking aspects of the protocol. The networking stack for

CRFIDs discussed in this dissertation may be complementary to the implementation

of an e-cash scheme that could be used in transportation systems.
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CHAPTER 9

CONCLUSIONS

The work in this dissertation gives evidence to support the thesis that a model

for data collection in which individuals keep most of their data and provide only

aggregates to service providers is practical in applications that rely on low-cost or

ultra-low-power microcontrollers. This dissertation shows that the current model

of relying on a trusted data aggregator poses privacy concerns for individuals, in

particular in the case of smart metering. This application is only one example of

the many data collection systems that are becoming more prevalent. Economic and

technological trends suggest that the issue of creating privacy-aware solutions that can

be implemented on constrained devices will continue to grow in importance because

data collection mechanisms will rely more and more on constrained devices. There

are systems that need to be implemented with low-cost devices, and new systems

may also benefit from emerging energy harvesting technologies that allow for long-

term and low-maintenance deployments. This dissertation also discusses limitations

and challenges that remain open—either related to techniques for achieving privacy

with high utility or regarding improving the practicality of implementations using

constrained systems.

The hope is that this work motivates the development of techniques that place

individuals in control of their own private data. The overall vision of this dissertation

is to contribute to the goal of providing privacy to individuals, which is ultimately

a right that should be preserved not despite achievements in computer science, but

because of them.
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