
ARMOUR US: Android Runtime Zero-permission Sensor Usage
Monitoring from User Space

Yan Long∗
Northeastern University

Boston, Massachusetts, USA
y.long@northeastern.edu

Jiancong Cui∗
Northeastern University

Boston, Massachusetts, USA
cui.jianc@northeastern.edu

Yuqing Yang
The Ohio State University
Columbus, Ohio, USA
yang.5656@osu.edu

Tobias Alam
University of Michigan

Ann Arbor, Michigan, USA
tobiasal@umich.edu

Zhiqiang Lin
The Ohio State University
Columbus, Ohio, USA
zlin@cse.ohio-state.edu

Kevin Fu
Northeastern University

Boston, Massachusetts, USA
k.fu@northeastern.edu

Abstract
This work investigates how to monitor access to Android zero-
permission sensors which could cause privacy leakage to users.
Moreover, monitoring such sensitive access allows security
researchers to characterize potential sensor abuse patterns. Zero-
permission sensors such as accelerometers have become an
indispensable part of Android devices. The critical information they
provide has attracted extensive research investigating how data
collectors could capture more sensor data to enable both benign
and exploitative applications. In contrast, little work has explored
how to enable data providers, such as end users, to understand
sensor usage. While existing methods such as static analysis
and hooking-based dynamic analysis face challenges of requiring
complicated development chains, rooting privilege, and app-specific
reverse engineering analysis, our work aims to bridge this gap by
developing ARMOUR for user-space runtime monitoring, leveraging
the intrinsic sampling rate variation and convergence behaviors of
Android. ARMOUR enables privacy-aware users to easily monitor how
third-party apps use sensor data and support security researchers to
perform rapid app-agnostic sensor access analysis. Our evaluation
with 1,448 commercial applications shows the effectiveness of
ARMOUR in detecting sensor usage in obfuscated code and other
conditions, and observes salient sensor abuse patterns such as 50%
of apps from seemingly sensor-independent categories accessing
data of multiple zero-permission sensors. We analyze the impact of
Android’s recent policy changes on zero-permission sensors and
remaining technical and regulatory problems.

CCS Concepts
• Security and privacy → Mobile and wireless security;
Malware and its mitigation.

Keywords
Android, zero-permission, sensors, runtime monitoring, privacy

∗Co-first authors with equal contributions.

This work is licensed under a Creative Commons Attribution 4.0 International License.
WiSec 2025, Arlington, VA, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1530-3/2025/06
https://doi.org/10.1145/3734477.3734704

Android Sensor
Framework

SensorManager

Kernel Space

Permission-imposed Zero-permission

User-space Applications

Sensor Data
Collector

ARMOUR
Monitor

Figure 1: Although third-party apps can collect zero-
permission sensor data almost without regulations
in existing Android ecosystems, ARMOUR provides a
complementary defender capability of monitoring sensor
access information solely from the user space.

ACM Reference Format:
Yan Long, Jiancong Cui, Yuqing Yang, Tobias Alam, Zhiqiang Lin, and Kevin
Fu. 2025. ARMOUR US: Android Runtime Zero-permission Sensor Usage
Monitoring from User Space. In 18th ACM Conference on Security and
Privacy in Wireless and Mobile Networks (WiSec 2025), June 30-July 3,
2025, Arlington, VA, USA. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3734477.3734704

1 Introduction
Sensors in smartphones and wearable devices have become a
cornerstone of the seamless interactions between the physical world
and cyberspace. As of 2025, there are over 6.5 billion smartphone
users worldwide with Android-powered devices taking up over
80% of the market share [19]. Android devices are providing an
increasing number of sensor hardware with growing capabilities
to support software in acquiring more information from the
physical world, enabling a wide range of applications such as health
monitoring and activity recognition [30, 36, 38, 44]. While Android
allows third-party apps to access and analyze sensor data for diverse
purposes, the current Android platform provides very limited

https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3734477.3734704
https://doi.org/10.1145/3734477.3734704
https://doi.org/10.1145/3734477.3734704

WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA Yan Long, Jiancong Cui, Yuqing Yang, Tobias Alam, Zhiqiang Lin, and Kevin Fu

mechanisms for monitoring and revealing third-party applications’
sensor usage. In particular, applications can access readings of
accelerometers, gyroscopes, magnetometers, and other types of
sensors which can capture important motion and environmental
information of the physical devices and users, without requiring
user permissions or even notifying users of their usage. Such sensors
are thus referred to as zero-permission sensors (Figure 1).

The unmonitored usage of zero-permission sensors creates
nearly unregulated information channels that may leak sensitive
information. This risk has manifested in a significant number
of recent research works that demonstrate how zero-permission
sensor data could contain critical private information. For example,
smartphones’ accelerometer and gyroscope readings contain
vibration signals caused by human body movements and even
sound waves of voice, which further enable the inference of
users’ age, identity, speech, location, and password inputs [4, 8,
15, 21, 32, 39, 42, 48, 53, 59]. Another example is the feasibility
of identifying various user-device interactions by analyzing the
electromagnetic signals embedded in magnetometer readings that
are generated by smartphone CPUs or displays [17, 35, 40, 43].
Research has also shown similar problems on emerging AR/VR
devices, which could present more pervasive threats given the
predicted continuous wearing of these devices [49, 57]. While the
possible threats identified by prior research have not yet been
analyzed on commercial apps, the mere fact that third-party apps
have unmonitored access to information-rich sensor data has
already raised significant concerns.

As a result, we observe an information asymmetry gap between
data collectors (e.g., application developers) and data providers
(e.g., application users): Despite extensive research investigating
how to collect more sensor data to enable various applications,
little work has explored how to meet the needs of researchers and
data providers to monitor and analyze the sensor usage. Although
there exist commercial privacy-preserving applications [2, 3] that
support users in tracking the usage of permission-imposed cameras
and microphones, none of them is capable of monitoring zero-
permission sensors. This overlooked fundamental capability calls
for the development of mechanisms that allow end users and
researchers to understand the pattern of zero-permission sensor
access. Several existing techniques may facilitate such analysis, but
still suffer from limitations. On one hand, Static Analysis methods
may be used to detect codes accessing sensors but face challenges in
three aspects: (1) lack of support for user-side runtime monitoring,
(2) challenges in creating time-variant information channel, and (3)
lack of semantic information among obfuscated and native codes.
On the other hand, despite that Hooking-based Dynamic Analysis
methods may address these challenges to some degree, they still
face three limitations: (1) excessive expertise is required to use
sophisticated software development chains, (2) physical devices
with escalated privileges such as rooting are needed to perform
monitoring, and (3) prior knowledge of and customization for each
application needs to be obtained prior to analyzing them.

Our work addresses these constraints and contributes
complementary capabilities by developing a methodology and

tool for accessible user-space runtime monitoring of Android zero-
permission sensor usage. Our tool ARMOUR1 is capable of detecting
the time of access, type of sensor, and the sampling rates accessed
by third-party applications. ARMOUR is a privilege-free, off-the-
shelf Android module that can run as an individual background
monitoring app (Figure 1) or be seamlessly incorporated into other
trusted privacy-preserving applications. It enables non-expert
end users to easily monitor how third-party applications may be
harvesting their sensor data and helps security researchers rapidly
identify and characterize abuse patterns of zero-permission sensors.
ARMOUR builds upon a key observation of the Android sensor
framework’s rule of sampling rate variation and convergence.
Specifically, we observe that the actual instant sampling rates
Android OS provides to different applications are interdependent,
creating an information channel that can be leveraged by a trusted
defender application to monitor the sensor usage of concurrent
applications. ARMOUR running in the user space is thus able to detect
sensor usage by other third-party applications by listening for
sampling rate changes in its own sensor data packets. Our tests
show that ARMOUR can detect sensor usage across diverse hardware
and software platforms and is robust against native codes and
obfuscations. Besides user-installed applications, it can also detect
the usage of zero-permission sensors by websites. The utilization
of this previously unexplored behavior of the Android sensor
framework provides unique light-weight, user-space monitoring
capabilities that enable users and security analysts to bridge the
information asymmetry gap revealed by prior works.

Our evaluation aims to both measure the performance of ARMOUR
in terms of its detection accuracy and runtime overhead, and use
ARMOUR to characterize real-world sensor usage of commercial
applications. In the former, we collected 50 apps known to
use sensors and found that ARMOUR could detect all the usage.
Additional prolonged testing of no sensor activities confirmed
ARMOUR’s ability to avoid false positive reports. When running
continuously as a background monitoring application, ARMOUR
only incurs an overhead of about 2.6% phone battery usage
per hour. In the latter, we built another dataset with 1,398 of
the most popular Google Play applications in 35 categories and
performed in-depth analyses, resulting in multiple insights. For
example, our results show that certain app categories such as
Books, Finance, and Shopping have unexpectedly high sensor usage
without clear motivation and justification. Sensor-based tracking
and identification services commonly used by Finance applications
confirm that sensor data is capable of capturing privacy-sensitive
information. By comparing sensor sampling rate distributions in
older and newer Android versions, we verified the positive impact
of the HIGH_SAMPLING_RATE_SENSORS permission introduced in
Android 12 in terms of security, but observed outstanding problems.
For instance, apps may actively request the highest possible
sampling rates. Moreover, device manufacturers may bypass
Android’s high sampling rate regulations, thus undermining the
positive impact of the introduced permission. We also analyze case
studies of abnormal sensor usage patterns measured by ARMOUR.
For example, 3.6% of the apps continue to access sensors on certain
smartphones even when their GUI is terminated by users. Manual

1Code and dataset available at https://github.com/longyan97/ARMOUR

https://github.com/longyan97/ARMOUR

ARMOUR US: Monitoring Android Zero-permission Sensor Usage From User Space WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA

testing demonstrates additional sensor usage that can be triggered
by GUI interactions such as user login, indicating that our work’s
result provides a lower-bound measurement that future works
can build upon. Overall, our measurements reveal obvious zero-
permission sensor abuse problems that could motivate future
research in providing better user privacy protections, refining
sensor data access policies, and performing in-depth sensor usage
attribution analysis. Our major contributions are summarized as:

• The problem formulation of zero-permission sensor usage
monitoring from the defender standpoint and the first
proposed mechanism for user-space runtime detection.
The tool ARMOUR developed for end users and researchers
complements existing Android OS and static/dynamic
analysis capabilities, making a key step toward accessible
sensor data privacy controls.

