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Abstract—Keyboards are the primary peripheral input devices
for various critical computer application scenarios. This paper
performs a security analysis of the keyboard sensing mechanisms
and uncovers a new class of vulnerabilities that can be exploited to
induce phantom keys—fake keystrokes injected into keyboards’
analog circuits in a contactless way using electromagnetic inter-
ference (EMI). Besides regular keystrokes, such phantom keys
also include keystrokes that human operators cannot achieve,
such as rapidly injecting over 10,000 keys per minute and
injecting hidden keys that do not exist on the physical keyboard.
The underlying principles of phantom key injections consist in
inducing false voltages on keyboard sensing GPIO pins through
EMI coupled onto matrix circuits. We investigate the voltage and
timing requirements of injection signals both theoretically and
empirically to establish the theory of phantom key injection. To
validate the threat of keyboard sensing vulnerabilities, we design
GhostType that can cause denial-of-service of the keyboard and
inject random keystrokes as well as certain targeted keystrokes of
the adversary’s choice. We have validated GhostType on 48 of 50
off-the-shelf keyboards/keypads from 20 brands, including both
membrane/mechanical structures and USB/Bluetooth protocols.
Some example consequences of GhostType include completely
blocking keyboard operations, crashing and turning off down-
stream computers, and deleting computer files. Finally, we glean
lessons from our investigations and propose countermeasures, in-
cluding shielding keyboards with metal materials and enhancing
the keystroke sensing mechanism.

I. INTRODUCTION

Keyboard has been an indispensable input component of
any computer setup since the 1970s [11]. As a fundamental
peripheral input device, keyboard has been an object of se-
curity research for decades. The majority of studies focused
on how to eavesdrop on the typed keystrokes (also known as
keylogging) and their countermeasures [1]–[4], [6], [8], [19],
[29], [31]–[33], [35], [36], [39], [42], [45], [46], [51], [55].
Others have tried injecting malicious fake keystrokes with
reprogrammed USB devices masquerading as keyboards [5],
[23], [40], [43]. To prevent these fake keystrokes from directly
manipulating computers, keyboards are recommended to be
vetted or authenticated in security-sensitive applications [7],
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Fig. 1: Keyboards are widely used in medical, industry, mili-
tary, ATM, and other applications. Exploiting the vulnerabil-
ities of the keyboard sensing mechanisms, GhostType can
perform DoS attacks to block the keyboard or inject random
keystrokes and certain targeted keystrokes.

[10], [18], [20], [26], [41], [53]. Our study1 revisits keyboard
security and asks one more fundamental question: to which de-
gree can we trust the keystroke sensing of unaltered legitimate
keyboards?

Trustworthy keystroke sensing lays the foundation to secure
computer operations in various critical application scenarios,
including medical [17], industry [25], military [9], ATM [52],
etc. Untrusted keystroke inputs could disrupt the operation of
downstream computers and result in unexpected consequences.
However, the security of keystroke sensing mechanisms has
hardly been investigated by the security community. The main
reason is that keyboards are known for their high reliability,
especially in comparison with the touchscreen alternatives,
which have been demonstrated to be vulnerable to electro-
magnetic interference (EMI) [37], [49], [56]. Keyboards sense
keystrokes based on a simple principle—a keypress turns
on/off a physical switch and therefore changes the received
voltage level indicator which is usually 3.3 or 5 V. The high
voltage level is naturally more resistant to conductive and
radiative interference and keyboards are normally designed and
tested for electromagnetic compatibility (EMC). In addition,
the long history of keyboard manufacturing has given birth to
false keystroke-prevention designs such as debounce and anti-
ghosting mechanisms. These factors seem to suggest a reduced
attack surface of malicious exploits.

1Demos: https://sites.google.com/view/ghosttype-demo
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Our work aims to perform a security analysis of the
overarching keystroke sensing mechanisms on modern key-
boards and keypads. Specifically, we investigate whether unal-
tered keyboards/keypads may sense adversary-controlled fake
keystrokes other than the authentic physical keystrokes from
human inputs. As illustrated in Fig. 1, if an adversary is able
to inject fake keystrokes into a legitimate keyboard without
touching it, she may stealthily manipulate the computer by dis-
rupting normal user operations, deleting documents, shutting
the computer down, etc., depending on the specific keystrokes
that can be injected by the adversary.

Security Analysis of Keyboards. To investigate the feasi-
bility and limits of such a threat, we disassembled 15 off-
the-shelf keyboards to retrieve the characteristics of matrix
circuits and scanning signals through reverse engineering.
After overcoming the challenges of understanding diverse and
complex implementations of these keyboards, we managed to
uncover three shared vulnerabilities that could be exploited for
keystroke injections:

• The simple keystroke scanning signals are not verified
when received by the processor on all keyboards. We are
able to inject every key on the keyboard by replaying the
scanning signals into the sensing circuit.

• Keyboards are vulnerable to EMI signals at specific fre-
quencies despite the existing EMC design, with which we
are able to cause denial-of-service (DoS) of the keyboard
or inject fake keystrokes contactlessly.

• All keyboards have “hidden keys” that do not exist in
the physical layout but only exist in the keyboard matrix
circuit. We are able to inject non-existing functional keys
such as sleep, open file/web browser, and media control.

Contactless Keystroke Injection via EMI. Motivated by
these observations, we further explore the principles behind
the above phenomenon and investigate the voltage and timing
requirements of injection signals both theoretically and empir-
ically to establish the theory of effective keystroke injections.
Additionally, we investigate the feasibility of injecting targeted
keystrokes. To assess the level of potential real-world threats
of keyboard sensing vulnerabilities, we design GhostType
(GT in short), the first contactless keystroke injection attack
against the keystroke sensing mechanisms based on EMI.
GhostType achieves two types of attack outcomes:

• DoS attacks can completely block the sensing of authentic
keystrokes and thereby disable user operations.

• Keystroke injection can inject random keystrokes to make
the computer unresponsive and even crash, or inject
certain targeted keystrokes of the attacker’s choice.

Injecting targeted keystrokes is the most challenging as it re-
quires a significant amount of reverse engineering and delicate
design of the injection signals to achieve localized delivery
of EMI with correct timing. We achieved localized delivery
by selecting proper relative antenna-to-trace positions so that
fake keystrokes can be injected to only one certain RX. To
address the timing problem, we designed a synchronization-
free injection method by understanding the keyboard’s two-
stage scanning mechanism and designing signals that trigger
the keyboard’s rescanning period. We evaluated GhostType
on 50 off-the-shelf keyboards and keypads, including both
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Fig. 2: Illustration of how a keyboard works. A keystroke is
sensed through matrix scanning and encoded in a “scancode”
to be transmitted to the computer via standard protocols. The
computer then executes the corresponding tasks.

membrane/mechanical structures and USB/Bluetooth protocols
and found 48 out of them vulnerable to GhostType. Notable
results include injecting hidden alphabetical and function keys
on a numeric-only keypad, injecting random keystrokes at a
maximum of 22,939 keys per minute to force the computer to
sleep constantly, and injecting targeted keystrokes to delete/-
close files and turn off the computer. Finally, we summarize
security insights and propose hardware and software counter-
measures. In summary, our contributions include:

• To the best of our knowledge, we present the first signal
integrity analysis of keystroke sensing mechanisms. Our
analysis reveals vulnerabilities that could be exploited to
manipulate keyboards and downstream computers.

• We develop the theory of contactless keystroke injections
via EMI. Our theory and experiments show that adver-
saries can achieve synchronization-free attacks capable
of blocking the keyboard, injecting random keystrokes
to cause computers to crash, and injecting targeted
keystrokes to delete files and turn off computers.

• We provide the assessment and analysis of the vulnera-
bilities on 50 off-the-shelf keyboards and insights for po-
tential countermeasures gleaned from our investigations.

II. BACKGROUND AND THREAT MODEL

A. Keyboard Overview

Keyboards are the most prevalent computer input device.
There are several types of keyboards, including membrane,
mechanical, dome, capacitive, buckling-spring, hall-effect, and
optical keyboards. Membrane keyboards have been the most
popular since the mid-1990s because they are cheap and easy
for mass production. Keyboards can have different numbers of
keys depending on the vendor and model, with most keyboards
having 80 to 110 keys.

The typical workflow of a keyboard consists of three steps:
keystroke sensing, scancode transmission, and task execution.
As shown in Fig. 2, the keyboard processor employs the scan-
ning algorithm to scan the matrix circuit and sense keystrokes.
Each key is assigned a unique identifier called a “scancode”
with a translation table stored in the keyboard processor’s
memory. When the processor detects a key being pressed, it
compares the key’s coordinate on the matrix circuit to the
scancode translation table. It then reports the scancode to
the host computer via standard communication protocols such
as PS/2, USB, and Bluetooth. After receiving the scancode,
the computer raises an interrupt to process the scancode and
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Fig. 3: (a) The keyboard arranges switches/keys in a grid-like
array. (b) When a key is pressed, a closed circuit is formed,
and a corresponding RX is dropped to the logical-low state.

register a keystroke. Finally, the operating system (OS) passes
the keystroke information to applications.

B. Keyboard Sensing Mechanism

Matrix Circuit Scanning. The keyboard is often designed
in a special architecture known as the matrix circuit, as
shown in Fig. 3(a). The matrix circuit is built by arranging
switches/keys in a grid-like array of M scanning lines (TXs)
and N receiving lines (RXs) with one switch/key at every
intersection. There is no established standard for the design
of the matrix circuit layout, and a matrix circuit with M TXs
and N RXs can support up to M ∗ N keys in theory. Each
RX is pulled up to remain in the logical-high state (“1”) in the
idle state, and the keyboard processor drops each TX to the
logical-low state (“0”) in sequence to scan the matrix circuit.
When a key is pressed, as shown in Fig. 3(b), the circuit of
the corresponding TX-RX pair is closed. The scanning signal
on TX is received by RX, resulting in RX being dropped to
the logical-low state.

