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The US CDC has recognized moist-heat as one of the most effective and accessible methods of decontaminating N95 masks

for reuse in response to the persistent N95 mask shortages caused by the COVID-19 pandemic. However, it is challenging

to reliably deploy this technique in healthcare settings due to a lack of smart technologies capable of ensuring proper

decontamination conditions of hundreds of masks simultaneously. To tackle these challenges, we developed an open-source

wireless sensor platform—VeriMask1 —that facilitates per-mask verification of the moist-heat decontamination process.

VeriMask is capable of monitoring hundreds of masks simultaneously in commercially available heating systems and provides

a novel throughput-maximization functionality to help operators optimize the decontamination settings. We evaluate VeriMask

in laboratory and real-scenario clinical settings and find that it effectively detects decontamination failures and operator errors

in multiple settings and increases the mask decontamination throughput. Our easy-to-use, low-power, low-cost, scalable

platform integrates with existing hospital protocols and equipment, and can be broadly deployed in under-resourced facilities

to protect front-line healthcare workers by lowering their risk of infection from reused N95 masks. We also memorialize the

design challenges, guidelines, and lessons learned from developing and deploying VeriMask during the COVID-19 Pandemic.

Our hope is that by reflecting and reporting on this design experience, technologists and front-line health workers will be

better prepared to collaborate for future pandemics, regarding mask decontamination, but also other forms of crisis tech.
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1 INTRODUCTION

N95 mask shortages have been a persistent and enduring problem in almost every significant pandemic. The SARS
outbreaks in 2003, H1N1 influenza in 2009 [60, 100], and the COVID-19 pandemic all had severe N95 shortages.
During each pandemic, the abrupt and fierce increase in the demand for N95 masks quickly depleted the supply
chain, forcing the public and healthcare workers to reuse their masks. The ongoing COVID-19 pandemic has
seen particularly serious and prolonged N95 mask shortages worldwide. For instance, a survey in the US from
early 2020 [29] shows that over 50% of 21,000 nurses surveyed were required to reuse N95 masks for at least 5
days on average. The mask shortage has been plaguing the US even until early 2021 [16, 35] and has continued to
severely impact India [11, 38] and other countries [34, 37] suffering from the new wave of COVID-19 variants.
The reuse of N95 masks poses severe risk of infection because of the potential pathogenic agents present on the
masks, especially for front-line healthcare workers using the same disposable mask over multiple days when
treating patients [31].

While these cycles of N95 shortages in recent pandemics highlight the poor preparedness of personal protection
equipment (PPE) supply chain management [60, 100], it also raises a question for researchers and system
developers: What can be done in a pandemic to quickly respond to N95 mask shortages, and how can researchers
engage with communities to prepare for future shortages in the next pandemic? The medical research community
has proposed several methods for decontaminating single-use N95 masks for safe reuse, such as hydrogen peroxide
dosing, autoclave treatment, gamma and UV-C irradiation, etc [101]. These methods, however, either suffer
from chemical exposure and potential harm to the wearer caused by toxic residuals [30], or require expensive
specialized equipment costing as much as $6 million USD [25].
In this work, we identify a candidate for safe, low-cost, and efficient N95 mask decontamination, i.e., the

moist-heat decontamination method, and study the critical challenges preventing this decontamination method
from being rapidly, widely, and reliably deployed in healthcare facilities for protecting front-line healthcare
workers. Moist-heat decontamination has been recognized by the US CDC as one of the most effective and
easy-to-operate decontamination methods for the SARS-CoV-2 virus [18], and has the potential to be deployed
using commercial heating devices such as ovens and warming cabinets that are already widely available in
hospitals [17]. Such deployment, however, is challenging because of:

(1) the risks of decontamination failures caused by non-uniform heating and humidity fluctuations in the
commercial heating systems [45, 78, 80],

(2) unpredictable operating errors, due to human error stemming from complex protocols and exhaustion,
(3) the large burden and difficulty of manual verification of each mask’s decontamination status,
(4) and the impracticality of employing closed-loop control to achieve maximal decontamination throughput.

To address these challenges, we developed VeriMask, an open-source2 wireless sensor platform that enables
rapid, reliable, and cost-efficient moist-heat decontamination in healthcare facilities. VeriMask incorporates
low-cost BLE-enabled sensor nodes in a dense sensing topology that continuously monitors the temperature
and relative humidity of each mask and an Android application that is capable of automatically verifying the
decontamination status of hundreds of masks simultaneously. Based on decontamination profiling, the Android
application is also able to determine and suggest the optimal decontamination settings and help the operators to
maximize the decontamination throughput. In order to be applicable in a wide range of decontamination scenarios
and heating devices, VeriMask is designed to be flexible in terms of configurable decontamination parameters.
VeriMask integrates with existing clinical workflows, and the wireless feature ensures scalability of VeriMask
so that it can be rapidly deployed in clinical settings at large scales. The easy-to-use VeriMask App provides
decontamination information of each individual mask and guarantees adequate decontamination before the N95
masks can be reused. The low-power, high temperature resistant clinical-use VeriMask sensor nodes with a size

2We release our open-hardware and open-source design at https://github.com/longyan97/VeriMask_Designs.
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of 3.5 x 3.8 cm (1.4 x 1.5 inches) can work continuously for over 1000 decontamination cycles without change
of battery and only cost $15.66 each at a quantity of 1000. We evaluated VeriMask in both a laboratory setting
and a clinical setting. Results show that VeriMask is able to detect subtle decontamination failures that might go
undetected without accurate verification and enhance efficiency by increasing decontamination throughput.
VeriMask creates a new system using well-known and verified components, which enables it to have a

real impact on real-world clinics. VeriMask is the first realization of an open-source sensor system design for
disposable mask decontamination, which can play critical roles in mitigating mask shortage emergency caused
by current and future pandemics. To ensure that the challenges, lessons, and design outcomes from VeriMask’s
design and methodology can transfer to future open-source design for emergency response, we constructed
a design framework from VeriMask’s design criteria by relating to researches and works of Free and Open
Source Hardware (FOSH) and proposed general design goals that can be widely applied. Finally, we glean lessons
from our experience with building and deploying VeriMask, and the experience of our clinical and near-clinical
collaborators and partners. We envision that our highly adaptable open-source VeriMask platform and our
experience can greatly accelerate the design and deployment process of mask decontamination sensor systems
and safeguard society when the next pandemic hits. We hope that the general lessons learned from mobile
computing researchers responding to a societal-scale emergency will be memorialized and aid future researches
hoping to respond to future crises. We summarize our main contributions as follows:

(1) We designed and built the VeriMask platform specifically conceived to verify moist-heat decontamination
processes of N95 masks in a semi-automated, human-in-the-loop, reliable way. VeriMask is flexible, scalable,
low-power, and easy-to-use for non-specialized operators, which enables rapid deployment in under-
resourced clinical settings to protect front-line health workers. VeriMask is self-healing and adjusts to
diverse types of heating devices using a profiling function and operator feedback.

(2) We evaluate VeriMask in laboratory and clinical settings and demonstrate its effectiveness in detecting
unsuccessful decontamination that might remain undetected using conventional approaches. We also
integrate VeriMask into existing emergency operating protocols to enable fast, low-cost, and reliable
deployment of moist-heat decontamination processes with commercial heating devices in hospitals.

(3) We formulate VeriMask’s design criteria in a transferable way and elaborate our design experience, con-
siderations, and lessons learned to help future designers quickly respond to mask shortage (and other
large-scale societal) emergencies with open-source design.

2 BACKGROUND & RELATED WORK

2.1 N95 Masks Decontamination Methods

Disposable N95 Filtering Facepiece Respirators (FFRs) commonly referred to as N95 masks or N95 respirators,
are worn by healthcare workers for self-protection. These masks are composed of multiple layers including
an electrostatic filter, depending on the model. With more than 95% filtration efficiency, they are designed to
prevent the wearer from inhaling small airborne particles by capturing them via mechanical and electrostatic
forces [1, 20]. N95 respirators are "single-use," disposable devices that should not be shared or reused.
The US Centers for Disease Control and Prevention (CDC) indicates that N95 masks can be used for up to 8

hours (including between patients), then the device should be properly discarded and replaced [24]. Over time,
the warm and humid environment caused by breathing can accelerate the spread of the captured microorganisms
to the inner layers of the mask, posing a risk of contaminant exposure for the wearer [99].

The shortage of N95 masks during the SARS-CoV-2 pandemic has prompted the consideration of reuse of these
devices after a decontamination process to extend limited stocks [18]. The US Food and Drug Administration
(FDA) guidance identifies as a target for adequate decontamination a 3-log level, or more, bioburden reduction.
In other words the process should reach a viral load reduction of at least a factor of 1000 [26]. In addition, an
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Fig. 1. Three phases of a typical moist-heat decontamination cycle integrated with VeriMask. Phase 1: Each contaminated

mask is put into a rigid container with a VeriMask device and water soaked paper towel to create adequate humidity. Each

sealed container is then transferred into the heating system. Phase 2: The Android app monitors the decontamination

process in real time to detect potential anomalies (e.g. a container temperature dropped below threshold). Phase 3: After

the decontamination time the operator check the type of failure flagged by VeriMask. If the masks that have experienced

decontamination failure can be re-processed, they will be integrated in the next decontamination cycle, otherwise they will

be discarded.

effective N95 mask decontamination should maintain the fit, sealing capacity, and the filtration performance of
the mask. Finally, the process should not damage the mask’s structural integrity, material, and should present no
residual chemical hazard for the wearer due to the treatment (e.g. skin irritation, respiratory distress) [18].