• A dedicated Android app dataset collected for zero-
permission sensor usage analysis that consists of 1,448
popular apps. The open-source dataset’s results provide
ground-truth and baseline measurements that other works
of Android sensor security and privacy can compare with.

• The detailed analysis of existing sensor abuse patterns in
popular commercial Android applications. Our observations
highlight abnormal and unjustified sensor data access,
opening up possible research venues for improving the
technical control and policy regulations of zero-permission
sensor data access.

2 Background
This section provides the necessary background for understanding
the current status and remaining gaps of zero-permission problems.

2.1 Android Sensor Framework
Figure 1 provides an overview of the Android sensor framework.
Android provides two main categories of sensors, namely
permission-imposed sensors including cameras, microphones, GPS,
etc., and zero-permission sensors. When third-party applications
want to access permission-imposed sensors, users will be prompted
to decide whether to allow the sensor usage. Zero-permission
sensors, on the other hand, can be used without requiring
installation-time or run-time consent.

Zero-permission Sensors. Table 2 lists the main categories and
representative instances of zero-permission sensors. Motion sensors
such as accelerometers and gyroscopes can collect information
about the movement of the device, which has been shown to reflect
the physical activities of users such as walking, typing, etc. Position
sensors such as magnetometers collect information about the
device’s physical positions and can also embed the electromagnetic
characteristics of the smartphone’s surroundings.

Risks and Existing Countermeasures. Although previously
deemed non-sensitive, research in the past few years has proven that
such zero-permission sensors’ data actually contain significantly
more critical and fine-grained information than what users and
smartphone OS designers expected and can be exploited by third-
party applications to identify smartphone users, steal touchscreen
inputs, etc. Section 6.1 provides more details about the privacy-
sensitive information zero-permission sensor data could contain.

Android made a series of adjustments to its policies to counteract
these emerging threats discovered by previous research. Starting
Android 9, apps are required to run in foreground services to access
sensor data in the background [22]. Foreground services create
visible dialogues on themenu bar to notify users that the application
is running in the background. Nevertheless, there is still no way
of knowing if apps are collecting sensor data. Android 12 starts
to limit the highest available sampling rate to 200 Hz for common
sensor usage by third-party apps, where any app that needs a
higher sampling rate is required to declare the use in the manifest
file through the HIGH_SAMPLING_RATE_SENSORS permission and
explain the purpose of high sampling rates to pass the review of
Google Play store [23, 47]. However, the high sampling rate is a
normal-level permission that does not require either installation-
time or run-time consent from the users [24]. Furthermore, recent
research has shown that sampling rates lower than 200 Hz are still
sufficient to extract a large portion of critical information that can
be recognized by emerging machine learning and deep learning
algorithms [8, 14]. As a result, there is still an urgent need for
monitoring zero-permission sensor usage.

2.2 SensorManager Interface
The SensorManager class in Android provides the interface for
application developers to interact with the hardware of zero-
permission sensors. The applications need to register for a sensor
event listener with a callback that processes received new sensor
readings (onSensorChanged). When registering the listener, the
application needs to request a desired sampling rate of the sensor.
Android has four pre-defined sampling rate instances, namely
SENSOR_DELAY_NORMAL/UI/GAME/FASTEST which have increasing
numeric values approximately ranging from 5 Hz to 400 Hz on most
smartphones. The actual value of each instance is implemented
by smartphone manufacturers and varies with different types of
sensors. Application developers can also directly specify the desired
sampling rate values (in millisecond sampling intervals) without
using these pre-defined values. Similarly, the range of supported
sampling rates for each phone model and each sensor could vary.

It is important to note that the actual sampling rate of the sensor
readings provided by the Android OS can be different from what
the applications request because the OS also needs to balance the
bandwidths of different system operations besides passing sensor
readings to applications [25]. This enables the detection method of
ARMOUR (Section 3.2).

3 Methodology & Design
Given the emerging problems of nearly unlimited access to zero-
permission sensor data, our work proposes a user-space runtime
sensor usage monitoring mechanism and design ARMOUR to support
researchers and end users.

3.1 Threat & System Model
We assume third-party apps as data collectors want to acquire
data from zero-permission sensors without revealing the use of
these sensors and these apps can run in either the foreground
or background. ARMOUR takes the defender’s role in the form of a
user-space trusted application that data providers such as security

WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA Yan Long, Jiancong Cui, Yuqing Yang, Tobias Alam, Zhiqiang Lin, and Kevin Fu

researchers and end users can run continuously in the background
to monitor details of other third-party apps’ sensor usage. Given
that ARMOUR’s working principle (Section 3.2) allows it to monitor
OS-wise sensor usage instead of individual app’s usage, we assume
that a data provider that wants to associate detected sensor usage
to an exact third-party app can ensure only ARMOUR and this app
are running, which can be achieved by terminating or uninstalling
other background user-space apps.

3.2 Sampling-based Sensor Usage Detection
This section introduces the working principle of ARMOUR and
characterizes its capability of detecting various sensor usage.

3.2.1 Instant Sampling Rate Variation & Convergence. ARMOUR
detects Android sensor usage by observing variations in the actual
instant sampling rate of sensor readings provided by Android OS,
which could be different from the sampling rate requested by an
application (denoted as 𝑓𝑟𝑒𝑞). The instant sampling rate at a certain
system time 𝑡 can be calculated as

𝑓𝑖𝑛𝑠𝑡 (𝑡) = 1/(𝑇𝑎 −𝑇𝑏) (1)

where𝑇𝑎 and𝑇𝑏 stand for the discrete timestamps of the current and
last sensor data packet received via the SensorEvent data structure.
Our empirical tests with the SensorManager interface show that
starting another application could change the instant sampling
rates received by a running application that is already collecting
sensor data, as shown in Figure 2.

Based on this phenomenon, we hypothesize that when
different applications register to access the same sensor, e.g., the
accelerometer on the phone, the instant sampling rates available to
each application will be interdependent. To verify this hypothesis,
we ran several instances of a custom sensor-access application,
each requesting a different sampling rate. The test results reveal a
uniform sampling rate convergence rule:

When multiple applications access the same sensor’s
data, the instant sampling rate provided to them
converges to the highest OS-supported rate requested
among all running applications.

This implies that a user-space defender application can probe
the sensor usage of other applications by checking the instant
sampling rate of its own sensor data. Specifically, the defender
can register an unusually low sampling rate and observe the
increase in its instant sampling rates as a sign of the monitored
applications using the same sensor, as demonstrated in Figure 2.
Essentially, this mechanism creates a benign covert communication
channel between different applications. Our tests find this rule
to be independent of when the applications initiate the sensor
access requests and whether the applications are running in the
background or foreground.Wewere able to align these observations
with the official documentation of Android [45], which confirms
the convergence to the maximum requested sampling rate but
does not specify possible instant sampling rate variation behaviors
in different background/foreground scenarios. Our work aims to
provide detailed characterizations of this Android’s intrinsic but
unexplored behavior for building ARMOUR and collecting the first
dataset for evaluating zero-permission sensor usage.

Figure 2: The change of instant sampling rates detected by an
app (App_1) when another app (App_2) starts running and
using sensors. ARMOUR calculates the instant sampling rates
using the timestamps of the SensorEvent data packets.

3.2.2 Detection Capability. Our next tests with several self-made
sensor data collection apps verify that ARMOUR could detect zero-
permission sensor usage across different smartphone hardware and
Android software and is immune to code obfuscations.

Device & Sampling Rate Range. ARMOUR is able to monitor
sensor usage on Android devices that support the sensor
management framework. This includes smartphones, smartwatches,
and other Android-powered devices running Android 8 (released
in 2017) and all newer versions of Android. Our tests verified the
feasibility of using ARMOUR on six common smartphone models
from Google, Samsung, etc., as listed in Table 3. Nevertheless, the
condition of observing sampling rates higher than the requested
value 𝑓𝑟𝑒𝑞 suggests that ARMOUR cannot detect certain usage smaller
than or equal to this value and thus have a limited range of
detectable sampling rates. An informed defender will set 𝑓𝑟𝑒𝑞 to
the minimum supported sampling rate, denoted as 𝑓 𝑖

𝑚𝑖𝑛
for sensor

𝑖 , ensuring the minium sampling rate is the only usage that is not
detected. Different manufacturers and phone models may differ in
their implementations of the minimum supported sampling rates, as
shown by Table 3 for the six phones. While the minimum sampling
rate usage will inevitably be overlooked, we hypothesize that this is
relatively low likelihood, and further measure to what degree this
could affect the detection performance in Section 4.2 and Section 5.