Keystrokes Sensing. The majority of keyboards sense
keystrokes on the principle of detecting the logical state on
the input GPIO. The keyboard processor employs a Schmitt
Trigger at the input GPIO to determine the input logic state,
as shown in Fig. 4(a). The Schmitt Trigger determines the
input logic state by applying two threshold voltages: the high
threshold voltage VIH , and the low threshold voltage VIL

(Fig. 4(b)). The keyboard processor detects a key as pressed
when an RX is dropped below the low threshold voltage VIL

when a TX is scanned. The generic values for VIH , and VIL

are 2.0-2.5 V and 1.2-1.5 V for a 5 V system, 1.2-1.5 V and
0.6-0.8 V for a 3.3 V system respectively. The exact thresholds
depend on the processor’s electrical characteristics.

Capability of Handling Simultaneous Keystrokes. Key
Rollover is the term used to describe how many keys can
be pressed simultaneously. A keyboard with n-key rollover
(NKRO) can correctly detect and handle all keys being pressed
simultaneously. Typical general-purpose keyboards are 3-KRO
to 6-KRO, and gaming keyboards usually support NKRO.
Keyboard Ghosting is the problem that some keyboard keys
don’t work when multiple keys are pressed simultaneously.
This happens when three or more keys sharing rows and
columns are pressed simultaneously, and the connected circuit
permits the current to flow incorrectly. Keyboards typically
use filtering logic to detect and block keystrokes before this
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Fig. 4: (a) The structure of GPIO input pin. (b) The Schmitt
Trigger determines the input logic state with two thresholds,
VIH and VIL.

happens in software or employ diodes at each key to prevent
the incorrect current flow in hardware.

C. Known Keyboard Vulnerabilities

Previously, keyboards have mostly been investigated for
keystroke logging side-channel attacks that aim to eaves-
drop on keystroke inputs and violate keyboard confidentiality
(Section VII). A few works analyzed how to inject keys
using BadUSB attacks [23], [40]. Such attacks exploit key-
board USB’s firmware vulnerabilities by reprogramming a
connected USB device with malicious software that allows the
device to masquerade as a malicious USB keyboard. However,
countermeasures already exist for authenticating USB devices
and detecting BadUSB attacks to ensure the legitimacy of
connected USB devices [7], [10], [18], [20], [26], [41], [53].
Meanwhile, the security of keyboard sensing mechanisms has
rarely been explored yet. Our work aims to characterize an
orthogonal space of keyboard data integrity vulnerabilities by
investigating the underlying sensing mechanisms of keyboards
that are independent of data transmission protocols such as
USB and Bluetooth.

D. Threat Model

Adversary’s Goal. The adversary aims to contactlessly
inject keystrokes into a keyboard through intentional electro-
magnetic interference (IEMI), thus blocking keyboard inputs
or input keys to manipulate the connected computer. Our work
considers two types of attack outcomes:

(1) Denial-of-Service (DoS) Attack, where the adversary can
completely block the sensing of authentic keystrokes to
disable user operations.

(2) Keystroke Injection, where the adversary can inject
random keystrokes to make the computer unresponsive
and even crash, or inject certain targeted keystrokes of
the attacker’s choice.

We make the following assumptions for the adversary to
achieve the aforementioned attack outcomes:

Capability of the Adversary. We assume it is only feasible
for the attacker to inject keys using external EMI signals
contactlessly. This happens when the attacker has no on-
site controls over the target keyboard’s hardware/software and
cannot take apart or tap into the keyboard or physically connect
a malicious USB device in the form of BadUSB.

Knowledge of the Victim Keyboard. We assume the ad-
versary knows the target keyboard’s model, and she may obtain
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Fig. 5: (a) The internal structure of a membrane keyboard. (b)
The experimental setup for reverse-engineering the scanning
characteristics.

a similar keyboard for assessment beforehand. For example,
she may disassemble the keyboard to systematically analyze
the matrix circuit and scanning characteristics to retrieve the
specifications by reverse engineering.

Attack Setup. We assume the adversary can hide the
injection equipment by attaching it under the keyboard’s desk
or placing it at a distance from the keyboard. We also assume
the adversary can control the equipment remotely.

III. KEYBOARD SENSING SECURITY ANALYSIS

In this section, we perform a systematic security analysis
of 15 off-the-shelf keyboards through reverse engineering and
uncover three vulnerabilities of keyboard sensing mechanisms.

A. Vulnerabilities of Matrix Scanning

We disassemble 15 off-the-shelf membrane keyboards.
Fig. 5(a) shows an example of their internal structures, in-
cluding a keyboard processor board and a three-layered plastic
matrix circuit board. The keyboard processor board is linked
to a USB cable with a magnetic ring to shield high-frequency
electromagnetic interference. The processor’s GPIO pins are
connected to traces on the matrix circuit board through phys-
ical contact.

1) Keyboard Sensing Characteristics Revealing: We use an
oscilloscope to monitor the signal on each GPIO pin of the
keyboard processor in Fig. 5(b). The signals on TX and RX
without and with a key pressed are illustrated in Fig. 6. The
signal on each RX remains high in the idle state when no key is
pressed, while the scanning signal on each TX is a pulse signal
with width w and scanning period TS . Thus, we first determine
whether it is TX or RX by measuring whether there is a pulse
or DC signal on each GPIO pin. The results in Table I indicate
that the most commonly used keyboard matrix circuit employs
18 TXs and 8 RXs. We then measure each keyboard’s scanning
characteristics, including idle state voltage VIdle, pulse width
w, scanning period TS and time difference ∆T between two
adjacent TXs. The results are summarized in Table I, indicating
that the scanning characteristics vary with the keyboard vendor
and model. We then hypothesize that the keyboard processor
may be spoofed by replaying the scanning signal into an RX
according to the following two reasons: (1) the processor
determines whether there is a key by sensing RX’s logic
state without authenticating the received signals, and (2) the
scanning signal is a simple negative pulse signal that is not
encrypted.
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Fig. 6: The keyboard processor continuously pulses each TX
for a short duration in sequence, and the scanning signal on
the TX flows through the switch to RX when a key is pressed.

2) Wired Keystroke Injection: To validate our hypothesis
above, we wire into an arbitrary RX and utilize a signal
generator to inject a pulse signal with the same scanning char-
acteristics as revealed in Table I. Several keys were success-
fully injected, indicating that the keyboard processor does not
validate the authenticity and legitimacy of the received signals.
According to the keystroke sensing mechanism in Fig. 4(b),
keystrokes can be injected by dropping the RX’s voltage to the
low threshold VIL when a TX is scanned. Thus, we change
the values of the replayed pulse signal’s amplitude Vin, period
Tin, and pulse width win to test more diverse injection signals.
We first decrease the amplitude Vin of the injection signal in
a 0.1 V step from VIdle. The result shows that keystrokes can
be injected when Vin satisfies Eq. (1) to drop the voltage at an
RX across the GPIO’s low threshold voltage VIL introduced
in Fig. 4. For example, keystrokes can be injected into Cherry
KC1000 keyboard and Logitech MK235 when Vin is higher
than 3.4 V and 3.6 V, respectively.

VIdle − Vin ≤ VIL (1)

We then change the value of injection period Tin and pulse
width win. The results indicate that keystrokes can be injected
only when Tin satisfies Eq. (2).

Tin =
Ts

k
, k ∈ N∗ (2)

This is because keyboards usually employ a debounce delay to
ensure only one signal is acted upon each key-down or key-up
event to prevent spurious keystrokes, i.e., a key press/release
is only determined to be a keystroke if it is detected by two
consecutive scanning cycles. Thus, the injected signals must
hold for at least two consecutive scanning cycles. Additionally,
keystrokes are injected at a higher speed when increasing the
value of k. We also notice multiple keystrokes are injected
simultaneously when we increase win, and keystrokes are
injected occasionally or even not injected when we decrease
win. The keyboard is blocked when the number of injected
keystrokes exceeds the keyboard’s key rollover capacity (Sec-
tion II).

B. Vulnerabilities of Contactless Keystroke Injection

1) Potential Coupling Path for EMI Injection: The key-
board matrix circuit board in Fig. 5(a) is a three-layered
plastic sheet board with dense traces exposed on the upper and
lower sheets and cavities at each key location on the middle



TABLE I: Characteristics of matrix circuits and scanning
signals retrieved through reverse engineering.

Vendor & Model Num. of
Keys (TXs, RXs)

Scanning Characteristics
VIdle TS w ∆T

Cherry KC1000 108 (18,8) 5 V 3.6 ms 15 us 200 us
ACER YKB913 104 (18,8) 5 V 4.0 ms 120 us 120 us

ACER KM41-2K 104 (18,8) 3.3 V 8 ms 35 us 35 us
A4TECH MK100 104 (18,8) 5 V 3.8 ms 110 us 130 us
A4TECH FG1010 98 (18,8) 3.3 V 2.4 ms 45 us 130 us
Logitech MK235 104 (12,11) 3.3V 4.0 ms 8.5 us 10 us
Logitech MK220 100 (12,11) 3.3 V 4.0 ms 8.0 us 11 us

Rapoo K150 104 (18,8) 3.3 V 8.2 ms 142 us 250 us
Rapoo X125S 104 (18,8) 3.3 V 7.9 ms 140 us 250 us
Dell KB522P 116 (18,8) 5 V 3.2 ms 10 us 30 us

Dell KM2123D 104 (18,8) 3.3 V 7.8 ms 120 us 160 us
Lenovo KM4800S 107 (18,8) 5 V 7.8 ms 230 us 250 us

BOW MK610 79 (16,8) 3.3 V 7.2 ms 180 us 300 us

sheet. These TX and RX traces are irregular and vary from
keyboard vendor and model, as illustrated in Appendix A. An
example of the 16 TX traces lower sheet and 8 RX traces upper
sheet is shown in Fig. 7(a). Although keyboards are consumer
electronics that are expected to have adequate EM shielding,
we found no anti-interference design on the matrix circuit
board for almost all keyboards except the magnetic ring of the
USB cable protecting the USB instead of the sensing circuit.
We hypothesize these long exposed traces can be exploited as
potential EM coupling paths for EMI injections.

