
QBF-Based Synthesis of Optimal Word-Splitting
in Approximate Multi-Level Storage Cells

Daniel E. Holcomb
University of Michigan
danholcomb@umich.edu

Kevin Fu
University of Michigan
kevinfu@umich.edu

Abstract
In applications such as multimedia that tolerate imprecise re-
sults, approximate computing techniques can sacrifice pre-
cision to save power or time. One aspect of approximate
computing is imprecise storage in multi-level cells (MLCs).
Computer words that are too large for a single MLC must be
distributed across multiple approximate MLCs. The word-
level imprecision depends on how the words are split across
the MLCs. This work gives an automated synthesis approach
for splitting words across MLCs. Given bounds on the im-
precision of individual MLCs, the technique synthesizes so-
lutions for splitting words across cells to minimize the worst-
case imprecision at the word level. The technique is based on
quantified Boolean formula solving, within an overall opti-
mization loop. Worst-case word-level error is shown to vary
by over an order of magnitude across otherwise comparable
word-splitting alternatives.

Keywords Approximate Computing, Multi-Level Cells,
QBF Solving, Synthesis

1. Introduction
Approximate computing techniques trade away precision to
save power, energy, or time. The tradeoff is appealing in
applications such as multimedia that are inherently tolerant
of imprecision. Recent work demonstrates that approximate
storage of data in non-volatile multi-level cells (MLCs) can
speed up write operations by 1.7x in exchange for a quality
loss of under 10% [10]. The data words on which computers
operate are too large for storing in a single MLC, and must
therefore be distributed across multiple imprecise MLCs.
The loss of precision at the word level depends on how the
words are distributed across the approximate MLCs.

This work presents a synthesis approach for optimally
storing data words across multiple approximate MLCs. The
inputs to the synthesis are bounds on the worst-case error of
the MLCs, and the output is a way to distribute data words
across the MLCs such that the worst-case word-level error
is minimized. The approach frames the synthesis problem
as a quantified Boolean formula (QBF), within an overall
optimization loop.

The specific contributions of this paper are as follows:

• We demonstrate that a previously proposed word-splitting
has a word-level error that is good in the average case,
but pathologically bad in the worst case.

• We present an automated QBF-based technique for for-
mal synthesis of an optimal word-splitting solution, and
validate the solution using random simulation.

• We use the synthesis technique to find a counter-intuitive
approximate storage solution where optimal word-level
precision is achieved by deliberately introducing small
errors to written data.

2. Related Work
As technology scaling nears physical limits, maintaining
a perfect error-free digital abstraction becomes ever more
expensive in power, time, and silicon area. Workloads such
as multimedia do not require perfect computation, and this
has given rise to techniques for approximate computation,
where an acceptable amount of precision is traded away to
save costs. EnerJ is a Java extension that adds approximate
data types, and its use can cut energy by up to 50% versus
fully precise computation [9]. Microarchitectural support
for approximate computing is provided in Truffle, where
power is saved by processing approximate and precise data
at different supply voltages [1].

In addition to imprecise computation, imprecise data stor-
age can also save cost. Increasing DRAM refresh interval be-
yond point of first failure saves 20-25% of memory power in
error-tolerant applications [4]. The use of error-inducing low
voltages in flash memory is shown to decrease write power
by 34% [8]. Similar techniques can be applied to multi-level
cells (MLCs) in non-volatile memories. MLCs encode mul-
tiple bits of information per cell by allowing a wider vari-
ety of stored levels, instead of just the traditional “0” and
“1” levels. For example, X4 memory stores 4 bits per cell
by storing one of 16 discrete levels [12]. An error occurs in
an MLC when the level read from the cell is not the exact
level that was written. Due to the ordering of the stored lev-
els, MLC errors may still produce data that is nearly correct,
and this presents an opportunity for approximate computing.
Approximate storage in phase-change MLCs is shown to of-
fer 1.7x speedup in write operations [10]. In flash memory,
an alternative to demarcating MLC levels with thresholds is
the use of rank modulation [2] to encode data in the relative
ordering of charge levels across cells.