Code Obfuscation & Native Codes. Code obfuscation and
native code are popular techniques used by commercial app
developers to prevent reverse engineering and achieve better
runtime performance. Despite the significant challenges these
techniques pose to static analysis methods (Section 6.2), ARMOUR is
found to be immune to these techniques because of its runtime
dynamic analysis nature that does not require processing any
code/binary files. Our tests with a customized app obfuscated
with the ProGuard obfuscator and another customized app that
utilizes C/C++ native codes verified that ARMOUR could detect zero-
permission sensor usage in both cases while a previous attempt
of adapting existing static taint analysis for detecting sensor data
leaks [55] could not detect these usages.

Web Sensor Usage.While this work focuses on user-installed
third-party Android apps, we find that ARMOUR is also able to detect
zero-permission sensor usage from the web, which has been shown
to be another potential threat of sensor data leakage [20].

ARMOUR US: Monitoring Android Zero-permission Sensor Usage From User Space WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA

3.3 ARMOUR Implementation
Figure 3 summarizes the process of using ARMOUR to characterize
sensor usage on an Android device. The core component is the
ARMOUR app that continuously monitors in the background. The
current implementation detects the usage of the three mostly
used zero-permission sensors: accelerometers, gyroscopes, and
magnetometers. Other sensors can be easily added to accommodate
more specialized use cases.

Device Profiling. The profiling stage finds the minimum
supported sampling rates 𝑓 𝑖

𝑚𝑖𝑛
, which enables the data provider

to set an appropriate threshold for the observed sampling rates
𝑓𝑖𝑛𝑠𝑡 to assert the use of each sensor in the detection stage. Each
smartphone model with the same software OS version only needs
to be profiled once. The ARMOUR app already implements a profiling
mode to automatically achieve this. The profiling mode runs the app
in the foreground, requests several sampling rates, and determines
𝑓 𝑖
𝑚𝑖𝑛

by checking the actual received instant sampling rates. The
whole profiling process takes less than 2 min.

Runtime Monitoring. Entering the monitoring mode, the
ARMOUR app runs in the background while the data provider opens
another app they want to analyze. The tested app can run either
in the foreground or background. The ARMOUR app stores instant
sampling rate data, i.e., the readings of the three sensors.

Instant Sampling Rate Processing & Detection. After
collecting instant sampling rate data, ARMOUR calculates and
examines a time series 𝑓 𝑖

𝑖𝑛𝑠𝑡
(𝑡) for each sensor 𝑖 according to

Equation 1. Our pilot testing observes that the fluctuation of
instant sampling rates sometimes includes a few outliers, as shown
in Figure 10. Such outliers are mostly caused by the transitions
between different used sampling rates and may cause unstable
sampling rates calculations. We thus implement a processing step
to clean the time series. We define an outlier in 𝑓𝑖𝑛𝑠𝑡 as a sampling
rate value with fewer than three consecutive occurrences and
replace these values with its preceding or following value which
is closer to the outlier value’s magnitude. After cleaning the time
series, we find that the time series data remains relatively stable
with fluctuation errors always in the range of 0.4 Hz (Figure 9).
The range of such fluctuations is affected by factors such as OEM
and software variations. We thus empirically set the sensor usage
detection threshold to 𝑓 𝑖

𝑚𝑖𝑛
+ 0.5. Following this methodology, the

actual thresholds used for different devices can be adjusted after
collecting sensor data in the device profiling phase. By default, this
work declares sensor usage when 𝑓 𝑖

𝑖𝑛𝑠𝑡
(𝑡) > 𝑓 𝑖

𝑡ℎ𝑟𝑒𝑠
= 𝑓 𝑖

𝑚𝑖𝑛
+ 0.5.

4 Evaluation
Our evaluation aims to explore the following research questions:

• RQ1: To what degree can ARMOUR reliably detect zero-
permission sensor usage (Section 4.2)?

• RQ2: How does the overall landscape of real-world sensor
usage look like (Section 4.3-4.5)?

• RQ3: What specific interesting sensor usage behaviors can
ARMOUR reveal (Section 4.6)?

4.1 Experimental Setup
4.1.1 Dataset. We collected two Android application datasets,
totaling 1,448 apps, to answer these questions. A Detection

Figure 3: ARMOUR’s workflow.

Performance evaluation dataset with 50 appsmeasures the precision
and recall of ARMOUR in detecting sensor usage; A Sensor Usage
dataset with 1,398 popular apps from Google Play allows us to
analyze the widespread abuse of zero-permission sensors in real-
world scenarios. By default, the evaluation uses the OnePlus
Nord N200 phone with Android 12 as it has 𝑓 𝑖

𝑚𝑖𝑛
of 1 Hz for

gyroscopes and magnetometers and 5 Hz for accelerometers,
providing a relatively large range of detectable instant sampling
rates. Additionally, we also use the Samsung Galaxy S9 phone with
Android 10 to analyze how different versions of Android, such as
the introduction of the HIGH_SAMPLING_RATE_SENSORS permission
in Android 12, could affect the pattern of sensor usage. The datasets
thus contain APK/XAPK files for the two devices.

Detection Performance. Since there currently does not exist
a ground-truth dataset for Android sensor usage, we constructed
such a dataset consisting of 50 apps that are known to use sensors.
We collected these 50 apps from Google Play by manually searching
for apps that certainly use zero-permission sensors, such as those
named (1) compass, magnetometers, EMF/metal detectors, etc., (2)
acceleration meters, vibration meters, speedometers, etc., and (3)
gyroscopes. These three categories of apps are known to use at
least the phones’ magnetometer, accelerometer, and gyroscope.

Sensor Usage. The dataset consists of 1398 most popular Google
Play applications in the U.S. ranked by Appfigures [5]. APK/XAPK
files are downloaded from APKPure and APKCombo. These apps
span 35 different categories to ensure a broad representation
of sensor usage patterns. The popularity and diversity of these
applications aim to provide valuable insights into sensor access
trends and potential abuse risks.

4.1.2 Procedure. The experiment tests one app in the dataset at a
time, whose operations including installation, launching, etc., are
automated by Python scripts running on a MacBook that utilizes
the Android Debug Bridge (ADB) and the uiautomator2 tool [?].
The procedure of testing each app includes the following steps: (1)
ARMOUR starts recording; it first runs for 5 seconds to ensure the
recorded instant sampling rates equal 𝑓 𝑖

𝑚𝑖𝑛
so as to confirm that

no other software was accessing the sensors during the test. (2)
The tested app starts running in the foreground for 15 seconds to
examine its foreground sensor usage. (3) The tested app is then put
in the background and runs for another 15 seconds. (4) The tested
app is stopped and uninstalled and ARMOUR stops recording.

By default, the testing does not apply UI interactions to the tested
apps. Since specific UI interactions and app events may trigger
additional sensor usage, as will be shown in Section 4.6, this testing
procedure provides a lower-bound baseline for the number of apps
using sensors. Additionally, we captured periodic screenshots of

WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA Yan Long, Jiancong Cui, Yuqing Yang, Tobias Alam, Zhiqiang Lin, and Kevin Fu

Table 1: Detected Sensor Usage of 1398 Most Popular Google Play Applications
Device Android Version Accelerometer Gyroscope Magnetometer Any All Three

Samsung Galaxy S9 10 (API 29) 639 (45.7%) 475 (34.0%) 359 (25.7%) 645 (46.1%) 310 (22.2%)
OnePlus Nord N200 5G 12 (API 31) 557 (39.8%) 485 (34.7%) 320 (22.9%) 583 (41.7%) 300 (21.5%)

the tested app using ADB to manually verify whether the app was
successfully installed and launched.

4.2 Detection Performance & Overhead
This section evaluates ARMOUR’s output when there is known sensor
usage and the runtime overhead ARMOUR incurs.

4.2.1 Using Sensors. Our tests show that ARMOUR could successfully
detect all sensor usage of the 50 apps. Among these apps,
the minimum detected sampling rate of the used sensors is
about 50 Hz, which corresponds to the constant values set by
SENSOR_DELAY_GAME. The results provide evidence that ARMOUR can
detect zero-permission sensor usage of most commercial apps with
very high probabilities because apps are not likely to use 𝑓 𝑖

𝑚𝑖𝑛
given

the overly limited amount of information 𝑓 𝑖
𝑚𝑖𝑛

can provide. A Frida-
based dynamic analysis that aims to provide baseline measurements
for commercial applications on a rooted phone will further confirm
this observation (see Section 5).

4.2.2 Not Using Sensors. To further verify that ARMOUR does not
cause false positives of sensor usage detection, we perform two
additional tests. First, we ran ARMOUR in the background without
any foreground apps to examine whether the Android OS activities
could trigger sensor usage. Second, we ran a simple self-made
application that does not use sensors to examine whether non-
sensor app activities could trigger sensor usage. We ran both
tests for 30 min continuously and 10 times each throughout the
day, which provides a prolonged time frame that facilitates the
assessment of long-term behaviors. The screen auto-rotation feature
of the device was turned on in these tests, where sensors are used
by the OS to detect change of phone orientations. ARMOUR did not
mistakenly report any sensor usage in these cases. This confirms
that changes in the instant sampling rates occur only when the
SensorManager interface is explicitly invoked in user space.