Different approaches has been investigated to decontaminate disposable N95 masks to mitigate the shortage due
to the massive demand, as shown in Table 1. In particular, the US National Institute for Occupational Safety and
Health (NIOSH) [18] and teams of researchers [39, 57, 90, 93] have identified Ultraviolet Germicidal Irradiation
(UVGI), hydrogen peroxide, and moist-heat (MH) as the most promising methods to decontaminate N95 masks
against the virus SARS-CoV-2 without affecting the filtration capacity, fit, and seal.
While Hydrogen peroxide-based methods are widely used in hospitals for inactivating highly resistant

pathogens [101], these processes require expensive and specialized equipment [25] and careful control of humidity
level, gas saturation, concentration, and duration of exposure. The entire process has a duration up to 8 hours,
and only trained personnel should operate the equipment because errors in the dosing protocols could result in
decontamination failure and even explosion hazards [90]. In addition, hydrogen peroxide gas is a corrosive irritant
that can interact with N95 mask to form toxic residues to wearers if not properly removed after treatment [15].
UVGI-based methods depends critically on the UV-C source wavelength (200-280 nm with peak efficacy at ~254
nm) and UV-C dose (≥1.0 𝐽/𝑐𝑚2) applied to each mask surface [57]. Previous studies [61, 73, 103] have found
that (i) the layer structure of certain N95 mask models and the presence of shadows can compromise the efficacy
of the treatment because the mask surfaces may not receive the full UV-C dose, (ii) the mask straps required a
further decontamination procedure because of residuals, (iii) direct exposure to UV-C light is harmful and UV
wavelengths in the range of 175–210 nm can generate ozone which is hazardous to human health.

In contrast to hydrogen peroxide and UVGI methods, moist-heat treatments have minimal duration (typically
30-60 minute), do not require specialized and expensive equipment or a separate decontamination procedure
for the straps, and do not require an off-gas time or a further treatment for removing dangerous chemical
residues [39, 48, 79, 92]. For these reasons, MH methods can be suitable for wide and fast deployment in hospitals,
laboratories, and non-specialized healthcare facilities that are generally already equipped with commercial
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Table 1. Comparison between different N95 masks decontamination methods for on-site deployment. Moist-heat decontami-

nation does not require expensive equipment or off-gas time to remove harmful gas or chemical residues.

Decontamination Chemical Operator Process Costs** Throughput Max Reuse Literature

Method Residue Hazard* Time (N95/Cycle) Cycles sources

VHP Yes Chemical 4-8h $$$ ≤ 160 4+ [12, 19]
HPGP Yes Chemical 24min-1h $$$ ≤ 10 2+ [13, 19]
UVGI No Ozone Exposure 10min*** $$ ≤30++ 5 [10, 32]
Autoclave Steam No No 30min-1h $$$$ 12-20 4+ [28, 44]
Moist Heat No No 30min-1h $ ≤ 100++ 5 [19, 39]

*Assuming standard protection procedures are followed (e.g. wearing mask, gloves, long-sleeved gown, eye protection).

**Considering startup and recurring costs: $$$$ = >$30,000, $$$ = $5,000 - $30,000, $$ = $1,000 - $5,000, $ = <$1,000.

***Dependent on bulb irradiance to ensure ≥ 1𝐽 /𝑐𝑚2 dose is applied to each mask.
+Authorized under FDA Emergency Use Authorization (EUA) in Jan 2021. ++ Depending on the cabin dimension.

heating devices such as warming cabinets, environmental chambers, and convection ovens, which can achieve
the required conditions.

2.2 WSNs For Environmental Monitoring

The design of the VeriMask wireless sensor platform falls into the category of wireless sensor networks (WSN)
for environmental conditions monitoring. Such technology has been widely applied in fields like healthcare
mointoring [40, 50, 65, 88], agricultural science [63, 68, 71, 83, 95], food processing [66, 94], and building moni-
toring [42, 55, 87]. Generally, WSN for environmental monitoring proposed in literature are highly application-
specific, thus less adaptable to be utilized in masks decontamination processes [59, 67, 77]. Since most of the
proposed platforms are not designed for harsh working conditions (e.g., the high operating temperature required
in the MH process), they are likely to experience large performance decrease and even system malfunctions
when deployed in a harsh environment. For instance, previous studies [41, 74] show that WSNs not specifically
designed for high temperatures see sharp decreases in wireless signal strength when temperature increases,
leading to aggravated packet loss and energy consumption. In addition, many of these previous WSNs require
long wireless transmission range of up to 100 meters [68, 94]. Compared to our close-distance monitoring
application scenario, they consume extra power to boost signal strength. Sisinni et al. [98] designed a wireless
temperature monitoring network for autoclave steam sterilizers. However, their proposed network is specialized
for high-pressure autoclave temperature monitoring and not suitable for convection oven-based temperature and
humidity verification. In addition, the high sample rate and other specific requirements for steam sterilizers result
in an average power consumption of 0.4 mA, as well as a larger size platform, making it not compatible with the
N95 mask MH decontamination requirements [39]. VeriMask, in contrast, is conceived for real-time moist-heat
decontamination processes verification that can be used widely on generic convection heating systems.
According to our research, currently there exists no commercial wireless temperature and RH monitoring

systems that satisfy the high-temperature requirement (up to 90°C) of MH decontamination and are as scalable
and automated as VeriMask. Typical wireless sensors on the market [27] can only operate under 60°C, and
uses WiFi or Bluetooth synchronous communication for data transmission which requires additional time for
establishing the connection and limits the maximum number of peripheral nodes connected simultaneously. In
addition, they usually provide passive monitoring functionalities, while VeriMask is designed for automatically
verifying the specific conditions required by MH decontamination.
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3 OPEN SOURCE DESIGN FOR EMERGENCY DECONTAMINATION

The failure of traditional production methods to meet the massive demand for PPE during the COVID-19 pandemic
has led to rapid response from the scientific community on developing new technologies and tools for emergency
use. In particular, Free and Open Source Hardware (FOSH) has been recognized as beneficial in emergency
situations due to its high accessibility and the collective contributions from worldwide expertise which enables
fast development [75, 81]. VeriMask is the first realization of open source design for safe verification of moist-heat
decontamination that is fully integrated with clinical workflows, and was broadly shared with a volunteer
collective [89](registered 501(c)(3) non-profit) of scientists, engineers, clinicians, and students from universities
and health systems across the world and professionals in the private sector. In this section, we describe the
design criteria, challenges, and specifications we formulated developing VeriMask based on our experience and
interaction with stakeholders in this collective.

3.1 Foundational Design Criteria & Guidelines

Leveraging the design experience and critical implementation factors highlighted by previous FOSH works and
open source medical hardware design [36, 47, 62, 76, 91, 96], we have formulated the following 3 foundational
criteria and corresponding guidelines for designing VeriMask. These criterion and guidelines are, in many ways,
generally applicable to emergency response hardware design.

Criterion 1: Fast design & deployment. The emergency caused by shortages poses severe risks of infection
to health workers due to the prolonged use and reuse of PPE while treating sick patients. A timely design and
deployment for protection thus become crucial [53, 84]. Designing simple and highly debuggable open hardware
devices significantly accelerates the implementation, deployment, and maintenance processes [47, 76], and helps
build a trustworthy relationship between designers and healthcare facilities [47]. In addition, utilizing common
off-the-shelf (CoTS) components built and tested by trustworthy manufacturers and available in bulk facilitates
implementation and enhances hardware reliability by avoiding long-time testing, calibration, and availability
problems due to custom hardware. Unlike devices with novel sensing functionality or materials, it is imperative
that emergency response open source design use "boring" but reliable devices to ensure real-world use.

Criterion 2: Generality-oriented robust design. The desired generality is two-fold. First, the function-specific
design should be made applicable to a large scope of deployment scenarios, e.g., using various types of heating
devices. The actual use case of the design in hospitals is usually unpredictable because of the variance in the
existing equipment that different healthcare facilities already posses. In addition, the designers often do not have
direct access to the deployment environment due to healthcare regulations [53, 54], which further undermines
the feasibility of a dedicated design. It is thus crucial in the design process to assume a weak dependence on the
deployment environment and relevant equipment so that it can be easily and widely adopted by different entities
for the target purpose. Second, the building blocks of the open source design should have general and common
enough functionality plus interface. The design should be able to integrate well with existing infrastructures. For
instance, employing popular communication schemes such as WiFi, Bluetooth, and USB not only reduces the
cost of the system by eliminating DIY communication modules, but also enables easier development, debugging,
replacement, and use. Ensuring such general and common interface enables the designers to easily replace
the components in case of a local supply-chain shortage. Generally speaking, ensuring a generality-oriented
design also helps make the open source design transferable and reusable for future systems, and makes parts
obsolescence (common in the electronics industry) less likely.

Criterion 3: Priority-centered design. The most important criterion for making such healthcare-related open
source design is to enforce a priority-centered principle in the specification formulation process. To achieve
that, we propose 3 categories of design goals ordered according to their priorities. 1) Safety. Safety requirements
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are those that can directly endanger the operators and/or intended users if not met. For example, being able to
accurately and reliably determine whether each mask has been successfully decontaminated or not is a safety
requirement for our mask decontamination system design. Safety requirements are the most important and must
be satisfied before other specifications can be considered [23, 36, 91]. To ensure safety, the designers should
fully understand the standards and requirements in government regulations and academic publications, choose
the sensor monitoring scheme based on the worst-case scenarios, and carefully evaluate the information loss
and consequences in sensor data transmissions. 2) Effectiveness. We define effectiveness as a combination of
the degree of achievement for criterion 1 and 2, as well as other performance factors such as designed system’s
throughput, cost, battery life, and size (in the case where portable devices are desired). Considering the large
number of form factors, the designers should develop rubrics for prioritizing the factors and understanding
performance. Besides ensuring safety and fast development of VeriMask, we determine scalability, low-cost, and
small-size as the top-3 factors to make sure under-resourced hospitals can quickly deploy the platform in large
scale. 3) Usability. Usability includes factors such as reducing the workload of the users, making the design easy
to use and understand for non-expert operators, and making the devices more comfortable to use (especially in
the case of wearable devices). Designers should always design with the clinical operating protocol in mind for
improving the actual usability. To ensure high usability of VeriMask, we target at automating the process of mask
decontamination verification, maximizing the decontamination throughput, and minimizing the workload of
configuring and maintaining the VeriMask platform. In general, these priority mappings hold across emergency
response design, as safety, effectiveness, and usability can serve as a rubric for evaluating possible solutions.