2) Feasibility Study of Contactless Keystroke Injection:
We conducted a frequency sweep test on a Cherry KC1000
keyboard to test the hypothesis. The experiment setup is illus-
trated in Fig. 7(b). We employ a signal generator (SIGLENT
SDG6032X), a power amplifier for EMI signal generation, and
an antenna for EMI signal transmission. We place the antenna
under the keyboard matrix circuit and conduct a frequency
sweep test with a sinusoidal signal from 10 MHz to 100 MHz
with a step of 10 MHz and an amplitude of 1 Vpp. During
the test, we can randomly inject keystrokes into the keyboard
at 30, 50, 60, 70, and 80 MHz only and block the keyboard
at 20, 90, and 100 MHz. These results demonstrate that the
matrix circuit traces act as the EM coupling path for contactless
keystroke injections, resulting in different attack outcomes.

C. Vulnerabilities of Hidden Keys

During the experiments, we observed an interesting phe-
nomenon: keys that don’t exist on the keyboard’s physical
layout are injected. We call these keys “hidden keys”. For
example, we injected several hidden keys on a Cherry KC1000
keyboard, including function keys to open the file browser,
turn the volume up/down, make the media play/previous, and
possible ASCII codes for debugging such as “171”, “233”,
“255”, etc.

Prerequisites of Hidden Keys. We found that the hidden
key phenomenon occurs because the keyboard matrix circuit is
designed with a key at the intersection of TX and RX without a
physical switch. The key sets of keys on the matrix circuit and
the keyboard’s physical switches are Mp and Mk, respectively.
Theoretically, Mk should be equal to Mp, but in practice, Mk

is a proper subset of Mp and Mp −Mp ∩Mk ̸= 0, which is
the prerequisites of hidden keys. The keyboard processor could
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Fig. 7: Illustrations of (a) the traces on the upper and lower
sheets, and (b) the experiment setup of contactless keystroke
injection via EMI. The keyboard is placed on a 5 mm-thick
acrylic sheet, and the antenna is hidden under the sheet.

handle all the input keys in Mk, and the set of hidden keys
Mhidden can be expressed as Mhidden = Mp−Mk. We believe
that hidden keys exist due to keyboard designers’ negligence
in inspecting and removing the non-existent keys from the
keyboard processing firmware. This could be because it is
more cost-effective for manufacturers to develop one matrix for
various products. Under normal circumstances, these hidden
keys will not be triggered because a human cannot close a
nonexistent switch. However, the adversary could inject every
key on the keyboard matrix circuit to trigger hidden keys,
which may cause unexpected consequences to the downstream
OS system and software. We evaluated the full spectrum of
hidden keys on 10 keyboards and discussed potential threats
of hidden keys in Section V-E.

D. Summary of Observed Vulnerabilities

We summarize the following three observed vulnerabilities
of the keyboard sensing mechanisms based on the above
security analysis and keystroke injection experiments:

• Observation 1: The keystroke scanning signals are simple
and not verified after being received by the processor. We
are able to inject every key on the keyboard by replaying
the scanning signals in the sensing circuit.

• Observation 2: The long and dense traces on the key-
board matrix circuit are coupling paths for EM injections.
We are able to inject keystrokes contactlessly via EMI.

• Observation 3: We are able to inject hidden keys that do
not exist in the keyboard’s physical layout but only exist
in the matrix circuit.

IV. CONTACTLESS KEYSTROKE INJECTION VIA EMI

After verifying the feasibility of contactless keystroke
injections via EMI, we investigate the following two research
questions to design GhostType.

Q1: How to design the injection signals to achieve effec-
tive contactless keystroke injections? Although our prelimi-
nary study confirmed the feasibility of contactless injections,
keystrokes were injected inefficiently. To characterize more
effective attacks, we investigate the voltage and timing require-
ments of injection signals to establish the theory of contactless
keystroke injections in Section IV-A.

Q2: How can adversaries inject a targeted keystroke?
Even if we can inject keystrokes effectively, targeted keystroke
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injection is challenging as it requires a significant amount of
reverse engineering and delicate design of the injection signal
for localizing delivery of injection signals into the targeted
RX and synchronizing the injection with the targeted TX. We
explore the strategies to overcome the challenges and assess
the feasibility of such injections in Section IV-B.

A. Effective Keystroke Injection via EMI

Fig. 8 illustrates the injection signal we designed for
GhostType, where four parameters can be configured, in-
cluding frequency fin, amplitude vin, pulse width win and
period Tin. We design the injection signal as a pulse-modulated
sinusoidal signal for two reasons: (1) the pulse-modulated
sinusoidal signal is the most commonly used in state-of-the-
art EMI injections [12]–[15], [21], [22], [47], [56], [57], and
(2) the feasibility of changing the reading of GPIO pins by
injecting sinusoidal signals has been demonstrated in [12],
[47], [57] and our preliminary study in Section III-B. As briefly
mentioned in Section III-A, keystrokes can be injected when
the injection signal satisfies two constraints:

• Constraint 1: The induced sinusoidal voltage Vemi(t) at
an RX needs to drop below VIL when a TX is scanned
to be sensed as a keystroke.

• Constraint 2: The injection signal needs to be injected
during at least two consecutive scanning cycles because
of the debounce mechanism.

To understand how to satisfy these constraints, we investigate
the voltage and timing requirements of the injection signal
to establish the theory of effective keystroke injections via
EMI. First, we analyze the requirements of frequency fin
and amplitude vin to inject keystrokes effectively. Then, we
analyze the requirements of width win and period Tin to
perform the single- and multiple-keystroke injections.

1) Requirements of frequency fin and amplitude vin: For
a sinusoidal signal with frequency fin and amplitude vin, the
induced voltage coupled into the keyboard’s RX is an AC
signal Vemi(t) that varies with time t, which can be expressed
as Eq. (3).

Vemi(t) = Ecvinsin(2πfint+ φ0) (3)

where Ec is the coupling efficiency since the injection signal is
coupled into the victim matrix circuit by means of the magnetic
coupling mechanism. And the signal Sin in Fig. 8 can be
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expressed as Eq. (4).

Sin =

{
Vemi(t) kTin < t ≤ win + kTin

0 otherwise
(4)

where Sin is a pulse-modulated sinusoidal signal and Tin is
the period of the injection signal and k ∈ N.

To meet the first constraint to inject a keystroke when
the m-th TX is scanned, the voltage requirement of the
injection signal Vemi(m∆T ) can be expressed as Eq. (5) by
combining Eqs. (1) and (3).

Evvinsin(2πfinm∆T + φ0) ≥ VIdle − VIL (5)

where m∆T represents the scanning time of the m-th TX,
m = 1, 2, ...,M , VIdle − VIL is a constant, and M is the
number of TXs. The specific values of VIdle and VIL are
keyboard-dependent, which can be measured through reverse
engineering. Since the frequency of injection signal fin (sev-
eral MHz) is more than three orders of magnitude greater than
the frequency of the scanning signal fs (several kHz), the
timing relationship between the attack and each TX’s scanning
signal is shown in Fig. 9(a), which can be expressed as Eq. (6).

∆T = ktin +∆t, 0 ≤ ∆t < tin and k ∈ N (6)

Substitute Eq. (6) into Eq. (5) and simplify, the voltage
requirement of the injection signal can be expressed as Eq. (7).

sin(2πfin∆tm+ φ0) ≥
VIdle − VIL

Ecvin
, m = 1, 2, ...,M (7)

where ktin vanishes because fintin = 1, and 0 ≤ fin∆t ≤ 1.
Thus, sin(2πfin∆tm + φ0) becomes a discrete function of
m. Fig. 9(b) illustrates the meaning of Eq. (7) on a keyboard
with 18 TXs when φ0 = 0. The solid dots represent the
injected voltage on the RXs when a TX is scanned, and the
blue dashed line represents the threshold (VIdle − VIL)/Ecvin.
Since max(sin(·)) = 1, the sinusoidal signal has no intersec-
tion with the blue dashed line when VIdle−Ecvin > VIL, i.e.,
Eq. (7) is unsolvable and there is no keystroke injected. When
VIdle − Ecvin ≤ VIL, the blue dashed line gradually moves
down, and more keystrokes are injected as vin increases. Thus,
the minimum injection voltage is vin = VIdle − VIL. The
red dots in Fig. 9(b) represent successful keystroke injections
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Fig. 10: (a) The minimum voltage vin required for keystroke
injections at different frequencies fin. (b) The number of
simultaneously injected keys with different pulse widths win.

when the corresponding TX is scanned. Besides, we can
change the value of φ0 to inject keystrokes from different TXs.
Faraday’s law of induction states that the coupling efficiency
Ec strongly depends on the injection signal frequency fin.
Thus, we must choose an appropriate combination of fin and
vin to satisfy Eq. (7) to inject keystrokes contactlessly.