4.2.3 Power & CPU Overhead. In the above tests of no foreground
apps, we simultaneously profiled ARMOUR’s CPU and memory
usage using AccuBattery [1] and Android Studio’s built-in
Profiler. According to AccuBattery, running ARMOUR for background
monitoring increased the battery usage from 2.0% of its total battery
capacity per hour to 5.6% per hour, incurring a power consumption
overhead that consumes approximately 2.6% of the battery per
hour. This overhead is comparable to that induced by common
backgroundmonitoring applications such as AccuBattery itself. The
Profiler determined that CPU usage is light throughout ARMOUR’s
runtime out of the three categories of "Light", "Moderate", and
"High". The relatively light power and CPU usage overheads are due
to the fact that ARMOUR only needs to use a sampling rate of as low
as 1 Hz to access sensors in the background. This makes it feasible
to use ARMOUR not only for security research that does not face any
limits of overheads but also for everyday background monitoring
by average phone users who might care about overheads.

4.3 Popular Google Play Applications
Table 4 summarizes the percentage of apps using each sensor,
showing zero-permission sensor usage is very common both before
and after Android’s change in zero-permission sensor regulation in
Android 12. We additionally analyzed 150 apps manually that were
randomly selected from the dataset and found that none of these
apps explicitly stated their purposes for using zero-permission sensors,
either in the app UI or Google Play webpage introduction.

On the Samsung Galaxy S9 device with Android Android 10,
46.1% of the 1398 apps use at least one of the three sensors. The
accelerometer is used the most, followed by the gyroscope, with
the magnetometer being the least used (25.7%). The pattern of
sensor usage on the OnePlus Nord N200 device with Android
12 remains consistent with slight decreases in accelerometer and
magnetometer usage and a slight increase in gyroscope usage. Given
that the Samsung Galaxy S9 and OnePlus Nord N200 devices have
different 𝑓 𝑎𝑐𝑐𝑒𝑙

𝑚𝑖𝑛
which result in 5.5 Hz and 1.5 Hz accelerometer

usage detection thresholds respectively, we also tested setting 𝑓 𝑎𝑐𝑐𝑒𝑙
𝑡ℎ𝑟𝑠

of the Samsung device to 5.5 Hz to control the factor. This produces
an accelerometer usage percentage of 42.3% which is 3.4% lower
than using a 1.5 Hz threshold, showing that a small portion of
apps used low accelerometer sampling rates in the range 1.5 to 5.5
Hz. It is also an observed common pattern that the accelerometer,
gyroscope, and magnetometer are often accessed together. More
than 20% of the 1398 apps, i.e., over 50% of all apps using sensors,
are found to be using all three sensors simultaneously.

4.3.1 App Categories. Figure 4 further provides a breakdown of
these usages by app categories. Table 4 provides more detailed
data with several representative apps in each category. While most
categories of apps follow the pattern that the accelerometer and
magnetometer are the most and least used sensors among the three,
there are some exceptions. For example, the categories Art/Design
and Personalization use gyroscope the most. In addition, Shopping
and Travel/Local use magnetometers more than gyroscopes and
accelerometers, which is likely due to localization services these
apps provide that depend on magnetometer data for navigation.

The most outstanding problem observed is the unclear and
unexplained purpose of sensor usage in many app categories.
Surprisingly, categories that people often do not expect to have
apparent dependencies on sensor-collected information, such as
apps in Finance, Dating, Book/Reference, Shopping, Weather,
etc., actually heavily depend on accelerometer and gyroscope
data for unspecified purposes. For example, more than half of
the Book/Reference apps use accelerometer and gyroscope data
but identifying the rationale behind this usage is challenging.
Furthermore, although the results of certain categories such as
Health/Fitness seem to align with expected sensor usage, a closer
look at the individual apps raises questions, such as why the
subcategory of exercise planning apps that are not supposed to
monitor user motions still frequently collect sensor data.

ARMOUR US: Monitoring Android Zero-permission Sensor Usage From User Space WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA

Figure 4: Zero-permission sensor usage by different categories.

In addition, results such as the sensor usage by 67% of the Finance
apps collecting data from all three sensors reveals that real-world
applications might already be using sensor data for identification.
Our literature review shows that Finance apps use sensor data
information for authenticating and tracking users and devices [6,
56]. While the collected sensor data is theoretically used for benign
purposes of enhancing security in these cases, it also echoes the
findings of prior research that real-world applications have the
capability of exploiting sensor data for sensitive information [29].

4.4 Sampling Rate Distribution
This section analyzes the sensor sampling rates used by popular
Google Play apps and the impact of high sampling rate permission
introduced by Android 12.

Figure 6 shows the histogram of the maximum detected sampling
rates of each app for the three sensors in the two Android versions
respectively.We observe that while many of the app developers tend
to request sampling rates defined by the Android-defined constants
SENSOR_DELAY_FASTEST/GAME/UI/NORMAL, which correspond to
sampling rates around 400, 50, 15, and 5 Hz, there are many apps
manually requesting other sampling rates such as 200 and 100 Hz.

The highest sampling rate defined by SENSOR_DELAY_FASTEST
corresponds to 416 Hz for the accelerometer and the gyroscope
and 100 Hz for the magnetometer of the two phones. In
Android 10, 20.0%, 25.5%, and 34.5% apps used these highest
sampling rates for the three sensors respectively, with 120 out
of 130 (92.3%) applications simultaneously accessing the highest
frequency for all three sensors. These numbers dropped to
0.8%, 0.4%, and 32.0% in Android 12. Out of the 128 apps that
used SENSOR_DELAY_FASTEST for accelerometer and gyroscope in
Android 10, only 5 of them took the effort of declaring the high
sampling rate permission in Android 12 to keep using it. On the
contrary, the SENSOR_DELAY_FASTEST usage for the magnetometer
only observed a negligible decrease because 100 Hz is not regulated
by the HIGH_SAMPLING_RATE_SENSORS permission. The results
indicate that the regulation introduced by Android 12 effectively
limited certain unnecessary high sampling rate usage.

We found that SENSOR_DELAY_GAME responds to a sampling
rate of 52 Hz for accelerometers and gyroscopes in Android 12.
Interestingly, however, the highest sampling rate apps can get
without declaring the HIGH_SAMPLING_RATE_SENSORS permission
in Android 12 is 206 Hz on the OnePlus device and about 21.0%
of apps used this sampling rate. Requesting sampling rates higher
than 206 Hz without declaring the HIGH_SAMPLING_RATE_SENSORS
permission in Android 12 and above results in compiling
errors. This phenomenon suggests two insights. First, many

apps tend to use the highest available sampling rates without
declaring the HIGH_SAMPLING_RATE_SENSORS permission even if
they have to manually test and specify feasible sampling rate
values. Second, while Android 12 and above officially specify
that the maximum available sampling rates without declaring
HIGH_SAMPLING_RATE_SENSORS should be no more than 200
Hz [27], the implementation on the OnePlus device of 206 Hz
sampling rates suggests the potential for manufacturers to violate
or bypass this requirement. It remains unclear how Android could
enforce this requirement to regulate manufacturers.

4.5 Foreground & Background Sensor Usage
Our results show that apps tend to have distinct foreground and
background sensor usage patterns, especially across different app
categories. Out of the 583 apps that used sensors, all of them had
foreground access while 168 of them (28.8%) had background access.

4.5.1 Foreground Usage. Although, at first glance, the high
percentage of foreground sensor usage might be thought of as
being associated with user interactions, our experiments already
eliminated the impact of this factor by not having any UI inputs in
the testing procedure as mentioned in Section 4.1.2. Thus, the sensor
data collections occured without any user interaction after opening
the application. For example, Figure 7 shows three typical types
of foreground activities after the apps start that are not supposed
to have reasonable sensor-related operations, such as asking users
to agree to the apps’ policies, showing a welcome message, and
prompting users to log in. Notably, we found that about 65% of the
apps with foreground sensor access paused at these pages.

4.5.2 Background Usage. The highest background sensor usage
ratios were observed in Productivity (60.0%), Communication
(57.1%), and Games (51.4%). While Games apps such as racing
are expected to heavily depend on sensor data for user hand
gesture tracking, the majority of their background usage appears
unexplained as any background activities do not change the states
of the apps. Such background usage is thus likely to be negligent
sensor abuse due to poor mobile device resource management
practices. The high background usage ratios in Productivity and
Communication appear less intuitive. On the contrary, the Android-
Wear category that provides services to resource-constrained
wearable devices demonstrated no (0%) background sensor usage.
This suggests that these applications, at a minimum, require
explicit user interaction to activate sensors rather than maintaining
passive access in the background, making them a good example of
responsible sensor usage in background stages.

WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA Yan Long, Jiancong Cui, Yuqing Yang, Tobias Alam, Zhiqiang Lin, and Kevin Fu

Figure 5: Background sensor usage tends to have decreasing
or equal sampling rates (left) but higher durations (right).

4.5.3 Foreground-Background Transition. Comparing sensor usage
in the foreground and background shows that apps generally
use lower sensor sampling rates in the background, while
simultaneously extending the duration of sensor access, as
shown in Figure 5. The three types of zero-permission sensors
exhibit significantly higher peak access sampling rates in the
foreground, with a wide interquartile range and numerous high
sampling rate outliers. Once transitioned to the background,
the maximum frequency drops substantially. This verifies apps’
common behaviors of shifting toward persistent, long-term
monitoring in the background without user awareness.

4.6 Case Study
This section further discusses several use cases of ARMOUR that
revealed interesting sensor usage behaviors during our examination
of individual apps.