1 2014/2/8



2.1 QBF Solving
The quantified Boolean formula problem (QBF) is a Boolean
satisfiability problem (SAT) with both universally (8) and
existentially (9) quantified variables. SAT can therefore be
viewed as a special case of QBF in which all variables are ex-
istentially quantified. A QBF problem is typically described
in prenex normal form, where all variables are quantified at
the start of the problem, and the formula follows in conjunc-
tive normal form. Among the many publicly available QBF
solvers, the experiments in this work are performed using
the solver DepQBF [7][6]. DepQBF is a search-based QBF
solver, and its speed comes largely from its use of restarts
and efficient techniques for uncovering and storing variable
ordering [5].

3. Formulation
Figure 1 illustrates the problem of splitting 8-bit data word
D over two 4-bit MLCs C1 and C0. The 4-bit value written
to each cell Ci is denoted CW

i , and the 4-bit value being
read is CR

i . The data word being written is DW , and the
data word being read is DR. When writing data word DW ,
a mapping denoted SW maps bit positions of DW to the bit
positions of CW

1 and CW
0 , and these values are written to

the MLCs. When reading a data word, CR
1 and CR

0 are read
from the cells, and mapping SR reconstructs data word DR.

Mapping SR inverts SW , such that SR(SW (DW )) =
DW . If the cells are fully precise (i.e. (CW

1 , CW
0 ) =

(CR
i , CR

0 )), then any SR and SW that are inverses will result
in fully precise data words (i.e. DW = DR). To see this,
first let DR := SR(CR

1 , CR
0 )) which becomes on account

of fully-precise cells DR := SR(CW
1 , CW

0 )). Next, rewrit-
ing (CW

1 , CW
0 ) as SW (DW ) yields DR := SR(SW (DW ))

which reduces to DR := DW whenever SR inverts SW .
The mappings SW and SR are represented using a shared

set S of Boolean variables. Let k be the number of MLCs,
and n be the number of bits stored in each MLC; the width of
the data word D is therefore kn. The mapping between the
data word and cells is represented by kn2 Boolean variables
si,j , where 0  i < kn and 0  j < kn. If si,j is true, then
SW maps the ith bit of DW to the jth among all MLC bits,
and SR maps the jth MLC bit to the ith bit of DR. Eq. 1
ensures that each mapping is between exactly one bit of D
and one bit of an MLC.

^

j2[0,kn�1]

  
X

i=0...kn�1

si,j

!
= 1

!

^

i2[0,kn�1]

0

@

0

@
X

j=0...kn�1

si,j

1

A = 1

1

A
(1)

Under the assumption of approximate storage, it is only
claimed that for each MLC the read value (CR

i ) is similar
within EC levels to the written value (CW

i ). Assuming that
the difference in magnitude between the written and read
value of each MLC is bounded by EC , the goal of synthesis
is to minimize the worst-case difference in magnitude be-

tween DW and DR, as this difference represents the word-
level error. The task of synthesis is therefore to find an as-
signment to S that defines a correspondence between data
word D and MLCs Ci that minimizes the worst case word-
level error.

SW!

MLC “C1”! MLC “C0”!

DW!

C1
W
! C0

W
!

SR!

MLC “C1”! MLC “C0”!

DR!

C1
R
!

C0
R
!

data “D”! data “D”!

c1,3!c1,2! c1,0!c1,1!

d7! d6! d4!d5! d3! d2! d0!d1! d7! d6! d4!d5! d3! d2! d0!d1!

c0,3!c0,2! c0,0!c0,1! c1,3!c1,2! c1,0!c1,1! c0,3!c0,2! c0,0!c0,1!

Figure 1. Mapping for write and read operations. At left is a
write operation, where a data word DW is distributed across
two MLCs according to mapping SW . At right is a read
operation where, according to mapping SR, data word DR

is reconstructed from the values read from the two MLCs.