Prior works usually try to maximize Ec by analyzing
the resonant coupling frequency fres. However, analyzing
fres is both difficult and unnecessary for our attack for the
following two reasons: (1) Difficult: The resonant coupling
frequency fres is determined by the geometry of traces and
the keyboard’s matching network impedance, which is difficult
to calculate theoretically because traces are complex and
different on each keyboard, and there are no publicly available
high-frequency keyboard processor models. (2) Unnecessary:
Keystrokes can be injected at a wide range of frequencies,
not just one. Although the coupling efficiency Ec fluctuates
with frequency, it can be easily overcome by increasing the
amplitude vin. Therefore, we can sweep the frequency across
a wide band, determine the injection frequency candidates
{f1, f2, . . . } for relatively high power transfer, and then in-
crease vin to satisfy Eq. (7). It is important to note that the
high-power EMI attack is power-hungry and may interfere with
other devices to make them easily detectable. Thus, to make
the injection energy-efficient and undetectable, attackers must
select optimal injection frequency candidates with higher Ec

to perform keystroke injections with a relatively low vin.

We validate this by conducting a frequency sweep exper-
iment on three keyboards and changing the amplitude vin
at different injection frequencies to determine the minimum
required amplitude under a successful keystroke injection
frequency. The results in Fig. 10(a) show that keystrokes
can be injected at a wide range of frequencies and the
minimum required amplitude varies in a non-linear pattern
at different frequencies, indicating that some frequencies are
more advantageous to an EMI injection than others. We
can choose these more advantageous frequency candidates to
perform a more powerful keystroke injection. The effect of fin
and vin on keystroke injection behaviour is further evaluated
in Section V-C.

To meet the second constraint, Eq. (5) and Eq. (8) must be
satisfied simultaneously.

Vemi((m+M)∆T ) ≥ VIdle − VIL

Ecvin
(8)

where M is the number of a keyboard’s TXs. Keystrokes are
continuously injected when satisfying Eq. (9).

sin(2πfin∆tm+ φ0) = sin(2πfin∆t(m+M) + φ0) (9)
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Fig. 11: Targeted keystroke injection requires three steps: (1)
retrieve the coordinate of targeted key key(m,n), (2) localize
the injection signal into the n-th RX, and (3) synchronize the
injection with the m-th TX.

When ∆t = 0, i.e., ∆T = ktin, Eq. (9) holds. The injection
constraint of the debounce mechanism is automatically satis-
fied. When ∆t ̸= 0, a sufficient and necessary condition to
satisfy Eq. (9) is

fin ·∆t ·M = C, C ∈ N (10)

Combining Eqs. (6) and (10), tin and ∆T need to satisfy the
relationship in Eq. (11) to inject a keystroke.

∆T

tin
= k +

C

M
, k ∈ N∗ (11)

Since ∆T is two orders of magnitude greater than tin, many
solutions exist for Eq. (11). This conclusion is further demon-
strated in Table V, where keystrokes can be injected at a
wide range of frequencies with the 48 off-the-shelf keyboards.
When Vemi(m∆T ) ̸= Vemi((m + M)∆T ), keystrokes can
only be injected periodically because Eq. (5) and Eq. (8) can be
partially satisfied simultaneously in a sinusoidal signal period,
which is inefficient and not the goal in this paper.

2) Requirements of width win and period Tin: We inves-
tigate the requirements of win and Tin to perform single-
and multiple-keystroke injections. The red dots below the blue
threshold dash line in Fig. 9(a) illustrate successful keystroke
injections at different TXs. We can configure the value of width
win and period Tin to change the number of injected TXs. win

can be expressed as Eq. (12) and Tin satisfies Eq. (2).

win = ktin, k ∈ N (12)

where k is the cycle of a sinusoidal wave. When Tin = Ts,
single and multiple keystrokes can be injected by satisfy-
ing Eq. (13) and Eq. (14), respectively.

Single Keystroke : w ≤ win < ∆T (13)
Multiple Keystrokes : win ≥ w + k∆T (14)

where ∆T is the time difference between two adjacent TXs
and k ∈ N. When Tin = Ts/k and k = 2, 3, . . . , multiple
keystrokes are injected . We validate this by conducting
keystroke injections on three different keyboards. The results
in Fig. 10(b) demonstrate that we can configure the value of
win to inject single or multiple keystrokes simultaneously. The
larger win is, the more keystrokes are injected simultaneously.
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Fig. 12: The injected signals measured on (a) different RXs
with the same antenna position, and (b) an RX with different
antenna positions Pin.

B. Feasibility of Targeted Keystroke Injection

The core idea of injecting a targeted keystroke key(m,n)
involves injecting the injection signal into n-th RX while
the m-th TX is scanned. There are three required steps in
this injection pipeline, as illustrated in Fig. 11: (1) acquiring
the victim keyboard’s matrix circuit to determine the targeted
RX and TX and scanning characteristics, (2) localizing the
injection signal into the targeted RX to inject keystrokes from
the targeted RX line and (3) synchronizing the injection with
the targeted TX to inject a targeted keystroke. To perform
a targeted keystroke injection, it is important to address the
following two technical challenges:

• Challenge 1: Localized delivery of injection signals
into the targeted RX. The dense traces on the matrix
circuit make it challenging to localize EMI signals to only
one certain RX without interfering with other RXs.

• Challenge 2: Synchronizing the injection with the tar-
geted TX. Synchronizing with the victim device is always
required by the most state-of-the-art EMI injections on a
specific target.

We investigate the opportunities to handle the aforementioned
challenges to inject a targeted keystroke.

1) Opportunities for RX selection: The dense and irregular
matrix circuit traces make it challenging to inject signals
into only one certain RX without interfering with other
RXs. Generating an injection signal with a small focusing
area is a common challenge in EMI injections [12], [38],
[49]. Nevertheless, we discover that the susceptibility to EMI
injections differs substantially among traces when injecting
the same injection signal at the same position, as illustrated
in Fig. 12(a). Although the injection signal is coupled into
different RXs, there is a significant difference in the ampli-
tude of the coupled signals on different RXs. Similarly, as
demonstrated in Fig. 12(b), there is also a significant difference
in the amplitude of the coupled signals measured on the
same RX with different antenna positions. Our simulations in
Ansys HFSS in Appendix B also demonstrated that the relative
antenna-to-trace position has a significant impact on the trace’s
susceptibility to EMI injections. Thus, we envision that it is
possible to make the coupled sinusoidal voltage Vin satisfy the
requirement in Eq. (7) on only one certain RX.

We conduct keystroke injections on a Cherry KC1000 key-
board at twenty-one antenna positions and analyze the injected

Fig. 13: RX distributions of the injected keystrokes at 21
antenna positions.

keystrokes’ RX distributions to validate this strategy. These
twenty-one evenly distributed antenna positions P1, · · · , P21

are illustrated in Appendix C. We perform injections at each
position for 30 s with an amplitude of 1 Vpp and different
frequencies fin. The frequency fin is swept from 10 MHz
to 50 MHz in 10 MHz steps for 105 sets of tests. The
results in Fig. 13 demonstrate that the relative antenna-to-trace
position significantly impacts the RX distributions of injected
keystrokes, i.e., the injected keystrokes at a certain position are
mostly distributed over a specific RX. For example, we can
inject keystrokes from the 1-th RX and the 6-th RX at P3 and
P11, respectively. Thus, we can localize the injection signal
into the targeted RX by determining the injection position
along the targeted RX trace.

2) Opportunities for TX selection: We investigate the op-
portunities for TX selection by synchronizing the injection
with the scanning signal or employing a synchronization-free
injection strategy.

Synchronizing with the Scanning. The keyboard scanning
process unintentionally emits electromagnetic signals [55],
which can be received to synchronize the injection with the
scanning. The adversary can employ an antenna and low
noise amplifier (LNA) like [21], [56] to receive and amplify
the radiated scanning signals from victim devices. Fig. 14(a)
(top) shows an example of the received emission on a Cherry
KC1000 keyboard, from which the timing information of the
scanning signals can be extracted. For example, we can observe
17 TXs between the two strongest emissions, corresponding to
the Cherry KC1000 keyboard’s 18 TXs. The strength of the
radiated scanning signals changes between TXs because of
the varying TX-trace-to-antenna positions. The adversary can
synchronize the injection with the scanning signal utilizing any
TX’s emission as a flag to synchronize the injection with the
scanning signal and adjust the timing of the injection signal
into the targeted TX based on the scanning sequence. Fig. 14(a)
(bottom) illustrates an example of utilizing the strongest emis-
sion as the flag for synchronization. We also demonstrated
in Appendix D that the EM emission characteristics used for
synchronization are the same for two keyboards of the same
model.

Synchronization-free Injection Strategy. In addition to
this synchronization strategy, we discover that certain key-
boards employ a two-stage scanning mechanism, which can
be exploited to build a synchronization-free injection strategy.
The keyboard processor is configured in an interrupt-driven
method by default at the first stage to detect a key press to save
energy. When a key press is detected, the processor restarts
the scanning and switches to the second scanning stage to
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Fig. 14: (a) The strategy for locating the strongest ema-
nation as the flag for synchronization. (b) The strategy of
synchronization-free injection with the scanning state transi-
tion triggered by the detection of a key press.

detect which key is pressed. The specifics of this two-stage
scanning mechanism are detailed in Appendix E. Based on this
two-stage scanning mechanism, we develop a synchronization-
free strategy to inject a targeted keystroke without sensing the
emanations for synchronization, as illustrated in Fig. 14(b). We
first inject a trigger signal Vemi(ttrig) to trigger the scanning
restart. Based on our previous analysis in Section IV-A, the
trigger time ttrig needs to satisfy Eq. (15) in order for the
trigger signal to be identified as a key press.

ttrig = w +∆T (15)

We can then adjust the delay time tdelay to determine
the injection timing to inject a targeted keystroke, where
tdelay = TS + (m − 1)∆T,m = 1, 2, 3, ..., i. We validate
this synchronization-free strategy with the same experiment
setup as Section IV-B1. The results show that we can inject the
function key “PrintScrn” at P3 in Fig. 13 when ttrig = 215 us
and tdelay = 800 us, and inject the function key “sleep” at
P11 when ttrig = 215 us and tdelay = 600 us. Furthermore,
this synchronization-free strategy can also be applied to all
Bluetooth keyboards since they don’t scan the matrix until a
key press is detected to save energy.