Persistent Sensor Access After App Termination. It was
surprising to observe that certain apps could continue to access
zero-permission sensors after being killed in GUI or even force-
stopped usingADB.More than 50 (3.6%) apps exhibited reproducible
persistent sensor activity after termination on the OnePlus phone.
However, running the same apps on a Pixel 3 smartphone did
not show the same persistent sensor usage. We believe this OEM
variation is caused by the fact that Android allows manufacturers
to customize its behaviors of process life-cycle and background
service handling [28]. Additionally, other factors such as specific
sensor hardware and drivers could also cause different sensor
access termination behaviors. This indicates further challenges
of enforcing strict sensor access policies across different platforms.

Extended Running and User-triggered Sensor Usage. The
evaluations so far ran each app for only 15 seconds in the foreground
without any user interactions. This setting provides a lower-
bound measurement, indicating that more extensive sensor data
collection and abuse could exist. To confirm this, we manually
tested 35 randomly selected apps, one from each category. 18
of them had foreground sensor usage detected in previous tests.
We had normal GUI interactions with each of these apps for 5
minutes continuously. The tests found additional sensor usage
triggered by user interactions in 14 out of these 18 apps. The most
common trigger is user logins (6 apps), such as hitting the “Continue
With Google” button. This suggests the sensor data is used as an
information source for authentication. Other triggers also include
accepting policies, granting permissions, and other app-specific
actions. Furthermore, user interactions triggered sensor usage in 5
of the 17 apps that did not use sensors in the 15-second foreground
tests. This suggests future research could integrate ARMOUR with
automated GUI testing frameworks for large-scale measreument.

Figure 6: Distribution of Google Play apps’ zero-permission
sensor sampling rates before and after Android 12.

Furthermore, ARMOUR’s capability of monitoring time-variant
sensor usage correlated with user interactions further enables
analysis of sensor-based exploitation including shake-triggered
advertisement found on apps such as Bilibili–one of the most
popular video sharing platforms. After a brief opening page, the
app enters a shake-ad activity that continuously collects sensor
data for 5 seconds. The shake-ad page has a concealed prompt
of “shake the phone to enter Taobao”. Even when users did not
notice this prompt, users’ minor involuntary handmovements could
be detected by the accelerometer and gyroscope with sampling
rates of 15 Hz (SENSOR_DELAY_UI) and be regarded as users
actively shaking their phones, thus redirecting to the Taobao
shopping app by Alibaba (Figure 8). The Taobao app continues
to collect data from the two sensors for unknown purposes, at 52
Hz (SENSOR_DELAY_GAME). This discovered pattern confirms what
has been hypothesized in previous research such as triggering a
malicious app via sensors [50].

Third-party Libraries. The observed common sensor access
patterns in different applications suggest a hypothesis that some
zero-permission sensor usage could be caused by shared third-
party libraries. To provide preliminary insights, we decompiled
representative apps using jadx [52] and analyzed their obfuscated
source codes. We found a large portion of apps with the unique
pattern of accessing sensors for a very short time at app startup,
with the highest possible sampling rates. Reading their decompiled
code could accurately identify this sensor usage by Appsflyer [6],
a marketing analytics service that helps app developers track and
optimize user acquisition campaigns. Appsflyer records data from
the three sensors for 500ms, and produce a hash from the saved data
to match users/devices. Our dataset shows that about 49% of the
apps using sensors have included the Appsflyer library. In contrast,
PayPalMagnes [56], which is awidely usedmobile payment SDK for
collecting real-time device data to help detect fraud, continuously
saves collected sensor data at low sampling rates (about 20 Hz)
to JSON files during its operation, and then sends the files to its
remote servers. About 6% of the apps using sensors included code of
PayPal Magnes service. Additionally, the sensor access patterns of
multiple libraries may be superimposed. These results also suggest
possible follow-up research of identifying third-party libraries by
analyzing sensor behaviors detected by ARMOUR from user space.

5 Discussion

This section discusses the limitations and possible future
research directions revealed by ARMOUR.

Sensor Usage Ground Truth & Baseline. As Section 4
explained, the lack of a ground truth presents a major roadblock for

ARMOUR US: Monitoring Android Zero-permission Sensor Usage From User Space WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA

Figure 7: Examples of unexpected zero-permission sensor
usage when apps start in the foreground.

zero-permission sensor monitoring. The datasets collected by our
work take the first step toward bridging this gap, but unavoidably
faces limitations of lacking a baseline that ARMOUR could compare
with. In particular, certain apps could still be using the minimum
supported sampling rates 𝑓 𝑖

𝑚𝑖𝑛
and thus bypass the detection

of ARMOUR. Aiming to probe how to provide such a baseline,
our work explored applying the Frida dynamic instrumentation
toolkit [46] on a rooted smartphone to monitor the invocation of
the onSensorChanged callbacks. The results show that out of the
830 apps for which ARMOUR did not detect zero-permission sensor
usage, only 38 (4.49%), 3 (0.35%), and 10 (1.18%) of them use the
accelerometer, gyroscope, and magnetometer at their respective
𝑓 𝑖
𝑚𝑖𝑛

. This confirms that commercial applications mostly use non-
minimum sampling rates to collect more sensor data. The higher
percentage of accelerometer is due to a relatively high 𝑓 𝑎𝑐𝑐𝑙

𝑚𝑖𝑛
= 5. To

further reduce the risks of undetected sensor usage at the minimum
sampling rates, we recommend that privacy-aware manufacturers
implement 𝑓 𝑖

𝑚𝑖𝑛
= 1 for all sensors on future devices. It is also

worth noting that Frida only provides a baseline for comparison
instead of the ultimate ground truth due to the possible Runtime
Android Self Protectionmeasures (RASP) that may prevent dynamic
instrumentation or running apps on rooted devices. This motivates
future works of comprehensive ground truth development.

Sensor Usage Attribution. Our results so far reveal important
follow-up questions, such as how to distinguish between benign
and malicious sensor access patterns. Determining whether a
zero-permission sensor is exploited to maliciously acquire private
information that users do not want to share poses significant new
challenges compared to prior research on identifying malicious
Android applications. This is because, unlike IMEI or other
textual data targeted by conventional malicious apps that can be
directly associated with entities of private information after being
detected in the saved files or network packets, the captured raw
sensor data needs to be processed by the sensor-based malicious
apps themselves to extract semantic signals that correlate with
private information (Section 6.1). Thus, identifying a sensor-based
malicious app is equivalent to completely reverse engineering the
app’s sensor-related functionalities. This challenge could be further
amplifiedwhen the apps use a server-side exploitationmodel, where
only raw sensor packets are transmitted to a remote server for
black-box processing. These challenges motivate dedicated future
research that integrates reverse engineering, automated large-scale
static analysis, root-based dynamic analysis, and user studies. In
the extremely challenging case of server-side black-box processing,
we believe that advanced methods such as differential behavior
analysis [18] need to be developed to empirically probe whether
collected sensor data is used for malicious or benign purposes.

Figure 8: ARMOUR detects the sensor usage behind emerging
shake-ad features of some apps.

Although these topics fall out of the scope of this work, the sensor
usage patterns measured by ARMOUR could serve as motivating
examples and baselines for future research.

Environments & Factors. Our evaluations demonstrated the
effectiveness of ARMOUR in lab environments with a relatively small
number of varying factors. Our measurement analysis focused on
Android 12, whose sensor-related policies have remained consistent
up to Android 15 at the time of writing. Without further policy
changes, running ARMOUR on other devices will not be affected by
the newer Android versions. Instead, we found that specific OEM
configurations, such as different minimum supported sampling
rates (e.g., Table 3), could have larger impact on ARMOUR’s results.
We believe this encourages future research by dedicated security
analysts that utilizes ARMOUR to perform in-depth app or device-wise
analysis. Potentially, an online community and database could be
created to crowdsource ARMOUR’s measurements on various devices.

Future Sensor Privacy Enhancement. While the current
ARMOUR app can be readily used by lay users for sensor usage
notification (as shown in Figure 1), additions to the app’s UI
functionality will further improve its usability as a privacy
enhancement tool. A limitation of the current ARMOUR design is
the requirement of running a single app besides the monitor. In
daily monitoring scenarios, detection performance could degrade
if multiple third-party apps run concurrently because ARMOUR can
only ascertain that at least one app is using sensors. It is possible to
address this with more sophisticated ARMOUR designs, which could
require additional permissions, such as UsageStats, to monitor
when each app is active in the foreground/background to create a
correlation engine that maps temporal patterns of sensor usage with
app activities. As a user-trusted app, ARMOUR may utilize Android’s
accessibility feature [26] to monitor GUI activities that trigger
sensor usage and thus pre-build a signature database for different
apps’ sensor access patterns.

Our findings also motivate the need for enhanced privacy
protections after detecting zero-permission sensor abuses. On the
policy level, we suggest platform providers such as Google Play
implement knowledge-based auditing and stricter review processes
to regulate unnecessary sensor access. This could require adding
explanations of sensor data usage, as a standard procedure for
generating SBOM [16] for Android and similar ecosystems.We have
disclosed the identified sensor abuse problems to Google and aim
to provide detailed mitigation suggestions in further interactions.
From a technical perspective, future research could investigate how

WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA Yan Long, Jiancong Cui, Yuqing Yang, Tobias Alam, Zhiqiang Lin, and Kevin Fu

to filter out sensitive information or selectively inject controlled
noise into sensor data streams to preserve utility while mitigating
privacy leakage [13]. Although some related works (Section 6.2)
explored similar approaches, finding more deployable and scalable
mitigation techniques that may not require OS modifications or
root privileges remains an open challenge. More fine-grained
permission models for sensor data are needed, though helping
users understand privacy implications without adding cognitive
burden remains challenging [10]. This is further complicated by
sensor usage attribution difficulties identified in this work. We
see significant opportunities for research into effective and usable
privacy-preserving sensing mechanisms.