3.2 Challenges of MH Decontamination

The most effective methodology of moist-heat decontamination that has been validated on different N95 mask
models consist of treating the contaminated masks by holding them within a target temperature range 𝑇𝑙<𝑇<𝑇ℎ
(usually 70-85°C) and relative humidity range 𝑅𝐻𝑙<𝑅𝐻<𝑅𝐻ℎ (usually 50-100%) for a certain period of time 𝑡𝑑𝑒𝑐𝑜𝑛
(typically 30-60 minutes) [39, 48]. Higher temperatures can damage the masks filtration capacity, sealing, and fit,
while a temperature and relative humidity below the target range or a reduced decontamination time cannot ensure
an adequate bioburden reduction. While these requirements might appear relatively simple, there are several
challenges in designing a verification platform for decontamination, particularly because the characteristics of
MH decontamination processes introduce additional safety and reliability requirements qualitatively different
from those in general-purpose monitoring devices.

Handling N95 masks. N95 masks, which can be subjected to the decontamination process for up to five times
(cycles) [18], should avoid compression during decontamination that could compromise the sealing and fit
characteristics. In addition, cross-contamination between masks should be avoided because bacteria from the
user can remain trapped on the mask surface and survive the treatment. MH decontamination processes are
indeed intended only for virus inactivation, not for complete N95 masks sterilization [39]. For these reasons,
the N95 masks must be kept physically separated (see Figure 1, Phase 1) and returned to the original user
after decontamination. Generally, this requires holding each mask in separate sealed rigid containers with a
specific amount of water solution to help maintain the moisture environment and labeling each mask with the
user data [17]. Thus, the main challenge consists in designing a monitoring platform that can verify the target
temperature, humidity, and decontamination time for each mask in isolated micro-environments over multiple
heating cycles and integrating it with the healthcare guidelines.

Human Factors. The logistics guidelines of implementing clinical decontamination require trained operators
(e.g. healthcare workers or technicians) assigned to the decontamination process [14], who are responsible for
maintaining adequate hygiene workflow and manually inspecting each N95 mask before it can be returned to
the original user. Typically, the manual inspection consists of discarding masks that are visibly damaged or
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have exceeded the maximal allowed number of decontamination cycles. Since the inspection is only based on
visual characteristics, the operator is unable to determine if the decontamination has been unsuccessful (e.g. with
temperature or humidity drop) so the masks are still contaminated. An effective verification tool needs to address
the challenge of enabling the operators to conduct accurate and fast verification by providing reliable feedback.

Non-specialized Commercial Devices and Unpredictable Failures. One major advantage of MH decon-
tamination is its use of commercial heating devices equipped by hospitals which are considered suitable for
emergency decontamination [17]. However, such non-specialized heating devices inherently suffer from the
problem of non-uniform heat distribution as well as complex and uncontrolled heating dynamics [45, 78, 80, 102].
For example, considering the total MH process time 𝑡𝑀𝐻 as the sum of the transient time and decontamination
time, i.e., 𝑡𝑀𝐻 = 𝑡𝑠 + 𝑡𝑑𝑒𝑐𝑜𝑛 , we found with a clinical humidity chamber more than 20 minutes of transient time
variation for reaching the decontamination temperature in different zones (Figure 2 (a)), and more than 9 degrees
of difference between the device’s set temperature and the internal temperature of the containers even when the
cabin was pre-heated (Figure 2 (b)). Such heating dynamics are also affected by the load and initial temperature
conditions. In addition, unpredictable failures such as humidity leakage can also happen due to operational errors
during the treatment. These challenges make a static preventive device profiling using conventional thermal
profilers [33] insufficient and call for real-time verification technologies. We discuss these factors in Section 6.

Throughput Optimization. Another challenge of deploying efficient MH decontamination processes is achiev-
ing optimal decontamination throughput, i.e., ensuring the maximum number of successfully decontaminated
masks in given time. Ideally, this could be achieved by a full control of the heating device to dynamically adjust
the temperature and ventilation of the cabin. However, the large variations in heating devices hardware and
software as well as the impracticality of a nurse or healthcare worker modifying/customizing commercial heating
devices make it infeasible to realize such a closed-loop control while maintaining wide applicability, fast &
reproducible design, and low cost. For these reasons, solving the challenge requires developing a reliable method
for predicting the decontamination throughput and providing the user with the optimal settings that achieve
throughput maximization without being specific to a particular heating device.

3.3 MH Decontamination Process Integrated with VeriMask.

We designed a clinical workflow, with input from the volunteer collective, that would be as low burden as possible
using VeriMask. As shown in Figure 1, the typical operating procedures of a MH decontamination cycle with
VeriMask can be broken down to three main phases [17]. During phase 1, the operator preheats the heating device
to the target temperature (~80°C) based on the adopted MH treatment, and configures the VeriMask smartphone
app with the appropriate thresholds for temperature (𝑇ℎ and 𝑇𝑙 ), humidity (𝑅ℎ and 𝑅𝑙 ), and decontamination time
(𝑡𝑑𝑒𝑐𝑜𝑛). Each contaminated N95 mask is then put into a separate rigid container (e.g. polypropylene, or oven
safe Pyrex glass) with (a) the VeriMask sensor node attached to the lid to avoid direct contact with the masks,
and (b) a paper towel soaked with 500 𝜇L of water (see Figure 4). Then, each container is sealed by properly
closing the lids and transferred into the heating system for the treatment. The duration of this phase can take
approximately 20-30 minutes depending on the mask batch size. Phase 2 consists of waiting for the predetermined
MH process time 𝑡𝑀𝐻 for one cycle of decontamination. In this delicate phase, VeriMask automatically checks
if the critical process conditions are met and declares decontamination failures if certain anomaly conditions
happen (e.g., the relative humidity level falls below the lower threshold). This phase can take 40 to 60 minute
based on the MH process adopted, masks’ model, and heating device used. Finally, in phase 3 the operator removes
the containers from the heating device and sorts each mask based on the mask status shown on the VeriMask
monitor application. The masks can either be returned safely to the original user, discarded, or reprocessed if
necessary based on the clinical policy. This last phase might have a duration of 5-10 minutes depending on the

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 119. Publication date: September 2021.



VeriMask: Facilitating Decontamination of N95 Masks in the COVID-19 Pandemic: Challenges, Lessons Learned, and... • 119:9

0 10 20 30 40 50 60 70
Time (min)

10

30

50

70

Te
m

p 
(°

C
)

Top Shelf
Middle Shelf
Bottom Shelf

Tl
17°C 

24min
ts1

ts2

(a) (b)

80.4C 80.1C 

76.5C 

80.0C 79.5C 

78.9C 

75.1C 

70.6C 

79.3C 

75.0C 

Fig. 2. (a) Temperatures and transient times measured with VeriMask on three different shelves of a clinical humidity

chamber during the heating process (starting from 19°C room temperature). The middle shelf container reaches the target

temperature of 70°C 24 minutes after the containers on the top and bottom shelves. (b) The 10 locations chosen to measure

the non-uniform heat distribution in the pre-heated clinical humidity chamber. The temperature values (in red) show more

than 9 degrees of difference in the internal temperature of the containers even 30 minutes after the cabin reached the target

temperature (82°C) measured by the heating device built-in sensor.

mask batch size. Once each cycle is ended, the sensor nodes can be reset in the app, and then the containers can
be filled again with a new batch of masks to decontaminate in the next cycle.

Profiling cycle. Every cycle monitored via VeriMask can be used as a profiling cycle. When this functionality is
enabled using the application, the operator can input the expected total working time defined as the continuous
decontamination time in a day (e.g. 8 hours). The temperature and humidity information collected during this
profiling cycle (with a default process time of 𝑡𝑀𝐻 = 50𝑚𝑖𝑛) are then used to compute the optimal heating
device temperature and process time for achieving the maximum number of decontaminated masks in the
selected working time. The application also provides information about container locations not suitable for
decontamination so that operators can avoid placingmasks in these areas. If the operator confirms the optimization
parameters, the process time for following decontamination cycles are automatically adjusted.

4 VERIMASK DESIGN

Figure 3 shows the architecture of the VeriMask platform. The platform consists of two major components:
wireless sensor nodes and an application running on smartphones. The nodes, each one associated with an N95
mask, periodically send temperature and humidity data to the application which performs real-time monitoring,
verification of the decontamination conditions, and optimization of the overall decontamination process.

4.1 VeriMask Sensor Node

We designed and manufactured the VeriMask sensor node V1 for experimental testing and performance evaluation,
and node V2 for practical clinical usage and deployment. The two versions of sensor nodes are shown in Figure 4.
The VeriMask sensor nodes have been designed to resist the harsh environmental condition of repeated

heating cycles by selecting components and making the optimal layout to be high temperature resistant. Each
sensor node consists of a Laird653 wireless module with a Nordic nRF52833 SoC [7] that features a maximum
operating temperature of 105°C which is suitable for the MH decontamination requirements. It is powered by a
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Fig. 3. VeriMask Architecture. The VeriMask platform consists of BLE sensor nodes acting as peripheral data collectors, and

an Android application acting as the central monitor and verifier.

Fig. 4. (Left): The prototype VeriMask V1 sensor node attached to the lid of the Pyrex container along with the N95 mask

and the paper towel. (Middle): VeriMask V1 sensor node. (Right): VeriMask V2 sensor node.

high-temperature (125°C maximum), lithium poly-carbonmonofluoride coin cell battery with 550 mAh capacity
(Panasonic BR2450A).

The sensor node V1 board includes sockets for two temperature and relative humidity sensors’ breakout boards,
namely the Adafruit Si7021 containing Silicon Labs’ Si7021-A20 sensor [4], and the Sensirion SHT8 containing
Sensirion’s SHT35-DIS sensor [5], to facilitate testing and replacement of the sensors. The sensor nodes also
include a user button to stop and restart the data transmission as well as an LED which blinks while collecting
and transmitting data as an extra indicator for the operators. We then label each node with its nodeID on the
back which corresponds to the nodeID in its BLE broadcasting packets, and attached the nodes on the lids of
the containers to avoid contact with the masks, and with their back side facing upward so that the operators
can easily see the nodeID through the transparent lids as shows in Figure 4. Sensor node V2 was designed with
the design goals of low cost, simplicity, reliability, and manufacturability. We greatly reduced the number of
components, brought down the board to two layers, and reduced the size by more than half, measuring only
3.5cm x 3.8cm (1.4 inches x 1.5 inches). As a result the cost was reduced from $38.27 per board (V1) to $15.66
including components, manufacture, and assembly from a U.S. based manufacturer at a quantity of 1000.