C. Attack Prerequisites for Different Attacks

The attack prerequisites are determined by the type of
attack, and our investigations show that targeted keystroke
injection attacks have more prerequisites than others.

For DoS attack and random keystroke injection, the ad-
versary is required to determine the appropriate combination
of injection frequency and position to perform the injection
effectively. Our evaluations in Sections V-C and V-D will
demonstrate that these attacks can succeed at a wide range
of injection frequencies and positions.

For targeted keystroke injection, the adversary needs to
localize the delivery of injection signals into the targeted RX
and synchronize with the keyboard via its EM emission, or
she can employ a synchronization-free attack strategy if the
keyboard supports a two-stage scanning mechanism or is a
Bluetooth keyboard.

V. EVALUATION

In this section, we evaluate GhostType on 50 commercial
keyboards across different manufacturers, models, structures,
and protocols. We then explore the factors affecting injection
performance, including the antenna position, injection distance,
table material, and thickness. Finally, we evaluate hidden keys
on 10 keyboards and elaborate on potential attack scenarios
and case studies.

A. Experiment Setup

Apparatus. We use a similar experimental setup as Fig. 7
by default if not otherwise specified, which consists of a signal
generator, a power amplifier, and a near-field antenna. We
explain the specific setups at the beginning of each subsection
for the experiments that evaluate performance with various
factors.

Targeted Devices. We evaluate GhostType on 50 off-
the-shelf keyboards and keypads from 20 popular brands re-
leased in the last five years, including Acer, Dell, HP, Lenovo,
Logitech, Microsoft, Philips, etc., as shown on the website
in [16]. The specifications of these keyboards are presented
in Table V. There are 40 membrane and 10 mechanical
keyboards, with 35 USB and 15 Bluetooth keyboards.

Metrics. We define two evaluation metrics to evaluate
GhostType’s overall performance:

• Success Rate (SR) is the percentage of attacks that suc-
cessfully achieve the targeted attack outcomes.

• Actions per Minute (APM) is the number of injected
keystrokes per minute to evaluate the injection speed.

B. Different Keyboards

We placed the injection antenna directly under the keyboard
and conducted a frequency sweep experiment from 10 MHz to
100 MHz with a step of 0.1 MHz with an amplitude of 1 Vpp.
We present the results of injection frequencies at which each
keyboard is vulnerable to GhostType.

1) Overall Performance: The results are shown in Table V,
indicating that 48 of these 50 keyboards are susceptible to GT
attacks. We disassembled these two unsusceptible keyboards
and found steel plates underneath the matrix circuit as shown
in Appendix F, which we believe were acting as additional
EMI shielding for these two keyboards.

DoS Attack. We manually pressed the keyboard to deter-
mine if the keyboard was blocked during the injection. The
results show that the DoS attack is successful on 36 of the
48 vulnerable keyboards. The detailed injection frequencies
are reported in Table V. We found that DoS attack can
be conducted in a wide range of frequencies rather than a
specific frequency, validating our theory established in Sec-
tion IV. These 12 unsuccessful keyboards are all mechanical
or membrane gaming keyboards that are NKRO and can
correctly handle all keys being pressed simultaneously and
hence will not be blocked by numerous keystrokes injected
simultaneously. We evaluated the success rate of DoS attack
with 30 repeated trials on these 36 keyboards. The results are
displayed in Table V, indicating a success rate of nearly 100%.
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Fig. 16: GhostType’s performance on keystroke injections over different injection frequencies fin and amplitudes vin.

Keystroke Injection. We ran a keystroke monitoring
program on the computer to record the injected keystrokes
during the injection. The results show that we can inject fake
keystrokes via EMI on 39 of the 48 vulnerable keyboards. The
detailed range of injection frequencies for each keyboard is
reported in Table V. We found that keystrokes can be injected
at over 10,000 APM on mechanical and membrane gaming
keyboards, which is significantly faster than what human users
can type. For example, GT can inject 12,110 keystrokes per
minute into a membrane gaming keyboard #38 and 22,939 into
a mechanical keyboard #40. We evaluated the success rate of
random injection with 30 repeated trials on each device. The
success rate is also nearly 100%. Additionally, we investigated
the feasibility of injecting targeted keystrokes for these 39
keyboards using the strategy established in Section IV-B.
The number of targeted keystrokes that could be injected on
each keyboard is reported in Table V. We believe a well-
sourced adversary can implement a targeted keystroke injection
attack to achieve a damaging attack outcome. We validate the
threat of targeted keystroke injection with two case studies
in Section V-F and further discuss the challenges of targeted
keystroke injection implementation in Section VI.

2) Summary: The above results show that the uncov-
ered vulnerabilities of the keyboard sensing mechanisms are
widespread, and each keyboard has a different level of suscep-
tibility to GT due to its unique design. In addition, we had the
following three insights:

Membrane vs. Mechanical: Membrane keyboards are
vulnerable to both keystroke injection and DoS attacks, while
mechanical keyboards are only vulnerable to keystroke injec-
tion attacks because of their NKRO capacity.

USB vs. Bluetooth: Bluetooth keyboards are more vul-
nerable to GT attack than USB keyboards. This is because

Bluetooth keyboards are often powered by 3.3 V batteries
so the required injection amplitude vin to satisfy Eq. (7) is
relatively lower than 5 V-powered USB keyboards.

Vendor vs. Security: The uncovered vulnerabilities of
sensing mechanisms are not specific to individual keyboard
vendors. Keyboards are vulnerable to GT in a wide range of
EMI frequencies. Higher-end keyboards are typically superior
in performance but not security. The adversary can inject
keystrokes at a higher speed on high-end keyboards than on
the more common office keyboards from the same vendor.

C. Injection Frequencies and Amplitudes

To evaluate the impact of injection frequencies and am-
plitudes on GhostType, we conducted experiments using a
similar setup as Fig. 7. The injection antenna is placed at the
same position under the key “5” on the numeric keypad.

1) DoS Attack: We selected six representative keyboards
from Table V. Three keyboards (#11, #24, and #34) are vulner-
able to DoS attack, and three (#6, #30, and #33) are vulnerable
to DoS attack and keystroke injection attack. The injection
frequency fin and voltage vin were swept from 10 MHz to
98 MHz with a step of 4 MHz and 0.5 Vpp to 5 Vpp with a
step of 0.5 Vpp, with a total of 230 injection experiments that
take more than 30 minutes on each keyboard. Fig. 15 shows the
results with a combined view of the frequency and amplitude
dependency for successful EMI attacks. As we can see in
this figure, certain frequencies outperform other frequencies
(require smaller amplitude vin to trigger GT), which validated
our previous theory of attack in Section IV-A. Besides, we
found that increasing the amplitude vin allows a keyboard
to be blocked at a frequency that is not blocked before, and
these six keyboards are blocked at almost all frequencies when
vin ≥ 2.5 Vpp.



Fig. 17: GhostType’s robustness against antenna positions.
The solid blue area represents successful injections relative
to the keyboard’s center position (normalized by keyboard
length). Positive and negative values denote movement to the
right/upward and left/downward.

2) Keystroke Injections: Similarly, we also selected six
representative keyboards from Table V. Three keyboards (#6,
#30, and #33) are as same as the DoS attack, and three (#38,
#40, and #42) are vulnerable to only keystroke injections. We
first swept the injection frequency fin from 10 MHz to 20 MHz
with a step of 1 MHz when vin=1 Vpp. We captured the
injection keystrokes over 3 minutes to calculate the average
value of actions per minute (APM) to evaluate the injection
speed. Fig. 16(a) shows that keystrokes can be injected at
various frequencies, but the injection speed greatly varies with
injection frequency, indicating certain frequencies outperform
other frequencies. We then selected the frequency with the
highest APM and swept the amplitude vin from 0.5 Vpp to
1.5 Vpp with a step of 0.1 Vpp. Fig. 16(b) indicates that the
injection speed of keystrokes increases as vin increases.

D. Environmental Factors

To quantify the GhostType performance under the im-
pact of antenna position, injection distance, table material and
thickness, we conducted experiments using a similar setup
as presented in Fig. 7(b), except there is a table top sample
between the victim keyboard and antenna to evaluate the
impact of different table materials and thicknesses.

1) Impact of Antenna Positions: Section IV-B1 points
out that the relative antenna-to-trace position can affect the
performance of GT. To evaluate the impact, we shifted the
antenna horizontally and vertically along the keyboard plane.
Specifically, we first put the antenna under the keyboard’s
geometric center and adjusted injection frequency fin and
amplitude vin to conduct GT successfully. We then shifted the
antenna in horizontal and vertical directions, respectively, with-
out changing the injection signal. We recorded the positions
where GT were still successfully conducted. We normalized the
horizontal and vertical positions with respect to the keyboards’
dimensions since the size of each keyboard is different. The
results are shown in Fig. 17. We observed successful DoS and
injection attacks in a wide range of horizontal and vertical
directions. We also notice that the robustness to different
injection positions is device-dependent because the traces on
different keyboards are different, as shown in Appendix A.
We also discovered that we could inject the same targeted
keystroke when shifting the 14 mm and 12 mm away in the
X and Y axes, respectively, without changing the injection
parameters. In general, targeted keystroke injections are robust
to the displacement of injection points within the keyboard

region along the target RX trace as long as the signal does not
interfere with other RX traces.