6 Related Work
This section introduces prior research investigating the threats of
zero-permission sensor usage and the possible ways of mitigation.

6.1 Zero-permission Sensor Exploitation
Research has extensively shown threats posed by zero-permission
sensors. [51] provides a survey that summarizes these existing
problems in a systematic way. In 2014, Gyrophone [39] first
analyzed how sound generated by electronic speakers in the
vicinity of smartphones can be captured by phone applications
accessing the phones’ gyroscope readings. A series of follow-up
research explored the possibility of using accelerometers for speech
eavesdropping [4, 8, 31]. Similarly, users inputting texts or PIN on
the phone touchscreen or walking with the phone cause unique and
discernible phone motions that can be captured by zero-permission
motion sensors [15, 32, 34, 42]. Magnetometers are another type of
the most analyzed zero-permission sensors for leaking information.
Several recent works discovered that smartphones’ electromagnetic
emissions can be received by the built-in magnetic sensors, which
contain signals that enable applications to infer specific phone
CPU and display activities [17], or device locations [12]. While
these prior works verified the privacy impact of malicious zero-
permission sensor exploitation, it remains unknown to what degree
commercial applications have been using data from these sensors
and whether the measured usage patterns could reveal potential
abusive problems [50]. This work seeks to address this gap by
developing ARMOUR that measure the first collected dataset of zero-
permission sensor usage detection.

6.2 Android Sensor Analysis & Protections
Analyzing and protecting against the possible exploitation of
Android sensors is an emerging research field motivated by the
observed zero-permission sensor problems.

Static Analysis-based Usage Detection. Although there has
been a large body of taint-analysis such as FlowDroid [7], these
early works did not consider sensors as an input source that
could leak information. Liu et al. [33] developed a tool SDFDroid,
which disassembles APK files to smali code files using Apktool and
looks for sensor listener registration and data receiving callbacks.
SDFDroid has the limitations of not performing well on applications
with code obfuscation and native code, and cannot detect which
exact sensors are used. A later work by Sun et al. [55] extends
FlowDroid to detect leaks with sensor data sources. Despite its

efforts to develop a rule-based approach to identify the sensor types,
its approach is still limited by obfuscations and native codes, and
onlyworks in the case of a single sensor type being registered. These
gaps show the common limitations of static analysis-based methods
for detecting Android sensor usage. Furthermore, these works’ aims
also differ from this research. While they focus on developer-side
analysis which requires sophisticated steps of building development
environments and code dissembling, our work aims to provide a
ready-to-use tool that can be utilized by any user and researcher.

OS and App Instrumentation. Some other works seek to
provide better security against zero-permission sensors by directly
modifying the existing Android OS or third-party applications.
6thSense [50] developed a context-aware sensor-based attack
detection framework that monitors sensor data, infers the current
use context, and then decides whether the current sensor use might
be malicious. To detect the use context, 6thSense needs to acquire all
sensor readings sent to each application, which requires 6thSense
to be built into the operating system. Sensor Guardian [9] and
SemaDroid [58], on the other hand, choose to directly control
applications’ access to sensors by inserting hooks into applications’
Dalvik byte-codes or modifying OS implementations to enforce
additional control policies at runtime. This requires developers
to build a sophisticated development chain in order to modify
and control Apps and is limited to use by specialized experts.
Furthermore, this approach does not work with apps implementing
RASP techniques. In contrast to these approaches, ARMOUR focuses
on the user space sensor usage detection without modifications
to the existing Android OS or requiring root privilege. This
provides complementary protection capabilities when root and
expert privileges are not available.

7 Conclusion
This work investigated monitoring zero-permission sensor usage
on Android and developed ARMOUR, a user-space tool allowing
researchers and users to analyze when, which, and at what sampling
rates third-party apps access these sensors. Our evaluation with
1,448 commercial apps revealed widespread, unjustified sensor
usage across multiple app categories, highlighting risks from
unregulated access and limitations in current Android security
policies. Our findings call for improved regulations and advanced
privacy tools to address growing threats. We present ARMOUR and
our dataset as an important step toward mitigating the information
asymmetry between data collectors and providers.

Acknowledgments
We appreciate the insights and remarks from our reviewers. This
research was supported in part by the National Science Foundation
(NSF) Industry-University Cooperative Research Centers Program,
CHEST, under grant IUCRC-1916762, and by the NSF award 2330264.
Any opinions, findings, conclusions, or recommendations expressed
are those of the authors and not necessarily of the NSF.

References
[1] 2023. AccuBattery. https://accubatteryapp.com/
[2] 2025. Access Dots - iOS cam/mic/gps. https://play.google.com/store/apps/details?

id=you.in.spark.access.dots&hl=en_US

https://accubatteryapp.com/
https://play.google.com/store/apps/details?id=you.in.spark.access.dots&hl=en_US
https://play.google.com/store/apps/details?id=you.in.spark.access.dots&hl=en_US

ARMOUR US: Monitoring Android Zero-permission Sensor Usage From User Space WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA

[3] 2025. Safe Dot. https://github.com/kamaravichow/safe-dot-android?tab=readme-
ov-file

[4] S Abhishek Anand, ChenWang, Jian Liu, Nitesh Saxena, and Yingying Chen. 2019.
Spearphone: A speech privacy exploit via accelerometer-sensed reverberations
from smartphone loudspeakers. arXiv preprint arXiv:1907.05972 (2019).

[5] Appfigures. 2025. Top Ranked Google Play Apps. https://appfigures.com/top-
apps/google-play/united-states/top-overall

[6] Appsflyer. 2025. Pay for real customers, not bots, with advanced sensor analysis.
https://www.appsflyer.com/products/fraud-protection/

[7] Steven Arzt, Siegfried Rasthofer, Christian Fritz, Eric Bodden, Alexandre Bartel,
Jacques Klein, Yves Le Traon, Damien Octeau, and Patrick McDaniel. 2014.
Flowdroid: Precise context, flow, field, object-sensitive and lifecycle-aware taint
analysis for android apps. Acm Sigplan Notices 49, 6 (2014), 259–269.

[8] Zhongjie Ba, Tianhang Zheng, Xinyu Zhang, Zhan Qin, Baochun Li, Xue Liu,
and Kui Ren. 2020. Learning-based Practical Smartphone Eavesdropping with
Built-in Accelerometer.. In NDSS, Vol. 2020. 1–18.

[9] Xiaolong Bai, Jie Yin, and Yu-Ping Wang. 2017. Sensor Guardian: prevent privacy
inference on Android sensors. EURASIP Journal on Information Security 2017
(2017), 1–17.

[10] Michael Benisch, Patrick Gage Kelley, Norman Sadeh, and Lorrie Faith Cranor.
2011. Capturing location-privacy preferences: quantifying accuracy and user-
burden tradeoffs. Personal and Ubiquitous Computing 15 (2011), 679–694.

[11] David Berend, Shivam Bhasin, and Bernhard Jungk. 2018. There goes your pin:
Exploiting smartphone sensor fusion under single and cross user setting. In
Proceedings of the 13th International Conference on Availability, Reliability and
Security. 1–10.

[12] Kenneth Block and Guevara Noubir. 2018. My magnetometer is telling you where
i’ve been? a mobile device permissionless location attack. In Proceedings of the
11th ACM Conference on Security & Privacy in Wireless and Mobile Networks.
260–270.

[13] Connor Bolton, Kevin Fu, Josiah Hester, and Jun Han. 2020. How to curtail
oversensing in the home. Commun. ACM 63, 6 (2020), 20–24.

[14] Connor Bolton, Yan Long, Jun Han, Josiah Hester, and Kevin Fu. 2023.
Characterizing and Mitigating Touchtone Eavesdropping in Smartphone Motion
Sensors. In Proceedings of the 26th International Symposium on Research in Attacks,
Intrusions and Defenses. 164–178.

[15] Liang Cai and Hao Chen. 2011. TouchLogger: inferring keystrokes on touch
screen from smartphone motion. HotSec 11, 2011 (2011), 9.

[16] L Jean Camp and Vafa Andalibi. 2021. Sbom vulnerability assessment &
corresponding requirements. NTIA Response to Notice and Request for Comments
on Software Bill of Materials Elements and Considerations (2021).

[17] Yushi Cheng, Xiaoyu Ji, Wenyuan Xu, Hao Pan, Zhuangdi Zhu, Chuang-Wen You,
Yi-Chao Chen, and Lili Qiu. 2019. Magattack: Guessing application launching
and operation via smartphone. In Proceedings of the 2019 ACM Asia Conference
on Computer and Communications Security. 283–294.

[18] Andrea Continella, Yanick Fratantonio, Martina Lindorfer, Alessandro Puccetti,
Ali Zand, Christopher Kruegel, Giovanni Vigna, et al. 2017. Obfuscation-Resilient
Privacy Leak Detection for Mobile Apps Through Differential Analysis.. In NDSS,
Vol. 17. 10–14722.