The number of sensor nodes. VeriMask uses a dense one-for-one topology by associating one sensor node to
each individual mask. The choice of this topology compared to others (e.g. one-for-many [69]) depends on two
main factors. First, using a single sensor to monitor a group of masks requires that the heat and humidity gradients
in the sensor node area should be small and should not be subjected to significant variations. However, as shown
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in previous work [45, 78, 80] and Figure 2, it is strongly dependent on the heating device characteristics and the
MH decontamination process. Thus, the number of sensors nodes used should vary based on a careful thermal and
humidity profiling of every heating device as well as every state of the decontamination procedure beforehand.
This prevents the rapid deployment of the decontamination technology and makes it impractical, burdensome,
and error-prone for non-specialized operators. The second factor is the use of separate sealed containers for
each mask. The individual containers are used in MH decontamination processes to avoid cross-contamination
between masks and shape deformation, and also to provide the adequate humidity environment for an effective
decontamination. Temperature and humidity fluctuations (e.g. leakage) in sealed containers are extremely difficult
to measure from outside the containers and might lead to undetected decontamination failures.

Sensor selection. The temperature and relative humidity sensor is a crucial component of the VeriMask platform.
The sensor should be chosen based on its reliability to accurately detect changes in the environmental conditions
during decontamination, its cost, and its power consumption. Figure 5 (a) shows the critical parameters of four
potentially suitable sensors designed to operate under high temperatures (125°C maximum) [2, 4, 5]. We consider
the sleep currents as the most important parameter for identifying power consumption of the sensors because
for MH decontamination monitoring scenarios the temperature and relative humidity change slowly over time
(and the required sample rate is extremely low), thus the sensor would be in sleep mode for most of the time.
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Fig. 5. (a) Cost, sleep current (Sleep Crt.), relative humidity/temperature precisions (RH/Temp. Prec.) and relative humidi-

ty/temperature response time (RH/Temp. Resp.) of 4 high-temperature resistant sensors. We identify the sensor Si7021-A20

as the most suitable for our VeriMask platform. (b) The temperature and relative humidity readings of Si7021-A20 sensor and

the SHT35-DIS sensor in 5 consecutive heating cycles.

To find the most suitable sensor for VeriMask, we conducted comparative experiments with the sensor Si7021-
A20, which has the lowest cost and power consumption, and the sensor SHT35-DIS, which has the best response
times and precision. We used the Sun Electronics EC12 thermal chamber as the convection heating device, and
set the time for each decontamination cycle (𝑡𝑀𝐻 ) to 40 minutes. We did not preheat the thermal chamber so
the first heating cycle of Figure 5 (b) shows how the sensors behave when no preheating is performed before
decontamination. We use two VeriMask sensor nodes in the chamber, each with one Adafruit Si7021 and one
Sensirion SHT85 breakout board (see Figure 4), and perform five consecutive cycles in order to examine the
long-term reliability of these sensors.

Experiment results. Figure 5 (b) illustrates the averaged readings of the two VeriMask nodes during the 5-cycle
experiment. In the first heating cycle, the maximum and average (absolute) differences in the two sensors’
temperature are 4.8°C and 1.8°C, and those in the relative humidity are 22% and 6.8%, respectively. However,
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during the following cycles, the numbers decrease to 1.8°C and 0.2°C for temperature differences, and 3% and
0.8% for relative humidity. The differences of readings between the two sensors are generally negligible except
for the first cycle, where Si7021-A20 measured a relative humidity overshoot at the beginning, and reported
lower temperatures than the SHT35-DIS sensor. The possible cause is that Si7021-A20 has slower temperature
response time, and the lower temperature resulted in a higher relative humidity [51]. However, the two sensors
had comparable performance in the following cycles, suggesting the Si7021-A20 sensor with slower response time
and lower precision is suitable for the MH decontamination monitoring. In addition, using the sensor Si7021-A20
for VeriMask helps to optimize for power consumption and costs. We thus decided to only use Si7021-A20 for
VeriMask sensor node V2. All experiments in the evaluation sections are conducted with Si7021-A20 only.

Considerations for decontamination. Another key finding from the above experiment is that without pre-
heating the heating system with the containers, the transient time 𝑡𝑠 will generally be significantly longer. This
could result in insufficient decontamination if the process time 𝑡𝑀𝐻 is configured to be the same as in a preheated
system. To take Figure 5 (b) as an example, while the 40 minute decontamination cycles is enough to keep the N95
masks in the expected decontamination ranges for over 30 minutes with a lower decontamination temperature
threshold (𝑇𝑙 ) of 70°C, it is not sufficient for the first cycle. The appropriate time for the first decontamination
cycle also depends on the specific heating system’s heat rate and temperature as well as the expected temperature
range. Configuring a separate decontamination period for the first cycle is thus non-trivial. As a result, we
recommend to preheat the device to the decontamination temperature before the decontamination starts. We will
further discuss the potential failures without preheating in Section 6.

4.2 BLE Communication

The sensor nodes use non-connectable BLE advertising to broadcast sensor data to the Androidmonitor application.
Opting for wireless sensor nodes makes the system flexible and easier to maintain by eliminating the need of
wiring for each (potentially hundreds of) sensor nodes. We choose non-connectable BLE advertising over other
active BLE modes and synchronous wireless communication methods (e.g. WiFi) for two main reasons. First, these
communication schemes limit the number of peripherals that can communicate with the central simultaneously,
and increase the power consumption of the sensor nodes as well as the time for adding new nodes into the
system [49, 85]. These factors significantly reduce the effectiveness of the platform. Second, custom wireless
protocols are generally less supported by commercial mobile devices compared to BLE broadcasting, which is the
most common protocol used in smartphones. In Section 5.2 we further demonstrate that with the information
redundancy and the low probability of critical information loss, the benefit of having active control is negligible.

BLE broadcasting implementation. The manufacturer-specific data field of the advertising payload contains
node identification numbers (nodeIDs) and sensor data. Out of the 31-byte payload space of the non-connectable
BLE advertising packet, we use 12 bytes in total with 1-byte nodeID and 4-byte sensor data. The 1-byte nodeID
field supports simultaneous decontamination verification of up to 256 N95 masks in a local sensor network. The
number can be further increased by utilizing the remaining 19-byte payload space. The sensor nodes broadcast
with a transmission power level of 0 dBm to balance power consumption and transmission success rate.

Figure 6 (a) shows the BLE advertising scheme of VeriMask. Each node advertises with advertising interval
𝑡𝑎 = 10𝑠 by default, which is the time between two consecutive advertising events. The 10s interval is determined
empirically based on preliminary experiments’ results that temperature and RH have a extremely slow change
rate during the decontamination process, and the fact that BLE advertising supports a largest advertising interval
of 10.24s. For each advertising event, the node sends three advertising packets on three different frequency
channels (channel 37, 38, 39) [82]. Loss of packets can happen due to packet collisions (e.g. packet overlapping in
time) on the same channel between different nodes in multi-node scenarios. A 0-10 ms random delay is added
before every advertising event in order to mitigate collisions, as is specified in the BLE protocol [6]. If too many
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Fig. 6. (a) BLE advertising and scanning scheme (not up to scale) of the VeriMask platform. (b) Advertising collision defined

in the multi-node packet collision simulation. If any two nodes’ advertising events overlap, a collision happens.

nodes reside in the same local network, however, packet collisions might still happened even with the added
random delay. The relationship between packet collision rates and number of nodes in the system thus become
an important factor which can affect the VeriMask platform performance. Previous research works [82, 97] have
demonstrated the acceptable packet collision rates in dense BLE advertising applications. We further show in
Section 5.2 that our BLE advertising configurations guarantee low collision rates and reliable BLE transmission.

4.3 Android Monitoring Application

We choose smartphones as the front-end monitoring device over PCs due to their compactness and pervasiveness.
In order to monitor, verify, automate, and optimize the decontamination process of each mask, we built an
Android monitoring application prototype. The monitor application’s back-end comprises of functional blocks of
BLE Scanner, Node Manager, and Decontamination Verifier.

BLE Scanner.We implement the BLE scanner with the standard Android Bluetooth library [8]. In BLE scanning,
each scanning event lasts for the period of ScanWindow (𝑡𝑤) with an interval of ScanInterval (𝑡𝑖 ) between each
scanning event. 𝑡𝑤 should be less than or equal to 𝑡𝑖 , with an upper bound of 10.24s for both parameters. The
ratio of 𝑡𝑤 and 𝑡𝑖 is the scanning duty cycle. Figure 6 (a) shows the scanning scheme (not to scale). We configure
the monitor smartphones to be in the low-latency scan mode which provides the highest scanning duty cycle [9].
However, it is worth noting that the actual duty cycle also depends on the firmware implementation of different
manufactures. As a result, the model of the smartphone can also have an effect on the scanning behavior. We
evaluate the performance of BLE scanner with different models of smartphones in Section 5.2.

Node Manager. It is responsible for keeping track of the status of all nodes and the application itself. The
monitor application can be in one of the 3 states: IDLE, NODE_DISCOVER (adding nodes into the system), and
RECORDING (logging and verifying decontamination process). Based on its decontamination status, each node
can be in one of the 5 states: READY (ready for a new cycle of decontamination), DECON (decontamination in
progress), ERROR_FAILURE (e.g., temperature/RH does not reach the lower threshold after decontamination
starts, exceeds the upper threshold, or falls below the lower threshold, etc.), ERROR_LOST (e.g. the application
does not receive the node’s packets), and DONE (decontamination completed for this node). State transitions are
strictly controlled by finite state machine models as shown in Figure 7 (a).