2) Impact of Injection Distance: We conducted the exper-
iments with antenna-keyboard distances of 0 mm, 10 mm,
20 mm and 30 mm. As we can see in Table II, the success
rate of DoS attack is up to 100% when the injection distance is
10 mm, and keystroke can still be injected when the injection
distance is 30 mm. The injection performance reduces as
distance increases because the electromagnetic signal intensity
rapidly degrades with distance. In practice, a resourceful
attacker can extend the attack distance by employing high-
power amplifiers and directional antennas. We extended the
attack distance for both DoS attack and keystroke injection to
over 1 m using an Ettus LP0410 PCB directional antenna with
a Mini-Circuits ZHL50W-63+ power amplifier. The demo of
injecting keystrokes from a distance over 1 m is shown in [16].
Since the radiated scanning signal rapidly attenuates with
distance, the adversary may only be able to synchronize with
the keyboard via EM emission with a nearby attack device that
is hidden underneath or inserted into the table. In comparison,
the adversary can achieve a longer injection distance using a
synchronization-free strategy if the keyboard employs a two-
stage scanning mechanism or is a Bluetooth keyboard. For
example, we demonstrated an example of a targeted keystroke
injection at a distance of 1 m using the synchronization-free
strategy in [16]. We believe that the achievable distance can
be extended further by employing a professional antenna and
amplifier with superior directionality and gain.

Both DoS attack and random keystroke injection can be
performed at a distance of up to 1 m in this paper using
a preliminary set of injection equipment, and the achievable
distance can be extended further by employing a professional
antenna and amplifier with superior directionality and gain.

3) Impact of Table Material: We selected four typical
tabletop samples (solid wood, acrylic, medium density fiber-
board (MDF), and glass) as the insulation material between
the victim device and antenna and conducted injection experi-
ments. The thickness of these table material samples is 10 mm.
Table II shows that GT can achieve a similar success rate
and injection speed performance. This suggests that contactless
injection can be relatively robust to different table materials.

4) Impact of Table Thickness: We further evaluated the
success rate and injection speed with different thicknesses of
tables to understand the practicality of GT. We conduct the
experiments when the thickness of the acrylic sheets is 10 mm,
15 mm, 20 mm, and 25 mm. Table II shows the success rate of
DoS attack is up to 100% when the table thickness is 15 mm,
and keystrokes can be injected into most keyboards when the
table thickness is up to 25 mm. Note that the 25 mm effective
attack distance is larger than the common table top thickness
(less than 20 mm). The demo of injecting keystrokes under a
25 mm-thick table is shown in [16].

E. Hidden Keys

As mentioned in Section III-C, the hidden key phenomenon
occurs due to the insecure implementation of the matrix circuit.
To understand the full spectrum of these hidden keys, we
investigated hidden keys on 10 keyboards from 6 vendors.



TABLE II: The Results of the Impact of Different Injection
Distances, Table Materials, and Table Thickness.

Environmental Factors DoS Attack Keystroke Injection
#11 #24 #34 #38 #40 #42

Injection
Distance

0 mm 100% 100% 100% 6804.0 23612.4 3962.6
10 mm 100% 100% 100% 4448.2 19453.8 2403.0
20 mm 42% 62% 100% 2951.8 10475.2 1635.6
30 mm 0 0 100% 1017.8 2632.2 393.8

Table
Material

Solid Wood 100% 100% 100% 3808.2 18464.8 2311.2
Acrylic Sheet 100% 100% 100% 4248.4 16901.4 2336.0

MDF 100% 100% 100% 4492.2 17310.4 2423.0
Glass 100% 100% 100% 4035.8 14964.6 2375.4

Table
Thickness

10 mm 100% 100% 100% 4248.4 16901.4 2336.0
15 mm 100% 100% 100% 3570.0 11105.0 1828.6
20 mm 100% 100% 100% 2509.2 7781.2 1064.6
25 mm 70% 0 100% 1349.0 3579.8 617.2

Specifically, we ran a keystroke detection program on Win-
dows and connected each TX and RX pin in pairs to reverse
the key sets of the matrix circuit Mp. Then, we compared
Mp with the keyboard’s physical switches Mk and got hidden
keys according to the analysis in Section III-C. The matrix
circuits on different keyboards from the same vendor can be
very similar (#34 vs. #35 from Rapoo) or different (#25 vs.
#27 from Logitech). Matrix circuits on different keyboards
from different vendors can be similar (#9 from Cherry vs.
#34 from Rapoo). We discovered that hidden keys exist on
every keyboard, and the specific number and type of hidden
keys vary because of the different matrix circuits. These hidden
keys could be divided into two main categories:

• Function Keys: We can inject hidden keys with different
functionalities, such as opening the file browser/web
browser/menu/mail app/music app/calculator, turning the
media volume up/down, playing/pausing media, and
putting the computer to sleep, etc.

• Possible Debug Codes: There are certain debug ASCII
codes, including 110, 167, 170, 171, 193, 194, 235, 255,
etc., and vendor-specific debug sequences such as “alt-8-
2-1-0”, “alt-insert-end-keydown-keyup”, etc.

Potential Threat of Hidden Keys. Hidden keys are
expected to cause security problems if the downstream OS
system or software also neglects to identify and disable
keystroke inputs that should not be accepted, e.g., alphabet-
ical keystrokes from a numeric-only keypad. For example, a
numeric-only keypad (#45) we examined has 44 hidden keys,
including the alphabetical keys, function keys, and control keys
(Fig. 18), which can be exploited to turn off a computer in our
demonstration [16]. We hope our investigation can motivate
stakeholders, particularly the manufacturers of critical devices,
e.g., POS/ATM/public-facing terminals and kiosks, to examine
their products against unexpected keystroke inputs.

F. Potential Attack Scenarios and Case Studies

We envision that GhostType works for both user-like ad-
versaries that are granted use of the keyboards and adversaries
that want to disrupt the operation of legitimate keyboard users.

For user-like adversaries, there are two potential scenarios:
(1) GT can help them input keystrokes at a much higher speed
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Fig. 18: GhostType injected 44 hidden keys on a numeric-
only keypad, including alphabetical, function, and control keys.

than human inputs to outperform competitors in computer-
based tests, gaming, etc. For example, a GT adversary in DOTA
gaming may quickly inject the “QWER” hotkeys to dramati-
cally increase their damages per second and gain advantages
over others without being detected by software anti-cheating
programs. (2) GT can help them inject hidden keys to trigger
hidden functionalities of the downstream software systems and
may cause unexpected consequences on system administrators.
For example, we could inject hidden keys on a numeric-only
keypad to turn off the computer.

For adversaries that want to disrupt the operation of
legitimate keyboard users, we envision two main scenarios:
(1) Manipulating keyboards on critical equipment such as
medical devices, control terminals of industrial devices, and
military weapons. Such critical keyboards are usually limited-
accessible or even physically inaccessible since any untrusted
or incorrect keystrokes can cause disastrous consequences.
Despite the need for proximity access for limited-accessible
keyboards, we envision that the adversary can install the
disguised GT equipment near the target computer desk or
keyboard tray via one-time access and then launch the attack
remotely when other legitimate users or system administrators
unlock and operate the computer. For physically inaccessible
keyboards, the adversary may launch GT from a distance
using a directional high-gain antenna. As a proof-of-concept,
we demonstrate in [16] some examples of the adversary’s
capability in such scenarios, where we could inject certain
targeted keystrokes to close unsaved files, delete files, force
the computer to shut down, and inject random keystrokes at
a distance of up to 1 m to disrupt and modify computer
inputs. (2) Causing irreversible loss in time-sensitive scenarios.
Some examples include a trader trading securities and stocks,
a secretary typing to record key information of an important
meeting, a gamer playing a world competition, etc. Our study
shows adversaries can perform DoS attack to completely block
the keyboard or inject random keystrokes to keep the computer
in hibernation. Demos of case studies can be found on [16].

VI. DISCUSSION

A. Countermeasures

To mitigate the vulnerabilities of keystroke sensing mech-
anisms, we provide insights into potential hardware and soft-
ware mitigations gleaned from our investigations.

Shield Keyboards with Metal Materials. According to
the findings in Section V-B, keyboards with a steel plate



underneath the matrix circuit are less susceptible to EMI
injections when the injection antenna is placed underneath the
keyboard. It is worth noting that adversaries can still use the
antenna above the keyboard to attack keyboards shielded with
merely a metal plate underneath. We recommend that keyboard
manufacturers employ metal enclosures as a straightforward
countermeasure to protect both sides of the keyboard from
EMI injections.

Enhance the Keystroke Sensing Mechanism. We believe
keyboard manufacturers could improve the keystroke sensing
mechanism in four ways. (1) Randomize the scanning signal
waveform. The keyboard sensing mechanism can be spoofed
primarily because the keyboard processor does not verify
whether the received keystroke scanning signals came from
the keyboard’s TX. To ensure trustworthy keystroke sensing,
we propose that the keyboard randomize the scanning signal
waveform to be employed as the “verification signal”. When a
pressed key completes a circuit, the keyboard controller checks
if that, and only that signal, is received on the appropriate
RX pin. (2) Redesign the scanning signal’s parameters. Our
simulations in Appendix G revealed that decreasing the value
of time difference ∆T between the two adjacent TXs consid-
erably reduced the success rate of phantom keystroke injec-
tions. As a result, keyboard engineers can design appropriate
scanning parameters to make the keyboards less vulnerable to
GhostType. (3) Randomize the scanning sequence to make
it difficult for adversaries to predict when and which TX is
scanned to inject specific keystrokes into the targeted RX. (4)
Detect and remove hidden keys using the proposed test method
in Section V-E to avoid unexpected consequences.