[19] International Data Corporation. 2023. Smartphone Market Share. https://www.
idc.com/promo/smartphone-market-share

[20] Anupam Das, Gunes Acar, Nikita Borisov, and Amogh Pradeep. 2018. The Web’s
Sixth Sense: A Study of Scripts Accessing Smartphone Sensors. In Proceedings
of the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1515–1532.

[21] Erhan Davarci, Betul Soysal, Imran Erguler, Sabri Orhun Aydin, Onur Dincer,
and Emin Anarim. 2017. Age group detection using smartphone motion sensors.
In 2017 25th European Signal Processing Conference (EUSIPCO). IEEE, 2201–2205.

[22] Android Developers. 2018. Android 9 behavior changes. https://developer.
android.com/about/versions/pie/android-9.0-changes-all#bg-sensor-access

[23] Android Developers. 2021. Android 12 behavior changes. https:
//developer.android.com/about/versions/12/behavior-changes-12#motion-
sensor-rate-limiting

[24] Android Developers. 2023. Manifest.permission:
HIGH_SAMPLING_RATE_SENSORS. https://developer.android.com/
reference/android/Manifest.permission#HIGH_SAMPLING_RATE_SENSORS

[25] Android Developers. 2023. Monitoring Sensor Events. https://developer.android.
com/guide/topics/sensors/sensors_overview#sensors-monitor

[26] Android Developers. 2025. Create your own accessibility service. https://
developer.android.com/guide/topics/ui/accessibility/service

[27] Android Developers. 2025. Sensor Rate-Limiting. https://developer.android.
com/develop/sensors-and-location/sensors/sensors_overview#sensors-rate-
limiting

[28] Android Developers. 2025. System restrictions on background work.
https://developer.android.com/develop/background-work/background-tasks/
bg-work-restrictions?utm_source=chatgpt.com#user-initiated-restrictions

[29] e Foundation. 2024. PayPal: Data transfer to over 600 third-party companies +
metadata. https://community.e.foundation/t/paypal-data-transfer-to-over-600-

third-party-companies-metadata/61888
[30] Gabriella M Harari, Sandrine R Müller, Min SH Aung, and Peter J Rentfrow. 2017.

Smartphone sensing methods for studying behavior in everyday life. Current
opinion in behavioral sciences 18 (2017), 83–90.

[31] Pengfei Hu, Hui Zhuang, Panneer Selvam Santhalingam, Riccardo Spolaor, Parth
Pathak, Guoming Zhang, and Xiuzhen Cheng. 2022. Accear: Accelerometer
acoustic eavesdropping with unconstrained vocabulary. In 2022 IEEE Symposium
on Security and Privacy (SP). IEEE, 1757–1773.

[32] Wei-Han Lee and Ruby B Lee. 2017. Implicit smartphone user authentication
with sensors and contextual machine learning. In 2017 47th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN). IEEE, 297–
308.

[33] Xing Liu, Jiqiang Liu, Wei Wang, Yongzhong He, and Xiangliang Zhang. 2018.
Discovering and understanding android sensor usage behaviors with data flow
analysis. World Wide Web 21 (2018), 105–126.

[34] Yan Long and Kevin Fu. 2022. Side Auth: Synthesizing Virtual Sensors for
Authentication. In Proceedings of the 2022 New Security Paradigms Workshop.
35–44.

[35] Yan Long, Qinhong Jiang, Chen Yan, Tobias Alam, Xiaoyu Ji, Wenyuan Xu,
and Kevin Fu. 2024. EM Eye: Characterizing electromagnetic side-channel
eavesdropping on embedded cameras. (2024).

[36] Yan Long, Pirouz Naghavi, Blas Kojusner, Kevin Butler, Sara Rampazzi, and Kevin
Fu. 2023. Side eye: Characterizing the limits of pov acoustic eavesdropping
from smartphone cameras with rolling shutters and movable lenses. In 2023 IEEE
symposium on security and privacy (SP). IEEE, 1857–1874.

[37] Anindya Maiti, Ryan Heard, Mohd Sabra, and Murtuza Jadliwala. 2018. Towards
inferring mechanical lock combinations using wrist-wearables as a side-channel.
In Proceedings of the 11th ACM Conference on Security & Privacy in Wireless and
Mobile Networks. 111–122.

[38] Sumit Majumder and M Jamal Deen. 2019. Smartphone sensors for health
monitoring and diagnosis. Sensors 19, 9 (2019), 2164.

[39] Yan Michalevsky, Dan Boneh, and Gabi Nakibly. 2014. Gyrophone: Recognizing
speech from gyroscope signals. In 23rd {USENIX} Security Symposium ({USENIX}
Security 14). 1053–1067.

[40] Reham Mohamed, Habiba Farrukh, Yidong Lu, He Wang, and Z Berkay Celik.
2023. iStelan: Disclosing Sensitive User Information by Mobile Magnetometer
from Finger Touches. Proceedings on Privacy Enhancing Technologies 2 (2023),
79–96.

[41] Sashank Narain, Triet D Vo-Huu, Kenneth Block, and Guevara Noubir. 2016.
Inferring user routes and locations using zero-permission mobile sensors. In 2016
IEEE Symposium on Security and Privacy (SP). IEEE, 397–413.

[42] Emmanuel Owusu, Jun Han, Sauvik Das, Adrian Perrig, and Joy Zhang.
2012. Accessory: password inference using accelerometers on smartphones.
In proceedings of the twelfth workshop on mobile computing systems & applications.
1–6.

[43] Hao Pan, Lanqing Yang, Honglu Li, Chuang-Wen You, Xiaoyu Ji, Yi-Chao Chen,
Zhenxian Hu, and Guangtao Xue. 2021. Magthief: Stealing private app usage
data on mobile devices via built-in magnetometer. In 2021 18th Annual IEEE
International Conference on Sensing, Communication, and Networking (SECON).
IEEE, 1–9.

[44] Jan Pennekamp, Martin Henze, and KlausWehrle. 2017. A survey on the evolution
of privacy enforcement on smartphones and the road ahead. Pervasive and Mobile
Computing 42 (2017), 58–76.

[45] Android Open Source Project. 2022. Android Sensor Stack. https://source.
android.com/docs/core/interaction/sensors/sensor-stack#framework

[46] Ole André V. Ravnås. 2025. Frida: A world-class dynamic instrumentation toolkit.
https://frida.re/docs/android/

[47] Google Samples. 2021. High sensor sampling rate code warning.
https://googlesamples.github.io/android-custom-lint-rules/checks/
HighSamplingRate.md.html

[48] Nina Shamsi, Yan Long, and Kevin Fu. 2023. EyeHearYou: Probing Location
Identification via Occluded Smartphone Cameras and Ultrasound. In 2023 IEEE
International Symposium on Hardware Oriented Security and Trust (HOST). IEEE,
36–47.

[49] Cong Shi, Xiangyu Xu, Tianfang Zhang, Payton Walker, Yi Wu, Jian Liu, Nitesh
Saxena, Yingying Chen, and Jiadi Yu. 2021. Face-Mic: inferring live speech and
speaker identity via subtle facial dynamics captured by AR/VR motion sensors.
In Proceedings of the 27th Annual International Conference on Mobile Computing
and Networking. 478–490.

[50] Amit Kumar Sikder, Hidayet Aksu, and A Selcuk Uluagac. 2017. 6thSense: A
Context-aware Sensor-based Attack Detector for Smart Devices.. In USENIX
Security Symposium. 397–414.

[51] Amit Kumar Sikder, Giuseppe Petracca, Hidayet Aksu, Trent Jaeger, and A Selcuk
Uluagac. 2021. A survey on sensor-based threats and attacks to smart devices and
applications. IEEE Communications Surveys & Tutorials 23, 2 (2021), 1125–1159.

[52] GitHub skylot. 2025. jadx: Dex to Java decompiler. https://github.com/skylot/jadx
[53] Raphael Spreitzer. 2014. Pin skimming: exploiting the ambient-light sensor in

mobile devices. In Proceedings of the 4th ACM Workshop on Security and Privacy

https://github.com/kamaravichow/safe-dot-android?tab=readme-ov-file
https://github.com/kamaravichow/safe-dot-android?tab=readme-ov-file
https://appfigures.com/top-apps/google-play/united-states/top-overall
https://appfigures.com/top-apps/google-play/united-states/top-overall
https://www.appsflyer.com/products/fraud-protection/
https://www.idc.com/promo/smartphone-market-share
https://www.idc.com/promo/smartphone-market-share
https://developer.android.com/about/versions/pie/android-9.0-changes-all#bg-sensor-access
https://developer.android.com/about/versions/pie/android-9.0-changes-all#bg-sensor-access
https://developer.android.com/about/versions/12/behavior-changes-12#motion-sensor-rate-limiting
https://developer.android.com/about/versions/12/behavior-changes-12#motion-sensor-rate-limiting
https://developer.android.com/about/versions/12/behavior-changes-12#motion-sensor-rate-limiting
https://developer.android.com/reference/android/Manifest.permission#HIGH_SAMPLING_RATE_SENSORS
https://developer.android.com/reference/android/Manifest.permission#HIGH_SAMPLING_RATE_SENSORS
https://developer.android.com/guide/topics/sensors/sensors_overview#sensors-monitor
https://developer.android.com/guide/topics/sensors/sensors_overview#sensors-monitor
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/guide/topics/ui/accessibility/service
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview#sensors-rate-limiting
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview#sensors-rate-limiting
https://developer.android.com/develop/sensors-and-location/sensors/sensors_overview#sensors-rate-limiting
https://developer.android.com/develop/background-work/background-tasks/bg-work-restrictions?utm_source=chatgpt.com#user-initiated-restrictions
https://developer.android.com/develop/background-work/background-tasks/bg-work-restrictions?utm_source=chatgpt.com#user-initiated-restrictions
https://community.e.foundation/t/paypal-data-transfer-to-over-600-third-party-companies-metadata/61888
https://community.e.foundation/t/paypal-data-transfer-to-over-600-third-party-companies-metadata/61888
https://source.android.com/docs/core/interaction/sensors/sensor-stack#framework
https://source.android.com/docs/core/interaction/sensors/sensor-stack#framework
https://frida.re/docs/android/
https://googlesamples.github.io/android-custom-lint-rules/checks/HighSamplingRate.md.html
https://googlesamples.github.io/android-custom-lint-rules/checks/HighSamplingRate.md.html
https://github.com/skylot/jadx

WiSec 2025, June 30-July 3, 2025, Arlington, VA, USA Yan Long, Jiancong Cui, Yuqing Yang, Tobias Alam, Zhiqiang Lin, and Kevin Fu

in Smartphones & Mobile Devices. 51–62.
[54] Ke Sun, Chunyu Xia, Songlin Xu, and Xinyu Zhang. 2023. StealthyIMU: Stealing

permission-protected private information from smartphone voice assistant using
zero-permission sensors. Network and Distributed System Security (NDSS)
Symposium.