3.1 Synthesis using QBF Solving
The QBF problem in Eq. 2 checks whether there exists a
mapping that guarantees a worst-case word-level error of
ED, given a worst-case cell-level error of EC .

The independent variables in Eq. 2 are (1) S: the set of
Boolean variables that determine the mappings (SR and SW )
between bits of the data word and bits of MLCs; (2) DW : the
data word being written; and (3) CR

1 and CR
0 : the values read

from the MLCs.
Computed as a deterministic function of the independent

variables are (1) (CW
1 , CW

0 ) := SW (DW ): the values writ-
ten to MLCs; and (2) DR := SR(CR

1 , CR
0 ): the data word

reconstructed from the values read from MLCs.
Eq. 2 then asks whether there exists mapping S, such that

if the written data word DW maps to written MLC levels
CW

1 , CW
0 , any cell levels CR

1 , CR
0 that are within EC of the

written levels will map back to a word DR that is within ED

of the written word DW .

9S8DW8CR
1 8CR

0��
|CW

1 � CR
1 |  EC

�
^
�
|CW

0 � CR
0 |  EC

��

=)
�
|DW �DR|  ED

�
(2)

An equivalent formulation to Eq. 2 is given by Eq. 3. This
formulation replaces independent variable DW with vari-
ables CW

1 and CW
0 , and computes as a dependent variable

DW := SR(CW
1 , CW

0 ), which holds because (CW
1 , CW

0 ) :=
SW (DW ) and SR inverts SW . While the formulations are
equivalent, and shown to produce identical results, the for-
mulation of Eq. 3 is found to be easier for the solver than is
Eq. 2 (see Appendix A).

2 2014/2/8



9S8CW
1 8CW

0 8CR
1 8CR

0��
|CW

1 � CR
1 |  EC

�
^
�
|CW

0 � CR
0 |  EC

��

=)
�
|SR(C

W
1 , CW

0 )� SR(C
R
1 , CR

0 )|  ED

�
(3)

3.2 Optimization
A binary search optimization loop performs iterated calls
to the QBF solver to find a mapping S that minimizes the
worst-case error ED. Each QBF call solves Eq. 3 with a
particular constant for ED, and either synthesizes a value
of S that guarantees the bound ED, or else determines that
no such S exists. The total range searched for the minimal
ED is 1 to 2kn � 1, and therefore kn QBF calls are needed
to complete the binary search.

4. Methodology
Each QBF problem is formulated by first constructing a
combinational circuit in structural Verilog to implement the
necessary logic for evaluating the property in Eq. 3. The
inputs to the circuit are the Boolean variables comprising
S and CW

1 , CW
0 , CR

1 , CR
0 , and the constants to set EC and

ED. The output of the circuit is a single Boolean signal,
denoted �, representing the condition that synthesis must
satisfy. This signal � is false when the inputs applied to the
circuit satisfy |CW

1 � CR
1 |  EC and |CW

0 � CR
0 |  EC ,

but not |DW �DR|  ED.
The mappings for SR and SW are defined according to

the values assigned to the si,j variables in S. The mappings
are implemented in the circuit by multiplexers with si,j vari-
ables as one-hot encoded control inputs. In the implementa-
tion of SW , the value of the jth total bit to the MLCs is set by
a multiplexer with select signals s0,j , s1,j , . . . , skn�1,j and
inputs d0, d1, . . . , dkn�1. Likewise, in the implementation of
SR, each bit di is assigned a bit from an MLC, with choice
depending on select signals si,0, si,1, . . . , si,kn�1. There-
fore, if si,j is true, then SW maps the ith bit of the data
word to the jth bit of cells, and SR maps the jth bit of cells
back to the ith bit of the data word.

The combinational circuit is encoded into the CNF clauses
of the QBF problem by translating each gate to clauses us-
ing the approach of Larrabee [3]. The CNF formula created
in this way is satisfied by any assignment of values to vari-
ables that is consistent with the logic functions of the gates.
Because the goal of synthesis is to ensure that property �
holds, � is added to the CNF formula as a unit clause; now
any variable assignment that satisfies the CNF formula is
an assignment of values to variables that is consistent with
the circuit logic and causes � to be true. Finding such an
assignment is exactly the problem of SAT-based test gen-
eration [3], where the goal is to find any input pattern that
satisfies a particular fault sensitization condition.