B. Limitations and Future Work

Stealthy Attack Setups. As the first work investigating
keyboards’ analog sensing vulnerabilities, GhostType fo-
cuses on modeling and characterizing the attack limits and
factors to lay the groundwork for further studies and keyboard
engineering. Therefore, our proof-of-concept experiments used
the existing laboratory equipment to explore the potential
attack impact. Practical attacks in real-world scenarios can
benefit from stealthy attack setups that can be concealed from
victims. A future direction for the adversary is to employ
professional (e.g., military-grade) amplifiers and directional
antennas with superior directionality and gain to perform the
attack at a long distance. The adversary may also build a small
attack device that can be hidden underneath or inserted into
the victim’s table, as has been demonstrated in [21], [49].

Antenna Array. We proposed a methodology for injecting
targeted keystrokes using a single antenna by localizing the
injection into a specific RX at the timing of a specific TX.
However, this method requires the adversary to maintain a
roughly similar antenna position to the initial benchmarking
setting, which may be difficult in some scenarios. A potential
future work is to design an antenna array similar to [37], [49],
[56], which can locate the victim device and adjust the antenna
position for the targeted RX. We believe such an antenna array
can also enable injecting a long sequence of keys, which is
theoretically possible by combining single keystroke injection
at different antenna positions.

High-security Keyboards. In this paper, we evaluated 50
off-the-shelf consumer-grade keyboards that are the most com-

mon types in everyday life. In addition to them, there are other
types of keyboards, such as rugged or metal-plated keyboards
used in high-security applications, including POS/ATM/public
terminals, industry, medical, etc. These keyboards are generally
protected by hardened cases with better shielding capabilities
and robustness in tough environments. It will be worthwhile
to investigate whether these keyboards are also susceptible to
high-power EMI in future work.

VII. RELATED WORK

Keyboard Security. The majority of previous studies on
keyboard security focused on methods to eavesdrop on the
typed keystrokes (also known as keylogging), which em-
ploys various information-derived compromising emanations
to eavesdrop on keystrokes. Either the emanations from the
keyboard [1], [3], [8], [19], [29], [31], [36], [55], or the user’s
physical state when typing [2], [6], [32], [35], [42], [45], [46],
[51] are exploited to perform keylogging attacks. Others have
tried injecting malicious fake keystrokes with reprogrammed
USB devices masquerading as keyboard, such as BadUSB [23],
Teensy [40], Mousejack [43] and Rubber Ducky [5]. Consider-
ing these threats, keyboards are recommended to be vetted or
authenticated in security-sensitive applications to prevent these
fake keystrokes from directly manipulating computers [7],
[10], [18], [20], [26], [41], [53] In comparison to connecting a
BadUSB device, this paper uncovers the vulnerabilities of the
keyboard sensing mechanism and demonstrates the contactless
injection of fake keystrokes into legitimate keyboards using
EMI. To the best of our knowledge, this paper presents the first
signal integrity analysis of the keystroke sensing mechanism.

EMI Attacks against Electronic Systems. Since analog
signals are more susceptible to EMI than digital signals,
there are various EMI attacks against analog sensors: mi-
crophones [30], [58], [59], implantable cardiac devices [30],
magnetic speed sensors [50], smartphones [24], [58], light
sensors [48], temperature sensors [34], [54], CCD and CMOS
image sensors [21], [27], [60], touchscreens [37], [49], [56]
and smart lock [38]. Besides, several EMI attacks against digi-
tal signals have been demonstrated, including bit-flip attacks on
serial communications [12], [47], [48], PWM driving signals
manipulations of AC-DC converters and servo motors [13]–
[15], data falsifications targeting CAN frame [44] and vehicle
charging communication [28]. The EMI attacks [37], [49], [56]
against virtual keyboards on touchscreens are the closest to
GhostType. In comparison, there are significant differences
between GhostType and EMI attacks against touchscreens
regarding the voltage level, signal waveform, and signal pa-
rameters (Appendix H). This paper uncovers the vulnerabilities
of keyboard sensing mechanisms, which requires quantifying
a unique set of theories and limits pertaining to keyboards’
sensing mechanisms.

VIII. CONCLUSION

We present the first signal integrity analysis of keystroke
sensing mechanisms and reveal a new class of vulnerabil-
ities that could be exploited to manipulate keyboards and
downstream computers. We develop the theory of contactless
keystroke injections via EMI and design GhostType that can
cause DoS of the keyboard and inject random keystrokes and
certain targeted keystrokes. We provide the assessment and



analysis of the vulnerabilities on 50 off-the-shelf keyboards
and insights for potential hardware- and software-based coun-
termeasures gleaned from our investigations.
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APPENDIX

A. The Irregular TX and RX Traces on Different Keyboards

Examples of the traces on the lower and upper sheet on six
keyboards. We found that these TX and RX traces are irregular
and vary from keyboard vendor and model. For example,
as shown in Fig. 19, the traces on two Logitech keyboards
(Logitech MK 220 and Logitech MK 235) are quite different.
These traces differ amongst keyboards, resulting in different
vulnerabilities to GhostType and making it difficult to inject
long sequences of targeted keystrokes.
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Fig. 19: Illustrations of the TX and RX traces on matrix circuits
of 6 keyboards. We can find that these TX and RX traces are
irregular and vary from keyboard vendor and model.

B. Simulations in Ansys HFSS.

We create a proof-of-concept model in Fig. 20, where a
loop antenna is utilized for EMI injection attacks, and two
microstrips are used to emulate the traces. To fully describe
a trace’s geometry, three parameters are used: length Lt,
width Wt, and angle θt. The antenna plane is parallel to the
microstrip plane, the vertical distance between the two planes
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Fig. 20: Illustrations of the 3D perspective and parameter
definitions for the proof-of-concept simulation model in Ansys
HFSS.

is dt, and the horizontal distance between the microstrip 1 and
the antenna center position is Dt. The relative antenna-to-trace
position can be expressed as

√
D2

t + d2t . Since a quantitative
evaluation of these four factors is out of the scope of this paper,
we design four sets of simulations to investigate the impact of
each factor on a trace’s susceptibility to EMI and determine
a dominant factor to design our attack strategy. Specifically,
the frequency of the injection signal is swept from 10 MHz to
5 GHz at a step of 10 MHz, and the value of four factors are
set as indicated in Table III.

TABLE III: Value of simulation parameters.

No. Parameters Value of Start, End and Step Simulation Points
1 fin 10 MHz, 5 GHz, 10 MHz 500
2 Lt 1 mm, 9 mm, 0.5 mm 17
3 Wt 1 mm, 9 mm, 0.5 mm 17
4 θt 5◦, 85◦, 5◦ 17
5 Dt 1 mm, 9 mm, 0.5 mm 17

The simulation results are illustrated in Fig. 21. We dis-
covered that the strength of the coupled signal decreased when
increasing the distance of the relative antenna-to-trace position
in Fig. 21(a) and the effect of angle on the coupled signal’s
amplitude is not significant in Fig. 21(b). These results reveal
that the relative antenna-to-trace position plays a dominant role
in a trace’s susceptibility to EMI.
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Fig. 21: Results of the induced signal’s amplitude on the
microstrip when (a) sweeping the signal frequencies with
different relative antenna-to-probe positions, and (b) sweeping
the signal frequencies with different angles.

C. Designing of the Twenty-One Injection Positions

We created a 4*8 grid in Fig. 22, with a total of 21
intersection positions P1, P2, · · · , Ph, · · · , P21. We performed
keystroke injection attacks at each position for 30 s with the
same injection amplitude Vemi and a different frequency fin
that is swept from 10 MHz to 50 MHz in 10 MHz steps, for a

total of 105 sets of tests. The result of the injected keystrokes’
RX distributions is illustrated in Fig. 13.
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Fig. 22: Illustration of the injection positions.

D. The Feasibility of Synchronizing with Scanning

The strength of the radiated scanning signals changes
between TXs because of the varying TX-trace-to-antenna po-
sitions. Since the traces on the matrix circuits are the same for
two keyboards from the same manufacturer and batch, when
placing the receiving antenna in the same position underneath
these two keyboards, the strongest emission from keyboard
scanning corresponds to the same TX in theory. To demonstrate
this, we conducted an experiment on two Cherry KC1000
keyboards from the same batch. One keyboard served as a
benchmark, while the other served as the victim. We placed the
receiving antenna underneath the key “G” on the benchmark
keyboard and found that the strongest emission came from the
15-th TX trace. We then used this emission as a synchronizing
signal to inject the targeted keystrokes “3”, “E”, and “D”
at positions P3, P6, and P14 in Fig. 22, respectively. We
repeated the experiment 10 times at each position, and the
success rate was calculated when the target keystroke was
successfully injected. Next, we placed the receiving antenna
underneath the key “G” on the victim keyboard and repeated
the same experiment at positions P3, P6, and P14. The results
are shown in Table IV. The same key was injected with a
similar success rate, indicating that the strongest EM emission
from keyboard scanning mostly coincides with the same key
on both the victim and the benchmark keyboard despite subtle
variations between individual keyboards.

TABLE IV: Results of GhostType on the Benchmark and
Victim Keyboard.

# Antenna Position Benchmark Keyboard Victim Keyboard
Key Succ. Key Succ.

1 P3 3 8/10 3 6/10
2 P6 E 9/10 E 8/10
3 P14 D 7/10 D 7/10

E. Keyboard’s Two-Stage Scanning Mechanism

The keyboard employs a two-stage scanning mechanism to
detect key presses in the interrupt-column mode and identify
the pressed key in the polling mode. The flowchart of the
scanning mechanism is illustrated in Fig. 23. The keyboard
processor is configured in the interrupt-driven mode by default
at the first state to detect a key press and switch to the second
state as soon as a key press is detected. In the polling mode, the
processor scans a key for the first time and starts the timer for
debounce delay; when the debounce delay elapses, the timer
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Fig. 23: Illustration of the flowchart of the keyboard’s two-
stage scanning mechanism. The keyboard employs a two-stage
scanning mechanism to detect key presses in the interrupt-
column mode and identify the pressed key in the polling mode.

triggers an interrupt for the processor to read the logic state
of RX pins again to identify the pressed key. The keyboard
processor remains in the polling mode to identify each pressed
key until no keys are pressed, at which point it returns to
the first scanning mode. This two-stage scanning mechanism
conserves energy because the computational overhead of the
first state is significantly lower than that of the second state.