DecontaminationVerifier. The verifier takes the user configuration inputs of the target decontamination ranges
for temperature (𝑇ℎ , 𝑇𝑙 ) and relative humidity (𝑅ℎ , 𝑅𝑙 ) as well as the decontamination time (𝑡𝑑𝑒𝑐𝑜𝑛) within these
ranges, and compare them with the sensor reading data. If verification events (e.g., violations of decontamination
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Fig. 7. (a) The sensor node states and transitions in VeriMask Android monitor application. (b) The main control page which

shows the states of each individual mask inside the containers. (c) The detail page which displays the information of the

sensor node associated with the mask chosen on the main page.

ranges) are detected for a certain node, the verifier reports back to Node Manager which will then change the
state of that node. The criteria of verification events and state transitions shown in Figure 7 (a), are as follows.
1) Loss of nodes: If the application misses packets from a sensor node for more than a grace period of 2 minutes
continuously, the node state is changed to ERROR_LOST.
2) Decontamination Failure. Three main events can cause violations and a change of state to ERROR_FAILURE: i)
when temperature and/or the humidity level of the node does not reach the pre-configured ranges for a grace
period of 20 minutes continuously from the beginning of the MH process time 𝑡𝑀𝐻 (including the transient time
𝑡𝑠 ), ii) when temperature and/or the humidity level falls out of of the pre-configured ranges for a grace period of
2 minutes continuously after the transient time, and iii) when the node has not completed the decontamination
time 𝑡𝑑𝑒𝑐𝑜𝑛 at the end of the MH process time.
3) Decontamination completion: If the temperature and humidity level have been within the pre-configured
range for the decontamination time 𝑡𝑠 , the node state is changed to DONE.
Note that the time for the grace periods are the default values, which can be changed by the operator if needed.

User Interface. The user interface consists of three pages, namely i) a main control page and ii) a node details
page which are shown in Figure 7, and iii) a decontamination parameter configuration page. The main page lists
all the nodes added as well as their statistical information. Operators can check a profiling checkbox and enter
profiling mode before each decontamination cycle for throughput maximization (Section 4.4). It also displays a
timer count down for 𝑡𝑀𝐻 which will be determined by throughput-maximization algorithm. When selecting a
node, the application navigates to the node details page, where the most recent temperature and relative humidity
readings and other node information including node states are displayed. All pages are updated in real time.

4.4 Throughput Maximization

Beside providing monitoring capability, VeriMask has been designed to provide feedback information to help the
operators achieve the optimal decontamination throughput, i.e., achieving the maximum number of successfully
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decontaminated masks in a given time, based on the heating device used. To build this functionality, we develop
a throughput-maximization algorithm for the App that can be used in the profiling phase of the decontamination
to determine and suggest the optimal combination of decontamination parameters.

Problem Formulation. The general idea of throughput-maximization is that given a total continuous working
time selected by the operators, e.g., 8 hours, and the decontamination data of 1 profiling cycle, the algorithm
predicts the heating device temperature and MH process time (𝑡𝑀𝐻 ) that will generate the highest number of
successfully decontaminated masks in the 8 hours. The reason for maximizing the throughput in the total working
time instead of just one decontamination cycle can be easily illustrated with an extreme example: decontaminating
19 masks in 30 minutes per cycle is better than decontaminating 20 masks in 60 minutes. The algorithm is based
on the assumption of similar dynamics of the profiling cycle with the following decontamination cycles after 1
preheating cycle, as verified in our experiments (e.g., the last 4 cycles shown in Figure 5).

We start by looking at the general optimization problem, where no profiling or other data is given. We denote
the selected total working time as 𝑡𝑤𝑜𝑟𝑘 , the time for the conducted profiling cycle as 𝑡𝑝𝑟𝑜 𝑓 , the heating device
temperature as 𝑇𝑑𝑒𝑣 , the total number of successfully decontaminated masks in 𝑡𝑤𝑜𝑟𝑘 as 𝑛𝑤𝑜𝑟𝑘 , and that of each
decontamination cycle as 𝑛𝑀𝐻 . We then have the following equations:{

𝑛𝑤𝑜𝑟𝑘 = 𝑡𝑤𝑜𝑟𝑘
𝑡𝑀𝐻

× 𝑛𝑀𝐻

𝑛𝑀𝐻 = 𝑓 (𝑡𝑀𝐻 ,𝑇𝑑𝑒𝑣),

where 𝑓 (·) is an unknown deterministic function with parameters such as the heating device model (its heat
transfer and distribution functions), container placements, etc. We can now formulate the general throughput-
maximization problem as the 2-D optimization problem:

𝑡
𝑜𝑝𝑡𝑖𝑚
𝑀𝐻 ,𝑇

𝑜𝑝𝑡𝑖𝑚
𝑑𝑒𝑣

= argmax
𝑡𝑀𝐻 , 𝑇𝑑𝑒𝑣

𝑛𝑤𝑜𝑟𝑘

Note that it is almost impossible to get a closed-form analytical solution because of the unknown 𝑓 (·). With the
data from the profiling cycle and the assumption that each cycles have almost identical dynamics, however, we
can instead implement discrete algorithm to search for an optimized numerical solution in a simplified context.

Implementation. Intuitively, by utilizing the profiling cycle’s data we can convert the optimization problem
into a discrete 2-D search problem for a global maximum. Furthermore, we observe through experiments that the
temperature instead of relative humidity of the masks is the limiting factor of transient time 𝑡𝑠 in the normal case.
For example, the blue stars in Figure 12 that represent the time instance when a mask enter the DECON status
are determined by the temperatures. As a result, we only need to consider the temperature data of the masks in
the profiling cycle to determine if each mask has been in the decontamination range.
Varying 𝑡𝑀𝐻 can be easily done on the profiling cycle’s data by fixing the start of 𝑡𝑀𝐻 at time 0 while

changing the cycle end time. Varying 𝑇𝑑𝑒𝑣 , however, is more tricky since we only have the data for 1 profiling

cycle where the heating device temperature was fixed to a certain value 𝑇 (0)
𝑑𝑒𝑣

. To sweep through different 𝑇𝑑𝑒𝑣
while avoiding increasing the number of required profiling cycles, we use a stretching method that adapts
the temperature data of each mask collected in the profiling cycle to temperature curve estimations under
different 𝑇𝑑𝑒𝑣 . Based on the observation that changes in 𝑇𝑑𝑒𝑣 does not change the overall trend (the type of
underlying time function) of the temperature data curves, we stretch the curves proportionally according to

𝑇𝑑𝑒𝑣/𝑇
(0)
𝑑𝑒𝑣

. After that, we can finally apply the optimization (search) algorithm to find the best set of 𝑇
𝑜𝑝𝑡𝑖𝑚
𝑑𝑒𝑣

and 𝑡
𝑜𝑝𝑡𝑖𝑚
𝑀𝐻 . We summarize the algorithm for the above throughput-maximization in Algorithm 1. In the App

implementation, 𝑇𝑑𝑒𝑣 = [𝑇𝑙 : 1◦𝐶 : 100◦𝐶], 𝑡𝑀𝐻 = [𝑡𝑑𝑒𝑐𝑜𝑛 : 1𝑚𝑖𝑛 : 𝑡𝑝𝑟𝑜 𝑓 ], where the 2nd element of each
vector represents the discrete step size. After the profiling cycle, the App runs the throughput-maximization

algorithm and reports the optimal decontamination parameters𝑇
𝑜𝑝𝑡𝑖𝑚
𝑑𝑒𝑣

and 𝑡
𝑜𝑝𝑡𝑖𝑚
𝑀𝐻 as well as the expected number
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Algorithm 1: Throughput Maximization

Input: selected total working time 𝑡𝑤𝑜𝑟𝑘 , profiling cycle temperature data matrix 𝐷𝑝𝑟𝑜𝑓 , profiling cycle heating device temperature

𝑇 (0)
𝑑𝑒𝑣

, required in-range decon time 𝑡𝑑𝑒𝑐𝑜𝑛 , decon temperature thresholds [𝑇𝑙 ,𝑇ℎ ], optimal heating device temperature

(candidate) vector𝑇𝑑𝑒𝑣 and MH process time (candidate) vector 𝑡𝑀𝐻

Output: 𝑡
𝑜𝑝𝑡𝑖𝑚
𝑀𝐻 ,𝑇

𝑜𝑝𝑡𝑖𝑚
𝑑𝑒𝑣

, 𝑛
𝑜𝑝𝑡𝑖𝑚
𝑤𝑜𝑟𝑘

1: Initialization: 𝑡
𝑜𝑝𝑡𝑖𝑚
𝑀𝐻 ← 0,𝑇

𝑜𝑝𝑡𝑖𝑚
𝑑𝑒𝑣

← 0, 𝑛
𝑜𝑝𝑡𝑖𝑚
𝑤𝑜𝑟𝑘

← 0

2: for each candidate𝑇𝑑𝑒𝑣 do

3: 𝐷𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑒𝑑 = 𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑇𝑒𝑚𝑝𝑠 (𝐷𝑝𝑟𝑜𝑓 ,𝑇
(0)
𝑑𝑒𝑣

,𝑇𝑑𝑒𝑣)

4: for each candidate 𝑡𝑀𝐻 do

5: 𝑛𝑤𝑜𝑟𝑘 = 𝑐𝑜𝑢𝑛𝑡𝑇𝑜𝑡𝑎𝑙𝑆𝑢𝑐𝑐𝑒𝑠𝑠 𝑓 𝑢𝑙𝑀𝑎𝑠𝑘𝑠 (𝑡𝑤𝑜𝑟𝑘 , 𝐷𝑠𝑡𝑟𝑒𝑡𝑐ℎ𝑒𝑑 , 𝑡𝑀𝐻 , [𝑇𝑙 ,𝑇ℎ ])

6: if 𝑛𝑤𝑜𝑟𝑘 > 𝑛
𝑜𝑝𝑡𝑖𝑚
𝑤𝑜𝑟𝑘

then

7: 𝑛
𝑜𝑝𝑡𝑖𝑚
𝑤𝑜𝑟𝑘

= 𝑛𝑤𝑜𝑟𝑘 , 𝑡
𝑜𝑝𝑡𝑖𝑚
𝑀𝐻 = 𝑡𝑀𝐻 , 𝑇

𝑜𝑝𝑡𝑖𝑚
𝑑𝑒𝑣

= 𝑇𝑑𝑒𝑣
8: else

9: Do Nothing

10: end if

11: end for

12: end for

13: return 𝑡
𝑜𝑝𝑡𝑖𝑚
𝑀𝐻 ,𝑇

𝑜𝑝𝑡𝑖𝑚
𝑑𝑒𝑣

, 𝑛
𝑜𝑝𝑡𝑖𝑚
𝑤𝑜𝑟𝑘

of successfully decontaminated masks 𝑛
𝑜𝑝𝑡𝑖𝑚
𝑤𝑜𝑟𝑘

using these parameters. The App will also inform the operators
of the container locations where the masks are predicted to experience decontamination failures so that the
operators can avoid placing masks there. We will further show a case study for evaluating the effectiveness of
this throughput-maximization method in Section 5.3.