The inputs to the Verilog circuit are the variables that
are either existentially or universally quantified in the QBF.
Specifically, in the formulation of Eq. 3 these variables are
the (kn)2 bits of S, and for each cell Ci (0  i < k) the

n bits for CW
i and the n bits for CR

i . The total number of
Boolean input variables is therefore (kn)2 +2kn. As shown
in Eq. 3, the (kn)2 Boolean variables of S are existentially
quantified, and the 2kn Boolean variables for the CR

i and
CW

i are universally quantified. A solution to the QBF prob-
lem gives an assignment to the S variables, such that the
property � is guaranteed to hold for all possible assignments
to the CR

i and CW
i variables.

Note that when a QBF problem is described in prenex
normal form, all variables must have quantifiers. To accom-
plish this, any variable not explicitly quantified in a stated
QBF problem is implicitly existentially quantified at the end
of the explicitly quantified variables. This implicit existential
quantifier indicates that these variables may take any value
in a solution to the QBF problem.

5. Evaluation
Two variants of QBF-based synthesis are performed, and
compared against a baseline approach of interleaved word-
splitting. Interleaved word-splitting, shown in Fig. 2, is pro-
posed by Sampson et al. [10] for minimizing the word-level
impact of errors in MLCs.

In interleaved word-splitting, the more significant bits of
a word (e.g. d7 and d6) are mapped to the most significant
bits of each MLC (e.g. c1,3 and c0,3). The intuition behind
interleaved word-splitting is that errors in imprecise MLCs
are more likely to flip to the less significant bits of the cell
than the more significant bits. For example, in a 4-bit MLC,
all single-level errors (e.g. 0000 to 0001; 0001 to 0010; etc)
will flip the cell’s LSB, while the only single-level errors that
flip the cell’s MSB are transitions between the levels 0111
and 1000. Therefore, interleaved word-splitting minimizes
the average word-level impact of the common case of single-
level errors, by mapping the less significant bits of data
words to the MLC bits that are most likely to flip.

c1,3 c1,2 c1,1 c1,0 c0,3 c0,2 c0,1 c0,0

d7 d6 d5 d4 d3 d2 d1 d0

Figure 2. Interleaved word-splitting.

Interleaved word-splitting is proposed with average-case
word-level error in mind, but in the worst case even single-
level MLC errors can lead to large word-level errors. Con-
sider the written value DW := 00111111, which according
to Fig. 2 is stored in the two cells as the levels CW

1 := 0111
and CW

0 := 0111. If single-level errors cause the cells to be
read out as CR

1 := 1000 and CR
0 := 1000, then the recon-

structed data word is DR := 11000000. Despite only having
a single level of imprecision in each 16 level cell, with in-
terleaving the word-level error can be over 200%, as in this
example the written word (DW ) is 63, and the read word
(DR) is 192.

3 2014/2/8



5.1 Synthesis of Optimal Word-Splitting
Motivated by the pathologically bad worst-case word error
with interleaving, the first problem addressed is synthesizing
a word-splitting that minimizes worst-case error. Under the
assumption that MLC error is no more than one-level per
cell (i.e. EC := 1), using the QBF formulation of Eq. 3,
the binary search yields an optimal assignment to S that
guarantees a word-level error magnitude of no more than
17 (i.e. ED := 17). The runtimes for each QBF call in
the binary search are shown in Table 1, and the optimal
synthesized mapping is shown in Fig. 3.