Fig. 24 illustrates an example of this kind of two-stage
scanning mechanism on a Cherry KC1000 keyboard. The
scanning process of detecting a key press can be divided
into three segments. The scanning state switching between
two scanning modes is visible at the beginning of the second
segment. Based on this two-stage scanning mechanism, we
can develop a synchronization-free strategy to inject a targeted
keystroke without sensing the emanations for synchronization.
We can inject a trigger signal to trigger the scanning restart and
then adjust the delay time to determine the injection timing to
inject a targeted key without synchronizing the injection with
the scanning signal.
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Fig. 24: Illustrations of the keyboard’s two-stage scanning
mechanism, where detecting a key press triggers the scanning
state transition. This two-stage scanning mechanism provides
opportunities for designing the synchronization-free injection
strategy to inject a targeted keystroke without synchronizing
the injection with scanning.

F. The Steel Plate Under the Matrix Circuit

We disassembled the two keyboards that are susceptible
to GhostType attack during our evaluation in Section V-B.
Their inners were shown in Fig. 25, and we found a steel plate
under the matrix circuit. We envision the metal plate acting as
additional EMI shielding to protect these two keyboards from
our alias attacks. We propose this insight as a hardware-based
countermeasure for keyboard manufacturers.
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Fig. 25: Illustrations of the steel plate underneath the matrix
circuit, which shields the matrix circuit from GhostType
attack.

G. Redesigning the Parameters of the Scanning Signal

We found in our evaluation in Section V-B that although
keyboards employ a similar scanning mechanism, the specific
value of scanning parameters varies from vendor and model
(Table I), resulting in different sensitivity to GhostType.
Inspired by this, we investigated the keyboards that are rel-
atively less vulnerable to our GhostType attacks and found
that the keyboard with a lower value of time difference ∆T
between the two adjacent TXs was relatively less vulnerable
to our GhostType attacks. We envision this is because
decreasing the value of ∆T reduces the probability that the
injection signal dropped an RX below VIL when a TX is
scanned in at least two consecutive scanning cycles, thus
reducing the success rate of the attack. We validated this
through simulations by only changing the value of ∆T . The
other scanning signal parameters do not change. The results
of the simulation in Fig. 26 showed that the success rate of
phantom keystroke injections was significantly reduced when
the value of time difference ∆T between the two adjacent
TXs decreased, validating our hypothesis. When ∆T =40 us,
the injection success rate is only 19.5%. Thus, keyboard
manufacturers can carefully choose their scanning parameters
to make the keyboards less vulnerable.
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Fig. 26: Simulation results indicate that the success rate of
phantom keystroke injections was significantly reduced when
the value of time difference ∆T between the two adjacent TXs
decreased.



TABLE V: Overall Performance of GhostType on 50 Off-the-shelf Keyboards.

#
Specificaiton DoS Keystroke Injection

#
Specification DoS Keystroke Injection

Vendor and Model Structure Protocol Fre. Succ. Fre. Succ.
Targeted

Keys
Vendor and Model Structure Protocol Fre. Succ. Fre. Succ.

Targeted
Keys

1 A4TECH MK100 Mem. USB 76-78 30/30 33-37.7 30/30 14 26 Logitech MK275 Mem. BLE 39.2-98.2 30/30 19.1-37.6 30/30 4

2 A4TECH KBN-8510 Mem. USB 68.2-80.1 30/30 42-48 30/30 3 27 Logitech MK220 Mem. BLE
37.7-43.3

49.4-100
30/30

17.1-37.6

43.4-49.3
30/30 4

3 A4TECH FG1010 Mem. BLE 88.3-100 30/30 17.3-88.2 28/30 8 28 Logitech G610 Mech. USB % - 96.9-97.8 30/30 3

4 A4TECH KB-N9100 Mem. USB 75.2-86.3 30/30 23.5-58.7 30/30 2 29 Microsoft 850 Mem. BLE
36.3-52.2

75.4-100
30/30 52.3-75.3 30/30 3

5 ACER YKB913 Mem. USB 100 30/30
44.8, 82.5

93.3
30/30 5 30 Microsoft 900 Mem. BLE

32.4-46.5

82.6-100
30/30

32.4

82.6
30/30 1

6 ACER KM41-2K Mem. BLE
17.8-19.5

31.5-33.7
30/30

15.1-17.7

27.5-31.4
30/30 5 31 Philips SPK6234 Mem. USB 98.8 30/30 % - -

7 BOW MK610 Mem. BLE 80-90 30/30
10-80

90-100
30/30 6 32 Philips SPT6103 Mem. BLE

29.5-57

63-100
30/30

17.5-29.5

57-63.2
30/30 3

8 BOW HW098A Mem. USB 10-100 30/30 % - - 33 Philips SPK6212B Mem. USB 79.1-100 29/30 10-79 30/30 4

9 Cherry KC1000 Mem. USB
17.8-23.1

83.3-100
30/30

23.2-31.3

42.1-83.2
30/30 10 34 Rapoo K150 Mem. USB 66.1-100 30/30 % - -

10 Cherry Stream Mem. USB % - % - - 35 Rapoo X125S Mem. USB 74.1-100 30/30 % - -

11 Dell KB216-t Mem. USB

23.9-27.7

37.7-44.2

73.3-100

30/30 % - - 36 Rapoo 8050T Mem. BLE 19.3-20 30/30 20.1-100 30/30 1

12 Dell KM17 Mem. BLE 15-96 30/30 96.1 30/30 1 37 Razer RZ03-0146 Mem. USB % - 10-100 30/30 3

13 Dell KM2123D Mem. BLE
10-26.5

27-74.8
30/30

26.6

75-100
30/30 2 38 Razer RZ03-0147 Mem. USB % - 10-100 30/30 3

14 Dell KB3022D Mech. USB % - 93.3-100 29/30 1 39 Thunderobot KG3089R Mech. USB % - 62-89 30/30 4

15 Dell KB522P Mem. USB
24.0-24.5

92.7-97.6
30/30 % - - 40 Thunderobot KG3104R Mech. USB % -

38-39.8

91-100
30/30 2

16 HP GK400F Mech. USB % - 43.6-l00 30/30 5 41 Thunderobot KM400 Mem. BLE 87-100 30/30 % - -

17 HP KM10 Mem. USB 10-27.6 28/30 27.7-85.9 30/30 3 42 Xiaomi HZJP01YM Mech. USB % - 10-100 30/30 5

18 HP CS10 Mem. BLE 28.7-57.1 30/30
18.3-28.6

57.2-99
30/30 3 43 Xiaomi WXJS01YM Mem. BLE 42-85 29/30

10-40

86-100
30/30 3

19 IKBC W200 Mech. BLE % - 86-100 30/30 3 44 Xiaomi JXJP01MW Mech. USB % - 33.3-33.7 30/30 1

20 Keycool K-9 Mech. USB % -
37.2-62.3

74.9-96.1
30/30 5 45 A4TECH FK13P Mem. USB

33.4

41.9
30/30

22-33

34-38.4
30/30 2

21 Lenovo K4800S Mem. USB 93-100 30/30
38.9-44.8

76.6-90
30/30 2 46 CoolSpeed Mem. USB

30.1-42.8

68.1-100
30/30

19.6-30.0

42.9-68.0
30/30 2

22 Lenovo MK23 Mem. BLE
33.6-42

77.6-100
30/30

17.3-33.5

42-77.5
30/30 2 47 Hiz Mem. USB 87.9-90 30/30 29.6-43.3 30/30 3

23 Lenovo K104 Mech. USB % -

35-45

70.5-87.9

95-100

30/30 2 48 IBM Mem. USB

38.1-42.2

74-77

83.1-100

30/30

26.9-38

42.3-45.5

77.1-83

30/30 3

24 Lenovo EKB-536A Mem. USB
38.7-45.2

88.0-96.8
30/30 % - - 49 Rapoo K10 Mem. USB

27.6-45.7

67.3-100
30/30 % - -

25 Logitech MK235 Mem. BLE 73-100 30/30 18-48 30/30 3 50 Sunread SKB886S Mem. USB % - % - -

H. Comparison with EMI injection attacks on Touchscreens

There are significant differences between GhostType and
EMI injection attacks against virtual keyboards on touch-
screens [37], [49], [56]:

• Voltage Level: Keyboards detect keystrokes by reading
the on/off status of a 3.3 V/5 V circuit via GPIOs,
which is more difficult to interfere with EM signals than
touchscreens that use millivolt-level voltages.

• Signal Waveform: GhostType injects AC signals that
are sampled as DC signals to spoof GPIO readings which
requires the design of AC signals that can be interpreted
as DC signals by the victim circuits, whereas touchscreen
attacks often directly inject AC signals in a similar
waveform as the encoded touchscreen scanning signals.

• Signal Parameter: Compared with touchscreens’ reg-
ular TX-RX matrices, keyboard circuits have irregular
forms that vary with the model. Thus, GhostType

must consider complex parameter combinations such as
signal frequency, voltage, timing, and position, whereas
touchscreen attacks can use the same signal parameters
and only change the antenna position.

I. Overall Performance on 50 Off-the-shelf Keyboards

The experiment results of GhostType on 50 off-the-shelf-
keyboards are shown in Table V, indicating that 48 of these
50 keyboards are susceptible to GT attacks.
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