5 EVALUATION

In this section, we evaluate the performance of VeriMask. We examine the power consumption of the VeriMask
sensor nodes in Section 5.1, and examine the reliability of the wireless sensor platform in Section 5.2 by looking
into the BLE transmission performance in different scenarios. We conducted these evaluations with two different
heating systems, namely a Sun Electronics EC12 thermal chamber in a laboratory setting, and a Memmert HCP
humidity chamber in clinical setting. Finally, we analyze the effectiveness of the throughput-maximization
functionality in Section 5.3 by carrying out a case study with the EC12 thermal chamber.

5.1 Power Consumption & Battery Life

Circuits’ power consumption under higher temperatures increases because of increased leakage current [56].
Due to extreme temperature variation and the high-temperature nature of the decontamination process, we
investigate the current consumption and battery life of our VeriMask sensor nodes under different temperatures.

Experimental Setup. The sensor node runs the same program as in the decontamination settings, where the
board fires one advertising event every 10s, and one of the LED flashes every 5s for 5ms as an indication of normal
operation. The EC12 thermal chamber is used as the heating device. We used an STM32 Power Shield [3] to
measure the currents, and configured the supply voltage, sample rate, sample period, minimal current threshold
to 3V (same as the supply voltage of the battery), 20000 samples/s, 100s, and 1uA respectively. We left the STM32
Power Shield outside the thermal chamber and used a long jumper wire to connect it to the sensor node to avoid
measurement errors of the STM32 Power Shield when undergoing high temperatures. When calculating the
estimated battery life, we revise down the total usable battery capacity to a conservative 70% of the specified
capacity to account for manufacturing tolerances and other conditions that can degrade battery capacity [52].
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Fig. 8. Average current consumption and estimated battery life (calculated with a conservative 70% of the specified bat-

tery capacity) of the VeriMask sensor node under different temperatures. The sensor node is able to work for over 1000

decontamination cycles without changing the battery.

Results. Figure 8 shows the average current and estimated battery life of the VeriMask sensor node under
different temperatures. At the highest temperature of 90°C, the estimated battery life is over 1000 hours. Since
the nodes temperatures are mostly below this temperature, we can assume our node can successfully monitor
continuously for over 1000 hours. Assuming the time needed for decontaminating each batch of masks is 1 hour
(20min initial preparation and 40min MH decontamination), our node can support 1000 N95 mask batches without
the need of replacing the battery.

5.2 BLE Transmission

Both multi-node packet collision and single node packet loss prevent successful sensor data transmission over
BLE in VeriMask. Since our scalable system is designed to support decontamination of up to hundreds of masks
simultaneously, packet collisions might cause non-trivial packet losses in a multi-node scenario as pointed out in
Section 4.2. In addition, each node’s packet transmission will be affected by the condition of the transmission
path such as blocking of wireless signals by the glass container and metal chamber, distance between the node
and smartphone, etc., as well as by the behavior of the scanning device. As a result, BLE transmission success rate
of the system is a function of these two independent factors. We thus consider the them separately in this section.

Multi-node packet collision rate 𝑅 (𝑛)
𝑐 . Evaluating multi-node packet collision rate with real hardware nodes is

impractical due to the large number of nodes required. We instead conducted software simulations with MATLAB

2019 to calculate the collision rates 𝑅 (𝑛)
𝑐 , where 𝑛 denotes the number of nodes. The advertising configurations

are the same as in 4.2. However, we simplified the collision condition introduced in 4.2 (overlapping packets on
a certain advertising channel) to the following. If any two nodes’ advertising events overlap in time (all three
channels considered), we define the two advertising events as having a collision. We thus define the time of
each advertising event as the collision period. Figure 6 (b) demonstrates the collision scenario. The simplification
will result in higher collision rates than the actual rates since previous non-collision conditions such as node
A channel 37’s packet overlapping with node B channel 38’s packet will now be treated as a collision. Another
simplification we made is that we use all 31 bytes in the payload instead of the 12 bytes we actually use, which
result in longer collision period for each advertising event and thus higher collision rates. As a result, we claim
that our simulation results show a loose upper bound of the actual collision rate.
The advertising interval 𝑡𝑎 is set to 10s (default). Based on the information from the Nordic Online Power

Profiler [22], we set the collision period to 1.7ms. We then set the simulation resolution (size of the minimal
discrete time step) to be 0.1ms. For each number of nodes, we simulated 100 4000-second trials with the advertising
start time of each node chosen randomly within the first 10s under a uniform distribution. The mean and standard
deviation of the packet collision rates with different number of nodes are calculated and shown in Figure 9. The
packet collision rates with 100 nodes is lower than 4%. Our results comply with previous works of BLE advertising
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collision rates simulation [82], which suggests a packet collision rate of about 5% with 300 nodes. This result
shows that active packet collision avoidance will result in minor performance improvements at the cost of higher
power consumption and limitations in the total number of nodes that can be connected simultaneously.
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Fig. 9. Packet collision rates per sensor number. The low collision rates suggest that active packet collision avoidance is

unnecessary which will negatively affect the nodes’ scalability and battery life.

Single-node packet loss rate 𝑅𝑙 . The glass container and the metal enclosure of the heating equipment can
degrade BLE signal strength along the transmission path. Different scanning behaviors of the scanning smart-
phones due to differences in hardware and versions of library codes can also affect the possible number of
received packets, even if the smartphone is configured at low power scan mode. For example, different firmware
implementations might define different BLE scanning duty cycles for the low latency scan mode. It is thus
important to know how many packets might be lost due to these effects.

To test the single-node packet loss rate, one glass container holds one sensor node with its lid closed and was
put in the closed heating system. We then collect the data using two heating systems, namely the EC12 thermal
chamber and the clinical Memmert HCP humidity chamber. A Samsung Galaxy Note4 (Android 6.0.1), a Samsung
Galaxy S8 (Android 10), and a Google Pixel2 (Android 9) were used as the monitor smartphones. During the
test, the sensor nodes generated one advertising event every 10s as the default setting. We then incremented the
distance between the node and the smartphones from 10cm to 150cm with a step size of 20cm. For each distance,
the transmission lasts for 400s (40 advertising events in total). Figure 10 (a) shows the measured packet loss rate
versus distance to the thermal chamber, and Figure 10 (b) shows the results with the humidity chamber. Generally,
there are only small increases in packet loss rates for each smartphone when the distance reaches 1.5m for both
heating systems. The measured loss rates in all the selected distances are less than 25%. The seemingly high
single-node packet loss rate is due to the poor SNR caused by the metal enclosure of the heating devices, which
acts as a Faraday cage. The EC12 thermal chamber has a 25.4cm x 12.7cm (10inches x 5inches) small double-layer
glass window on the metal enclosure. The clinical Memmert HCP humidity chamber (shown in Figure 2 (b)) is
fully covered by metal when the door is closed (note that Figure 2 shows when the door is open). As a comparison
with previous research results, [86] found that metal enclosure can reduce the BLE RSSI by over 15dB. Meanwhile,
[58] found that with a distance of 1m and a BLE transceiver power of -12dBm, the BLE open-air broadcasting
packet loss rates with smartphones as the centrals are about 20%. Our results show that with 0dBm transceiver
power and metal enclosures the packet loss rate is less than 25%, which is consistent with the previous works. It
is also worth noting that such packet loss due to the metal enclosure is an issue for not only BLE, but also all
other wireless communication schemes [64, 70, 72]. However, we will show that it causes negligible information
loss in our application because of the slow change rate of the temperature and humidity.

Overall packet loss rate 𝑅 (𝑛) . Calculating the overall packet loss rate 𝑅 (𝑛) with 𝑛 nodes includes combining 𝑅 (𝑛)
𝑐

and 𝑅𝑙 . The theoretical value of 𝑅
(𝑛) can be calculated as 𝑅𝑙 + (1 − 𝑅𝑙 ) × 𝑅 (𝑛)

𝑐 . Based on the experimental results,

we get 𝑅 (100) = 28% if we consider the worst-case scenario where 𝑅 (100)
𝑐 = 4% and 𝑅𝑙 = 25%. Even considering
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Fig. 10. Single-node packet loss rates at different distances. (a): With the EC12 thermal chamber; (b): With the clinical

Memmert HCP humidity chamber. The seemingly high packet loss rate is due to the metal enclosure of the heating devices,

which acts as a Faraday cage for RF signals and is thus challenging for all types of wireless communications.

this the upper bound for the overall packet loss rate, it is still small enough to support robust close-distance
monitoring. Furthermore, it is worth noting that during the actual MH decontamination process tests where the
operating temperature of the nodes rise over 80°C, we didn’t observe any increase in overall packet loss rates.