The synthesized solution splits the data word into con-
tiguous upper and lower blocks that are written to cells C1

and C0, respectively. In this solution, any single-level error
in C1 equates to a word error of 16, and any single-level
error in C0 equates to a word error of 1. This synthesized
mapping is equivalent to an approach denoted “distributed
analog” by Sarpeshkar [11] in his work on analog computa-
tion. Beyond reproducing Sarpeshkar’s result, a contribution
of this work is that it produces the result through automated
synthesis, and shows the result to be optimal for worst-case
word error by giving a formal guarantee of optimality.

c1,3 c1,2 c1,1 c1,0 c0,3 c0,2 c0,1 c0,0

d7 d6 d5 d4 d3 d2 d1 d0

Figure 3. Synthesized optimal word-splitting according to
Eq. 3.

ED solution exists runtime [seconds]
16 no 12.05
17 yes 16.81
18 yes 15.28
20 yes 11.58
24 yes 11.13
32 yes 10.94
64 yes 13.16

128 yes 10.19

Table 1. Results of QBF solving Eq. 3 at each step of the
binary search to minimize word error ED. ED is the bound
on |DW �DR| in each call to the QBF solver. Whenever a
solution exists for the checked value of ED, the solution is
an assignment to the si,j variables that defines the mappings
between data and cells. Each call to the QBF solver has 64
existentially quantified variables, 16 universally quantified
variables, 1951 total variables, and 5182 CNF clauses. The
synthesized optimal result is the word-splitting shown in
Fig. 3.

5.2 Synthesis of Optimal Word-Splitting with
Remapping

The next synthesis formulation finds that, counter-intuitively,
a smaller word-level error bound is possible by making in-
tentional errors in writing to MLCs. This result is achieved
by first synthesizing the erroneous writes at the MLC level,
and then back-propagating them to the word-level, where
they are ultimately implemented.

To allow synthesis the freedom to work around any patho-
logical corner cases, among the sixteen 4-bit levels that can
be written to C1, any two are allowed to be remapped. The
two levels that are remapped can be any of the sixteen pos-
sible levels, and the target level that each is remapped to can
also be any of the sixteen possible levels. This remapping at
the cell level is denoted MC , and MC is implemented using
16 Boolean variables m0, . . . ,m15. Each of the remapped
levels uses eight of the mi variables: four to select the level
to remap, and four to choose what level it remaps to. The mi

variables that define MC are added to the existentially quan-
tified variables in the QBF problem, so that synthesis will
assign them values that guarantee the worst-case word-level
bound ED. In the formulation of Eq. 4, the level that would
be written to C1 in absence of remapping is denoted gCW

1 ,
and the potentially erroneous level that is written after the
remapping is MC(

gCW
1 ).

9S9MC8gCW
1 8CW

0 8CR
1 8CR

0⇣⇣
|MC(

gCW
1 )� CR

1 |  EC

⌘
^
�
|CW

0 � CR
0 |  EC

�⌘

=)
⇣
|SR(

gCW
1 , CW

0 )� SR(C
R
1 , CR

0 )|  ED

⌘

(4)

SW!

MLC “C1”! MLC “C0”!

DW!

C1
W
! C0

W
!

data “D”!

c1,3!c1,2! c1,0!c1,1!

d7! d6! d4!d5! d3! d2! d0!d1!

c0,3!c0,2! c0,0!c0,1!

MC!

~!

MC(C1
W)!

~!

SW!

MLC “C1”! MLC “C0”!

DW!

C1
W
! C0

W
!

data “D”!

c1,3!c1,2! c1,0!c1,1!

d7! d6! d4!d5! d3! d2! d0!d1!

c0,3!c0,2! c0,0!c0,1!

MD!

Figure 4. Synthesized write operations with remapping. At
left is the synthesized version where the remapping is ap-
plied on the cell inputs, and at right is the final version where
remapping is applied to the data word before splitting.