[55] Xiaoyu Sun, Xiao Chen, Kui Liu, Sheng Wen, Li Li, and John Grundy. 2021.
Characterizing sensor leaks in android apps. In 2021 IEEE 32nd International
Symposium on Software Reliability Engineering (ISSRE). IEEE, 498–509.

[56] Verifone. 2024. PayPal Magnes. https://verifone.cloud/docs/online-payments/
apm/paypal-ecom/paypal-magnes

[57] Yi Wu, Cong Shi, Tianfang Zhang, Payton Walker, Jian Liu, Nitesh Saxena, and
Yingying Chen. 2023. Privacy leakage via unrestricted motion-position sensors in
the age of virtual reality: A study of snooping typed input on virtual keyboards.
In 2023 IEEE Symposium on Security and Privacy (SP). IEEE, 3382–3398.

[58] Zhi Xu and Sencun Zhu. 2015. Semadroid: A privacy-aware sensor management
framework for smartphones. In Proceedings of the 5th ACM Conference on Data
and Application Security and Privacy. 61–72.

[59] Yuqing Yang,Mohamed Elsabagh, Chaoshun Zuo, Ryan Johnson, Angelos Stavrou,
and Zhiqiang Lin. 2022. Detecting and Measuring Misconfigured Manifests in
Android Apps. In Proceedings of the 2022 ACM SIGSAC Conference on Computer
and Communications Security. 3063–3077.

A Appendix: Supplementary Materials

Table 2: Examples of Possible Information Leakage
Category Sensor Info. Leakage Example

Motion

Gyroscope Speech audio [39, 54]
Gyroscope Lock information [37]

Accelerometer Speech reconstruction [8, 31]
Accelerometer Touchscreen input [11, 42]
Accl. + Gyro. User age & identity [21, 32]
Accl. + Gyro. Keystroke [15, 57]

Position
Magnetometer User location [12, 41]
Magnetometer App activity [17, 40]

Table 3: Examples of Android Phones’ Parameters
Phone
Model

Android
Version 𝑓 𝑎𝑐𝑐𝑙

𝑚𝑖𝑛
𝑓
𝑔𝑦𝑟𝑜

𝑚𝑖𝑛
𝑓
𝑚𝑎𝑔𝑛

𝑚𝑖𝑛

Google Pixel 3 12 5 1 1
Google Pixel 5 12 5 1 1
Google Pixel 6 13 7 2 1

OnePlus Nord N200 12 5 1 1
Samsung Galaxy S9 10 1 1 1
Samsung Galaxy S20 13 1 1 1

*The unit of minimum supported sampling rates is Hz.

Figure 9: Variation ranges of received instant sampling rates
when apps request different sampling rates. The sampling
rates remain stable with errors smaller than 0.4 Hz.

Figure 10: Example of the effect of outlier cleaning in 𝑓𝑖𝑛𝑠𝑡 .

Table 4: Zero-permission Sensor Usage Pattern of Different Categories of Popular Google Play Apps
Category (# apps) Accl. Gyro. Magn. All None Examples of Apps Accessing Sensors

Games (38) 92% 63% 47% 47% 8% Roblox; Bus Out; Hole.io
Art/Design (39) 67% 69% 33% 33% 28% Arvin® – AI Logo Maker; Creati AI Photo Generator; Sketchbook Lite
Finance (6) 67% 67% 67% 67% 33% Venmo; testerup – earn money; PayPal – Pay, Send, Save
Family (35) 66% 6% 6% 6% 34% Bluey: Let’s Play!; Floof – My Pet House; Disney Coloring World

Personalization (47) 60% 62% 17% 17% 36% Launcher OS™; Easy Homescreen; Neon Love Theme
Dating (37) 59% 57% 41% 41% 41% Dating & Chat Online; Dating & Chat – iHappy; Dating & chat – Likerro

Photography (44) 57% 52% 30% 30% 43% Meitu; Skylight; Meta View
Books/Reference (40) 55% 52% 42% 42% 45% WebNovel; NovelFlow; Holy Bible Light
News/Magazines (48) 48% 48% 42% 40% 50% Newsmax; Quick News; News Today

Education (35) 46% 34% 26% 23% 51% ClassDojo; Dino Coloring Game; Imprint: Learn Visually
Entertainment (38) 45% 37% 29% 29% 55% Xbox; STARZ; Reel Rush
Health/Fitness (39) 44% 44% 33% 33% 54% JustFit-Lazy Workout; Pilates Workout; Pedometer-Step Counter
Music/Audio (36) 42% 39% 19% 19% 56% Radio FM; Ringtones for Android™; Pocket FM: Audio Series
Weather (44) 41% 39% 27% 27% 57% Weather&Radar; Know Weather: Live Radar; Weather Forecasts&Radar

Travel/Local (41) 39% 41% 46% 39% 54% earnify; Fly Delta; Disneyland®
Beauty (47) 38% 38% 17% 15% 60% Barber Chop; GlossGenius; Picture Editor
Social (39) 38% 33% 23% 23% 62% Facebook; Instagram; Letterboxd

Parenting (47) 38% 28% 28% 28% 62% Alli360 by Kids360; Pregnancy Tracker: amma; Bark – Parental Controls
Shopping (29) 38% 48% 45% 31% 48% Kroger; Lowe’s; Circle K
Comics (46) 37% 30% 17% 17% 63% K MANGA; Pocket Toons; Key Collector Comics
Lifestyle (42) 36% 33% 29% 26% 62% AARP Now; Pinterest; Gold Town

Video-Players (42) 36% 33% 10% 10% 64% Rumble; MX Player; Video Maker
Maps/Navigation (47) 36% 34% 17% 17% 62% Phone Tracker; Roadie Driver; Bolt: Request a Ride

Tools (46) 35% 35% 13% 13% 65% Manic; Wodfix Max; Neat Manager – AntiVirus
House/Home (46) 35% 26% 17% 13% 65% Merkury Smart; Apartment List; PadSplit: Rooms for rent

Sports (37) 32% 27% 22% 22% 68% NFL; GameChanger; NFL Network
Events (44) 30% 25% 20% 18% 68% Timeleft; Posh – Social Experiences; Bridebook – Wedding Planner

Food/Drink (40) 30% 22% 32% 18% 55% Wawa; Crumbl; Subway®
Productivity (39) 26% 26% 5% 5% 74% AI Chatbot – Nova; PDF Reader – PDF Viewer; Email Lite – Smart Mail
Auto/Vehicles (38) 24% 18% 18% 18% 76% PayByPhone; Fuel Forward; CARFAX Car Care App

Medical (38) 21% 13% 11% 11% 79% Pathway; CSL Plasma; Sydney Health
Libraries/Demo (47) 19% 15% 0% 0% 81% Cardboard; Samsung SmartTag; Addons for Melon

Business (39) 18% 15% 10% 10% 82% Boat Browser; FedEx Mobile; Meta Business Suite
Communication (41) 17% 15% 0% 0% 83% Messenger; Inbox Homescreen; Messenger – Texting App
Android-Wear (37) 14% 14% 8% 8% 86% I am – Daily affirmations; CallApp: Caller ID&Block; Fitbod

*Different numbers of apps for each category (e.g., only six Finance apps) are due to DMCA, which prevented some APK/XAPK downloads.

https://verifone.cloud/docs/online-payments/apm/paypal-ecom/paypal-magnes
https://verifone.cloud/docs/online-payments/apm/paypal-ecom/paypal-magnes

	Abstract
	1 Introduction
	2 Background
	2.1 Android Sensor Framework
	2.2 SensorManager Interface

	3 Methodology & Design
	3.1 Threat & System Model
	3.2 Sampling-based Sensor Usage Detection
	3.3 ARMOUR Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Detection Performance & Overhead
	4.3 Popular Google Play Applications
	4.4 Sampling Rate Distribution
	4.5 Foreground & Background Sensor Usage
	4.6 Case Study

	5 Discussion
	6 Related Work
	6.1 Zero-permission Sensor Exploitation
	6.2 Android Sensor Analysis & Protections

	7 Conclusion
	Acknowledgments
	References
	A Appendix: Supplementary Materials