Information Loss.After getting an estimate of the overall packet loss rate’s upper bound during decontamination,
it is necessary to inspect the degree of information loss and the potential effects on the monitoring capability.
To this end, we categorize the loss of data into two classes, namely non-critical and critical data loss. 1) Non-
critical data refers to the packets that do not contain temperature and humidity data outside of the desired
decontamination range. In another word, it captures the normal temperature and humidity variations. For this
class of data, our experiments conclude that the temperature and humidity change rate will generally be smaller
than 1°C/30s and 3%/30s respectively. Assuming the overall packet loss rate reaches the upper bound 30%, then
the probability of missing a mask’s data for 30s is only 2.7%, which is negligible. Furthermore, we can easily
recover the 2.7% lost data with techniques such as matrix completion [43, 46] if necessary. This is because the
normal temperature and humidity variations for all of the masks are essentially low-rank, i.e., having a large
amount of information redundancy. 2) Critical data can be further classified into two sub-classes. The first class
results from decontamination failures that affect all masks in the heating device. For instance, if the door of
the heating device is accidentally left open, the temperature of all masks will fall below the decontamination
lower threshold following the same trend. In this case, the same matrix completion technique can be used since
the variations are still low-rank. The second class of critical data results from errors of an individual masks.
This class of critical data cannot be easily recovered with the matrix completion technique because the mask’s
abrupt and abnormal temperature/RH variations don’t follow the same trend as the other masks. Luckily, there’s
actually no need for recovering this class of critical data since such type of single-mask anomalies are mostly
caused by operational errors which make the abnormal variations irreversible. We can thus eventually detect this
irreversible anomaly even with (unusual) consecutive packet loss. For instance, if a humidity leakage happens
in a certain container and causes a mask’s relative humidity to fall below the lower threshold, the anomaly is
permanent and will be eventually detected even if the 2.7% packet loss happens during the first 30s.

Long-distance Monitoring. The above discussion shows that VeriMask’s BLE communication can support
reliable close-distance monitoring when the operator with a smartphone is within a range of 1.5m from the
sensor node. While this range is the most common for mask decontamination operations [14], the operator may
occasionally move outside this range. We thus tested the packet loss rate and signal strength at larger distances
in a lab environment with the EC12 thermal chamber. We found that when the distance increased from 1m to 5m,
the average packet RSSI reported by the 3 smartphones decreased from -65 to -83 dB while the packet loss rate
was lower than 35% for all 3 smartphones. We also tested a through-wall scenario where the smartphones and
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sensor node in the chamber were separated by a 15cm wall and 3m away from each other, and found a -81dB
RSSI and -32% packet loss rate on average. With an upper bound of 50% for the packet loss rate, we found that
the BLE communication could achieve up to 11m in a room, or 7m across rooms with the 15cm wall. All the
experiments were conducted with normal radio and human movement interference in the environment. These
results show that VeriMask also has the potential to support a relatively long distance monitoring and further
enhance usability.

5.3 Throughput-Maximization Case Study

In order to show how the throughput-maximization functionality of VeriMask works and to test its effectiveness,
we conducted a case study with the EC12 thermal chamber in a lab environment and 20 VeriMask node-container
sets. Figure 11 (a) shows the chamber fully filled with 5 stacks (3 in the back, 2 in the front) of node-container
sets with 4 in each stack. We carried out two sets of experiments where in the first one we placed all the 20
node-container sets in the chamber while in the second one we removed the node-container sets on the top of
each stack and used only 15 containers and sensor nodes. For each experiment, we first set the temperature of the

chamber (𝑇 (0)
𝑑𝑒𝑣

) to 85°C and ran a 50min (𝑡𝑝𝑟𝑜 𝑓 ) profiling cycle and then calculated the throughput-maximization

parameters (𝑇
𝑜𝑝𝑡𝑖𝑚
𝑑𝑒𝑣

, 𝑡
𝑜𝑝𝑡𝑖𝑚
𝑀𝐻 ) and the expected number of successful node-container sets (𝑛

𝑜𝑝𝑡𝑖𝑚
𝑤𝑜𝑟𝑘

) with Algorithm 1
by setting the total working time 𝑡𝑤𝑜𝑟𝑘 to 50min. Note that here we define "successful" as the event that the
temperature of a node-container set remains in the decontamination range for 30min since the humidity is not
the limiting factor for throughput as pointed out in Section 4.4. We then set the heating device temperature to

𝑇
𝑜𝑝𝑡𝑖𝑚
𝑑𝑒𝑣

and ran another decontaminating cycle for 𝑡
𝑜𝑝𝑡𝑖𝑚
𝑀𝐻 and inspected the actual successful node-container sets.

(a) (b)

11 sets
95 °C
48min

11 sets
93 °C
50min

(c)

8 sets
85 °C
50min

9 sets
85 °C
50min

Fig. 11. (a) The EC thermal chamber fully filled with VeriMask sensor nodes. (b) With 20 containers in the chamber for the

profiling cycle, the Algorithm 1 predicts that the maximum throughput of successfully decontaminated masks in 50min is 11

out of 20 when 𝑇𝑑𝑒𝑣 = 95◦𝐶 and 𝑡𝑀𝐻 = 48𝑚𝑖𝑛. (c) With 15 containers in the chamber for the profiling cycle, the Algorithm 1

predicts that the maximum throughput of successfully decontaminated masks in 50min is 11 out of 15 when 𝑇𝑑𝑒𝑣 = 93◦𝐶
and 𝑡𝑀𝐻 = 50𝑚𝑖𝑛. In (b) and (c), the blue circles mark the decontamination parameters used in the profiling cycle,and the

red circles mark the optimized decontamination parameters. The arrows show the direction of optimization.

Results. Figure 11 (b) and (c) plot the prediction results of Algorithm 1 for the two experiments with the data
from their respective profiling cycles. In the profiling cycles, 8 and 9 sets were found successful respectively in the
case of 20 and 15 total node-container sets, as is marked by the blue circles in the figures. The algorithm predicts
11 successful sets in both cases with their respective optimized parameters as marked by the red circles in the
figures. It is worth noting that the predicted successful sets in the two cases were different. For example, in the
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20-container case all the 5 sets on the top of each stack which were removed later were predicted to be successful,
which means some unsuccessful sets in the 20-container case became successful in the 15-container case due to
the changed container number, placements, and the resulted change in heat distribution in the chamber.

In the following decontamination cycle using the optimal parameters given by VeriMask, we verified that 11/20
and 12/15 sets were successful respectively, which are highly close to the prediction results (11/20 and 11/15).
In addition, there were only 1 mismatch in the predicted and actual successful sets in both cases. The results
suggest VeriMask can improve the decontamination throughput in a reliable way.

Key insights. Besides the verification of the throughput-maximization scheme, there have also been some key
observations and insights from these 2 sets of experiments. First, using more containers doesn’t guarantee more
successfully decontaminated masks, as shown by the comparison between the 20-container and 15-container cases.
This paradox is caused by the fact that too many containers slow down the convection and thus the heat transfer
in the heating device. The EC12 chamber is a convection oven with hot air outlet at the top-front of the chamber.
In the 15-container case, we observed more successful node-container sets at the bottom and in the back of the
chamber even with lower temperature (93 v.s. 95°C) due to the removal of the 5 top-layer containers blocking the
hot air. Figure 11 (b) (c) also implicitly show this effect since the high-temperature area in (c) generally has fewer
successful sets than in (b) because with fewer containers and better convection, higher temperatures tend to
drive the mask temperatures higher than the upper threshold more easily and thus cause failures. This insight
suggests that when there is a large difference between the number of containers used and the predicted successful
ones (e.g., 11 v.s. 20), the operators can try removing some containers to get better decontamination throughput
and reduce the overall workload. Second, the number and placement of containers are verified to largely affect
the heat transfer and distribution in the heating device. This again shows that a simple thermal profiling of the
heating device with conventional equipment [33] is not sufficient to ensure reliable decontamination processes
thus the necessity of VeriMask for real-time monitoring. Third, decontamination throughput can vary fiercely
when using different parameters as shown in Figure 11 (b) (c), so the throughput-maximization feedback scheme
realized in VeriMask can effectively guide the operators for setting the optimal parameters.

6 DECONTAMINATION FAILURES ANALYSIS & DETECTION

Detecting failures in the decontamination processes is the key to the reliable verification. In this section, we
analyze the factors that can potentially cause decontamination failure, and how VeriMask automatically detects
different types of decontamination errors in real-world scenarios.

6.1 Non-uniform Heat Distribution

Non-uniform heat distribution in the heating system causes "hot spots" and "cold spots", that can potentially lead
to (i) decontamination failure in case the target temperature is not achieved, or (ii) damage to the mask filtration
if the temperature is too high. In order to examine this scenario, we evaluate with VeriMask the heat distribution
under different operating conditions.

Experimental Setup. The experiments were conducted with the clinical Memmert HCP humidity chamber. Note
that we disabled the humidity generation function to emulate heating systems without humidifying functions.

Dynamic heat distribution. We put three sets of containers and sensor nodes on the top, middle, and bottom
shelf of the humidity chamber (set to 82°C) to measure with VeriMask the heating distribution with the system
start heating from ambient temperature (19°C). Figure 2 (a) shows the temperature readings of these three sets
of containers through the whole process. The graph shows that the maximum temperature variations in these
locations is 17°C. The middle shelf has the lowest temperature because it’s the farthest from the heating units,
i.e., the walls of the chamber. The middle shelf thus requires 24 minutes more transient time (𝑡𝑠2) than the top

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 5, No. 3, Article 119. Publication date: September 2021.



119:22 • Long et al.

and the bottom shelf (𝑡𝑠2) to reach the decontamination temperature lower threshold of 70°C. The results indicate
that systems should be pre-heated and given the time to reach a steady-state heat distribution before beginning
decontamination cycles. Without a pre-heating step, the temperature variance can be large enough to force a
significant increase in the decontamination duration, and certain sections of the oven may become hot enough to
overstep the upper temperature threshold, damaging masks within that zone.

Using VeriMask, the operator can conduct a preliminary test with empty containers to simulate the expected
cabin load, and thus determine the correct temperature transient time.

Steady-state heat distribution. After the humidity chamber reached the steady state, which we define as 30
minutes after the chamber reached the configured target temperature of 82°C according to the internal temperature
sensor of the chamber, we measured with VeriMask the temperatures at 10 different locations (see Figure 2) (b).
Among the measured locations, the maximum temperature difference is 9.8°C (between top/bottom shelf and
middle shelf). The results indicate that some locations barely reached 70°C when other locations were over 80°C.
This suggests that decontamination failures are much more likely to happen to N95 masks put far away from
the walls of the humidity chamber. For instance, if the required temperature lower thresholds were higher, the
masks on the middle shelf would not be in the target temperature range, causing ineffective decontamination
without being detected. Using VeriMask’s profiling cycle functionality, the operator can rapidly identify the
locations with insufficient heating and respond accordingly. For example, the App can suggest the operator avoid
placing masks at these locations in the following cycles, set a higher temperature for the chamber, or set a longer
decontamination time.