Table 2 shows the QBF solver runtimes when using the
QBF formulation of Eq. 4 inside of a binary search to mini-
mize ED. The optimization loop terminates with a synthe-
sized result that guarantees a worst-case word-level error
bound of 10. The synthesized result assigns values to the

4 2014/2/8



80 existentially quantified Boolean variables comprising S
and MC . The remapping (MC) in the synthesized solution
(Eq. 5) prevents levels 1000 and 0111 from ever being writ-
ten to the cell, as they are always replaced by erroneous lev-
els 1001 and 0110, respectively. This allows an additional
error of one level (since Eq. 5 shows that gCW

1 and MC(
gCW
1 )

may differ by at most one), and ultimately allows an overall
two level error because the value read from the cell (CR

1 )
may further deviate from the written value (MC(

gCW
1 )) by

one level on account of EC := 1.
While the synthesis problem of Eq. 4 solves for S and

MC , ultimately the remapping should be applied at the word
level instead of the cell level. Given that S is known from
synthesis, MC is back-propagated to the word level using
knowledge of which bits of the data word will be mapping to
cell C1. This corresponds to transitioning from the schematic
at left in Fig. 4 to the schematic at right in Fig. 4. The map-
ping MC (Eq. 5) when applied at the word level becomes
MD (Eq. 6).

Overall, the synthesized word-splitting with remapping
is applied as follows. Given an 8-bit data word DW to be
written in two 4-bit MLCs, first apply function MD; this
introduces error if the value of DW is modified by MD. The
output of MD is written across the cells using the mapping
shown in Fig. 5. When reading the word from the cells,
the level read out of each cell can differ by one level from
the value that was written. Finally, mapping SR is applied
to reconstruct DR. The difference between DR and DW ,
including both the error due to remapping by MD and the
error due to imprecise cells, can never exceed 10. Since the
error bound using word-splitting alone was 17, the worst-
case bound is improved by the addition of intentional errors
on the written values.

Note that in this synthesis result, even if the value read
from each cell matches exactly to the value written, DR

may still not match DW due to the error introduced by the
remapping by MD during the write process. Furthermore,
note that a bit-flip in position 0 of cell C1 (i.e. c1,0 in Fig. 5)
equates to word error of 2 because it maps to d1, while a bit-
flip in position 1 of the same cell (i.e. c1,1) will cause a word
error of only 1 because it maps to the LSB d0. Since single-
level errors are more likely to flip bit 0 (i.e. c1,0) of the cell,
a better average-case word error may be obtained by having
c1,1 correspond to d1, and c1,0 correspond to d0. However, a
synthesis that is guided by worst-case has no reason to prefer
this alternative solution over the one in Fig. 5.

MC(
gCW
1 ) =

8
>><

>>:

1 0 0 1 if gCW
1 = 1000

0110 if gCW
1 = 0111

gCW
1 otherwise

(5)

MD(DW ) :=

8
><

>:

1[d6...3]0 1 0 if DW = 1[d6...3]0 0 0

0[d6...3]1 0 1 if DW = 0[d6...3]1 1 1

DW otherwise
(6)

c1,3 c1,2 c1,1 c1,0 c0,3 c0,2 c0,1 c0,0

d7 d6 d5 d4 d3 d2 d1 d0

Figure 5. Synthesized word-splitting that is optimal when
used in conjunction with the remapping MD (Eq. 6) applied
to DW .

ED solution exists runtime [seconds]
8 no 298.20
9 no 477.90

10 yes 417.94
12 yes 384.47
16 yes 315.57
32 yes 49.28
64 yes 34.49

128 yes 21.22

Table 2. Results of binary search to generate the mapping in
the case with remapping of input levels allowed. The QBF
problem at each loop iteration has 80 existentially quanti-
fied variables, 16 universally quantified variables, 2037 total
variables, and 5376 CNF clauses.

5.3 Comparison of Results
The interleaved word-splitting is compared to the two opti-
mal word-splittings synthesized using QBF solving in this
paper. The first of the synthesized results uses only word-
splitting, and the second using word-splitting and level
remapping. The synthesis technique optimizes for worst-
case word error, but it is instructive to also consider the
distribution of word errors and average word error. Note that
while the worst-case bounds are an absolute result that holds
for any probability of single-level errors, comparisons of av-
erage case depend on the probabilities of single level MLC
errors.

Fig. 6 shows the distribution of word-level error if each
cell is assumed to have a very high 50% probability of a
single-level error, and the error is equally likely to be an
increase or decrease in level. On 25% of trials, the two cells
are both error free.

• The upper bound on word error in the interleaved word
splitting is 129, by far the highest among the three re-
sults. However, the interleaved approach has the lowest
probability of a word-level error exceeding 5.

• In the synthesized word-splitting (Sec. 5.1), the worst-
case word error is 17. The word-level error contribution
of cell C1 can only be either -16,0, or 16, and the word-
level contribution of single-level errors for cell C0 is -1,0,
or 1, and therefore the only possible magnitudes of word
errors are 0,15,16, and 17.

• In the synthesized solution for word-splitting with remap-
ping (Sec. 5.1), the worst-case word error is 10. Note that

5 2014/2/8



the probability of having a word error of 0 is less than
25%, because the remapping M introduces a systematic
error even when the cells are error free.

Figure 7 shows the average word error as a function of
the probability of a single-level error in each MLC. When
the cell error probability is 0, the only approach to have non-
zero word-level error is the synthesized word-splitting with
remapping. This error is on account of the remapping, which
introduces a systematic error for the remapped levels. As the
probability of cell error increases, the synthesized result with
remapping has the best average-case error, in addition to the
best worst-case error of 10.

 0

 0.2

 0.4

 0  20  40  60  80  100  120  140

p
ro

b
ab

il
it

y

word-level error

interleaved

 0

 0.2

 0.4

 0  20  40  60  80  100  120  140

p
ro

b
ab

il
it

y

word-level error

synthesized

 0

 0.2

 0.4

 0  20  40  60  80  100  120  140

p
ro

b
ab

il
it

y

word-level error

synthesized, with remapping

Figure 6. Probability distribution of word-level error
(|DR � DW |) using the three approaches discussed in the
paper. The distribution is obtained from 500k random trials
using Verilog simulation. The results are for the the inter-
leaved word-splitting and the two synthesized word-splitting
approaches. The probability of a single-level error in each
cell is 50%, and the errors are independent for each cell. The
vertical lines are the average word-level error and the largest
error observed in the random trials.

 0

 0.25

 0.5

 0.75

 1

 1.25

 0  0.02  0.04  0.06  0.08  0.1

av
g
 w

o
rd

-l
ev

el
 e

rr
o
r

probability of cell error

interleaved
synthesized

synthesized, with remapping

Figure 7. Observed average word-level error (|DR �DW |)
as a function of the probability of a single-level error in each
MLC.

6. Future Work and Conclusions
This work proposed the use of automated synthesis tech-
niques for splitting data words across approximate MLC
storage, such that the worst-case error is minimized at
the word-level. The synthesis technique is based on QBF-
solving, and the results are validated through random simu-
lation.

While MLC errors will generally occur as transitions
between neighboring levels as assumed in this work, fu-
ture work will explore an error model that is more closely
matched to the particular errors of a specific MLC technol-
ogy. Other QBF solving techniques such as quantifier instan-
tiation can be applied. To address the limitation of having
no preference among solutions with equivalent worst-case
word-level error bounds (Sec. 5.3), the synthesis technique
can be extended to consider all solutions that guarantee the
optimal worst-case bound, and to choose among them based
on a metric such as average-case word-level error.
Acknowledgement: This work was supported in part by
C-FAR, one of six centers of STARnet, a Semiconductor
Research Corporation program sponsored by MARCO and
DARPA, and NSF CNS-0845874. Any opinions, findings,
conclusions, and recommendations expressed in these mate-
rials are those of the authors and do not necessarily reflect
the views of the sponsors

References
[1] H. Esmaeilzadeh, A. Sampson, L. Ceze, and D. Burger. Archi-

tecture support for disciplined approximate programming. In
ASPLOS XVI: Proceedings of the sixteenth international con-
ference on Architectural support for programming languages
and operating systems, Apr. 2012.