6.2 Operational Errors

Different operational errors can negatively affect the MH decontamination process. For instance, humidity leakage
and insufficient amount of water in the containers are two major factors that can cause decontamination failure.
Humidity leakage can arise due to improper sealing of the containers or a manufacturing defect of the heating
system or the container. When it happens during decontamination, the relative humidity level of the container
often sees a sharp decrease, which can lead to falling below the decontamination humidity range. On the other
hand, if the operators wet the paper towel with a smaller amount of water by mistake, the masks will not reach
the target humidity range during the decontamination time, leading to decontamination failure. As a result, it is
important to examine how VeriMask behaves under these possible conditions.

Experimental Setup.The experiments were conductedwith the EC12 thermal chamber and the clinicalMemmert
HCP humidity chamber (with humidity generation function disable). We set in VeriMask monitor application
the expected decontamination temperature range to 70-85°C, the humidity range from 50% to 100%, and the
decontamination time 𝑡𝑑𝑒𝑐𝑜𝑛 to 30 minutes. Each decontamination cycle was 40min, i.e., 𝑡𝑀𝐻 = 40𝑚𝑖𝑛.

Humidity Leakage.We evaluate the effect of the humidity leakage by comparing the decontamination processes
of two sets of containers with the VeriMask sensor nodes. As a baseline, we prepared the first set of containers
with the correct amount of water on the paper towel (500uL). For the leakage set, we used the correct amount of
water but deliberately created a 1 cm diameter hole in one corner of the lid. Then we ran the decontamination
cycle with the EC12 thermal chamber and the Memmert HCP humidity chamber, whose temperatures were set to
80°C and 82°C respectively.
Figure 12 (A2) and (B2) show the relative humidity readings with the two heating systems respectively. The

figures also show the time when VeriMask detected the violation of the RH range (in red) and changed the state
of the sensor nodes in the monitor application to ERROR_FAILURE (decontamination failure), and when the
process is successfully completed (in blue) and changed the state to DONE.
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Fig. 12. Temperature, relative humidity, and VeriMask responses during a decontamination cycle where there exist operational

errors. (A1) and (A2) show the leakage vs. no-leakage cases with the EC12 thermal chamber in lab setting. (B1) and (B2)

show the leakage v.s. no-leakage cases with the Memmert HCP humidity chamber in clinical setting. (C1) and (C2) show

the normal (500uL) and less (400uL, 300uL) amounts of water cases with the EC12 thermal chamber. (D1) and (D2) show

the normal (500uL) and less (400uL, 300uL) amounts of water cases with the Memmert HCP humidity chamber. The blue

star, red triangle, and black rectangular mark the start time when the temperature and humidity readings both enter the

pre-configured decontamination ranges (colored in green) for each case.

In the EC12 thermal chamber, the leakage set did not reach the target relative humidity in the decontamination
time, which caused a violation event generated by the verifier of the VeriMask application after 20 min as
described in Section 4.3. In the clinical humidity chamber instead, the humidity level reached the target range
for 28 minutes, then the violation event was generated by VeriMask 2 minutes after the RH level fell below the
lower threshold. We argue that this difference is due to the different airflow speeds of the convection heating
systems. The EC12 thermal chamber has a higher airflow speed compared to the clinical humidity chamber, which
accelerates the convection between the humidified air in the container and the dry air in the heating system,
thus rapidly decreasing the RH level.

Insufficient amount of water.We evaluate the effects of using an insufficient amount of water by comparing
the decontamination processes of three sets of containers with the VeriMask sensor nodes. The amount of water
used for soaking the paper towels was 500uL, 400uL, and 300uL respectively. We then ran a single decontamination
cycle with the two heating systems at the same setting as in the leakage experiments.

Figure 12 (C2) and (D2) show the relative humidity readings with the two heating systems, and the change of
states of the nodes in the VeriMask monitor application. As shown in the figure, the two sets with 400uL and
300ul both experienced decontamination failure. As in the previous case, if the relative humidity level does not
reach the target level during the first 20 minutes, the node changes its status to ERROR_FAILURE.
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Overall Observations. From this failure analysis we can conclude that VeriMask can not only help to characterize
the suitability of commercially available heating systems to be used as decontamination devices, but also can be
easily integrated to standard operating procedure to automatically detect failure conditions that can compromise
decontamination processes that might go undetected if rely only on the heating device sensors.

7 DISCUSSION

In this section we consider and discuss feedback from healthcare professionals (Section 7.1) and lay out the
lessons learned from our experience and collaboration with the consortium of experts and clinicians attempting
to solve N95 decontamination problems (Section 7.2).

7.1 Feedback From Healthcare Professional and Decontamination Experts

To identify the aspects for future improvement and learn the overall impression on the VeriMask platform, we
collected feedback and suggestions from healthcare professionals, researchers in the field, and decontamination
process experts through anonymous surveys. We received 21 answers from a pool that includes physicians,
registered nurses, patient care technicians, sterile process managers, medical students, biomedical researchers,
and faculty of medicine and engineering from various countries such as US, Italy, and China. Many of these were
recruited from the collective of volunteers we worked with (anonymized). The interviewees were asked to give
their impression on the VeriMask monitoring functionalities, the user interface, and the throughput optimization
feature, and then provide suggestions on improving the overall capability of VeriMask based on their expertise.

VeriMask Functionality. While one interviewee points out that there is still operators’ manual effort required
to implement MH decontamination procedures in hospitals with VeriMask, 16/21 (76%) of interviewees strongly
agreed or agreed that moist-heat decontamination integrated with the VeriMask platform can be recommended
as an emergency procedure to decontaminate N95 masks for reuse in healthcare facilities facing mask shortage.
The remaining three interviewees prefer expressing a neutral opinion. In addition, 14/21 (67%) of interviewees
strongly agreed or agreed that VeriMask can help avoid insufficient decontamination or failures, 6/21 (28%)
remain neutral, while one interviewee clarified the necessity of ensuring compliance with medical standards for
masks handling under decontamination failure to avoid risk for the operators.

VeriMask User Interface. Almost all the interviewees (19/21 or 90%, with 2 neutral opinions on average among
three questions) think the VeriMask smartphone application can greatly accelerate the manual inspection process
and display information in a complete and easy-to-use manner. We also received positive feedback on the app’s
recommendations for the optimal heating device setup. One interviewee suggests instead the use of icons and
pictures as a way to enhance the user experience.

Insight for Future Improvements. In addition to providing feedback on the platform, some interviewees
suggest interesting insights into both improving VeriMask functionalities and enhancing integration with the
clinical setting. One suggestion refers to the possibility of storing automatically multiple cycle information in the
application. The current platform only allows the recording of a single decontamination cycle at the time by
clicking a specific button. Recording multiple cycles while imply a more sophisticated memory management,
can allow further post-decontamination analysis on the collected data and provide a backup record of the
decontamination processes for the hospitals. Another suggestion consists in including different operational
modes (e.g. automatic and advanced modes) in the application accordingly to different levels of user expertise. For
instance, the automatic mode can be designed for ordinary operators for easy and fully automated verification.
The advanced mode, on the other hand, can designed for experienced operators (e.g., doctors and nurses) to allow
more personalized interactions such as setting more fine-grained decontamination parameters. This additional
functionality requires more in-depth integration with the specific hospitals’ internal policies and regulations (e.g.
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credential management for different authorized operators) that can impact the generality-oriented design of the
platform. Finally, other suggestions consist in providing user guides for the operators in addition to the open
hardware implementation design to facilitate the adoption of VeriMask in different clinical settings, and further
reducing the sensor node dimension to improve the overall portability.

7.2 Lessons Learned

Based on our experience, we now briefly summarize the lessons learned in the pandemic in the hope to help
future researchers and designers to better safeguard the future. First, emergency designs should be prepared
long in advance. Our team started developing VeriMask in response to the serious N95 mask shortages in US in
mid 2020 [21] and had the first working prototype at the beginning of the 2021 when the shortage was already
ramping down. We identify three major reasons of such need-response mismatch in emergency design for
PPE shortage in pandemics: 1) The challenge of understanding the medical specification and standards which
calls for collaborations with medical practitioners; 2) The challenge of getting access to clinics for design and
testing due to stricter health regulations in pandemic times; 3) The challenge of disrupted supply and fabrication
chains which seriously increases the hardware turn-around time. Our experience highlights the importance
of getting prepared before crises happens, which are almost certain to happen again judging from the history
of past pandemics [60, 100]. Second, designers should plan for the worst case and design for modularity. The
problem of disrupted supply chain can not only delay fabrication, but also render the electronic components
completely out-of-stock for months in pandemics. The designers should thus avoid assuming adequate supplies
for emergency design, and even consider candidate components from design phase or leave spaces on PCBs for
alternative components. Finally, designers should engage early with medical professionals and end users so that
both mobile computing researchers and clinics are prepared and have a framework to build around. Our team
has been in direct contact with the N95DECON consortium [89] which is a volunteer collective of scientists,
engineers, clinicians, etc, and dedicates to studying different methods of decontamination. Our communications
enabled more efficient and down-to-earth specification derivation which helped us avoid over-optimization and
overlooking seemingly unrelated but actually important form factors that can greatly improve user experience.

8 CONCLUSION

In response to the shortage of N95 masks caused by the COVID-19 pandemic, we designed VeriMask—a wireless
sensor platform that can verify and automate moist-heat decontamination processes of N95 masks. We design
the highly scalable and flexible platform composed of low-power and low-cost sensor nodes that can reliably
measure the temperature and relative humidity during the decontamination process, and an Android application
to detect decontamination failures and increase decontamination throughput. We evaluated VeriMask in both
a laboratory setting and in a real clinical scenario. Our results show that VeriMask can be widely and rapidly
deployed in health-care facilities to help address the challenge of N95 masks shortages. From the experience of
designing VeriMask we have defined the challenges, the design criteria, and the lesson learned in the process.
Ultimately, we hope that the proposed design experience will help system designers and healthcare facilities
formalize safe N95 masks decontamination procedures during future emergency crises to better protect front-line
workers from the risk of infection from reused masks.
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