[2] A. Jiang, R. Mateescu, M. Schwartz, and J. Bruck. Rank
modulation for flash memories. Information Theory, 2008.
ISIT 2008. IEEE International Symposium on, pages 1731–
1735, 2008.

[3] T. Larrabee. Test pattern generation using Boolean satisfia-
bility. IEEE Transactions on Computer-Aided Design of Inte-
grated Circuits and Systems, 11(1):4–15, 1992.

[4] S. Liu, K. Pattabiraman, T. Moscibroda, and B. G. Zorn.
Flikker: saving DRAM refresh-power through critical data
partitioning. In ASPLOS XVI: Proceedings of the sixteenth in-
ternational conference on Architectural support for program-
ming languages and operating systems, June 2012.

[5] F. Lonsing and A. Biere. DepQBF: A Dependency-Aware
QBF Solver. JSAT, 7(2-3):71–76, 2010.

[6] F. Lonsing, U. Egly, and A. Van Gelder. Efficient Clause
Learning for Quantified Boolean Formulas via QBF Pseudo
Unit Propagation. In SAT 2013, pages 100–115, 2013.

[7] A. Niemetz, M. Preiner, F. Lonsing, M. Seidl, and A. Biere.
Resolution-Based Certificate Extraction for QBF - (Tool Pre-
sentation). In SAT, pages 430–435, 2012.

[8] M. Salajegheh, Y. Wang, A. A. Jiang, E. Learned-Miller, and
K. Fu. Half-Wits: Software Techniques for Low-Voltage Prob-
abilistic Storage on Microcontrollers with NOR Flash Mem-
ory. ACM Transactions on Embedded Computing Systems, 12
(2s), May 2013.

[9] A. Sampson, W. Dietl, E. Fortuna, D. Gnanapragasam,
L. Ceze, and D. Grossman. EnerJ: approximate data types
for safe and general low-power computation. In PLDI ’11:
Proceedings of the 32nd ACM SIGPLAN conference on Pro-
gramming language design and implementation, June 2011.

[10] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. Approximate
Storage in Solid-State Memories. IEEE Micro, 2013.

6 2014/2/8



[11] R. Sarpeshkar. Analog Versus Digital: Extrapolating from
Electronics to Neurobiology. Neural Computation, 10(7):
1601–1638, Oct. 1998.

[12] C. Trinh, N. Shibata, T. Nakano, M. Ogawa, J. Sato,
Y. Takeyama, K. Isobe, B. Le, F. Moogat, N. Mokhlesi,
K. Kozakai, P. Hong et al. A 5.6MB/s 64Gb 4b/Cell NAND
Flash memory in 43nm CMOS. In Solid-State Circuits Con-
ference - Digest of Technical Papers, 2009. ISSCC 2009. IEEE
International, pages 246–247, 2009.

A. QBF Formulation
Fig. 8 shows the runtime for solving the word-splitting syn-
thesis problem as in Sec. 5.1, except using linear search in-
stead of binary search. The formulation using Eq. 3 is the
same experiment as Table 1, except with different values of
ED. The two formulations of the problem are equivalent,
and both formulations produce the same optimal result and
the same optimal bound of ED := 17. Future work will in-
vestigate why the formulation of Eq. 3 is solved considerably
faster than that of Eq. 2 for bounds less than 17 (i.e. where
the problem is unsatisfiable.)

 0
 50

 100
 150
 200
 250
 300
 350
 400

 10  15  20  25  30

Q
B

F
 r

u
n
ti

m
e 

[s
]

ED: word-level error bound

Formulated as Eq. 2
Formulated as Eq. 3

Figure 8. Runtime of QBF solver when checking various
bounds using two equivalent formulations of the same QBF
problem (Eq. 2 and Eq. 3). The optimal synthesis result
in both cases has a worst-case bound of ED = 17. All
synthesis attempts where ED is less than 17 fail, and in
these cases, the encoding of Eq. 3 is significantly faster. All
synthesis attempts when ED is greater than or equal to 17 are
successful, and in these cases, the choice of encoding has a
smaller impact on runtime.

7 2014/2/8


