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Abstract—Medical devices used for critical care are becoming
increasingly reliant on software; however, little is understood
about the security vulnerabilities facing medical devices and
their software. To investigate this open question, we analyze the
security of software that controls a modern Automated External
Defibrillator (AED) used for treating cardiac arrhythmias. This
report represents the first public embedded software security
analysis of a medical device. We identify several software security
vulnerabilities and discuss key insights and open challenges in
improving software-controlled medical devices to be resistant to
malware. We found the AED would accept counterfeit firmware
updates. We did not locate any standard cryptographic controls.
We conclude with recommendations and open challenges in
securing medical devices.1

I. INTRODUCTION

Life-critical medical devices increasingly contain significant
embedded software responsible for safe and effective patient
care. Devices range from life-sustaining implantable pacemak-
ers to life-supporting devices such as drug infusion pumps,
insulin pumps, and cardiac defibrillator monitors. Little is
known about the state of affairs of the security of embedded
medical device software itself. Recent research analyzes the
wireless security of a medical device, but not the embedded
software itself [16]. Thus, our present work assesses how soft-
ware/firmware updates [5] and software security vulnerabilities
are likely to impact the safety and effectiveness of computer-
controlled medical devices. Furthermore, medical devices have
the unique property that they must do everything they can to
fail open in order to ensure that a life-critical device continues
to operate even in the wake of an adverse event. Studying
the susceptibility of medical devices to malware now is im-
portant because (1) software in medical devices is becoming
increasingly complex; (2) more and more medical devices are
becoming networked with wireless Internet connectivity; (3)
more medical devices are evolving from electro-mechanical to
software-controlled devices; and (4) analyzing security after a
potential risk becomes a tangible threat would be too late for
effective deployment of defensive technology.

Over the last three decades in the U.S. marketplace, software
has played an increasing role both in the function of medical
devices and as a cause for medical device recalls [12]. In the
early 1980s, approximately 6% of recalls were due to computer
software issues [20]. The U.S. Food and Drug Administration
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reports that software played a causal role in approximately 18%
of the recalls for “510k-approved” devices between 2005 and
2009 [10, p.80]. Software is currently the third leading cause
of recalls—just behind design flaws (23%) and manufacturing
flaws (37%), but ahead of labeling flaws (12%). We analyzed
records in the FDA database of Medical & Radiation Emitting
Device Recalls—finding that between 2002–2010, there were
537 recalls of software-based medical devices affecting as many
as 1,527,311 individual devices in the U.S. marketplace.2

Furthermore, today, many medical devices benefit from a
safety blanket of physical isolation. A medical device isolated
from other computing devices is less exposed to malware.
However, a growing number of medical devices relying on
wireless communication and Internet connectivity are exposed
to a much larger surface of potential threats. Therefore, the best
way to control the spread of medical malware is to focus on
reducing the susceptibility of medical devices by strengthening
software defense against malicious intent.

In order to assess the state of current security threats, we
perform the first public software security analysis of a medical
device, namely, an automatic external defibrillator. AEDs are
responsible for evaluating a patient’s heart rhythm, and if
required, provide a shock to attempt to restore the patient’s
heart rhythm to normal. We analyzed the Cardiac Science G3
Plus AED model 9390A, an automatic external defibrillator
manufactured since 2005, and the Windows-based utilities for
updating the AED and configuring the device.

We demonstrate a set of vulnerabilities that makes the device
potentially susceptible to malware. The discovered vulnerabil-
ities include a buffer overflow, which leads to arbitrary code
execution, cryptographic flaws in password protection, and a
software update mechanism that accepts counterfeit firmware.
These issues highlight the impending threat of malware, and in
that light, we discuss a hypothetical construction of a worm.

We use these vulnerabilities to motivate the need for im-
proved, effective defenses against malware, as well as to
highlight open challenges in applying computer security prin-
ciples to medical devices. Our assessment demonstrates real
vulnerabilities in medical devices and their software and gives
a first glimpse into the viability of malware that can be expected
in software-based medical devices.

2Some devices are affected by multiple recalls. An individual device is
counted once for each recall.



II. AUTOMATED EXTERNAL DEFIBRILLATOR (AED)
OVERVIEW

In this section, we introduce automated external defibrillators
and discuss why they represent a quintessential software-based
medical device to investigate security. The term defibrillator
refers to a broad class of devices that use large electrical
shocks to treat cardiac arrhythmias that might otherwise lead
to a fatal outcome. Defibrillators are divided into two types:
implantable or external. While both types of defibrillators treat
cardiac arrhythmias, the devices are radically different in design
and purpose. One could draw the following analogy: implanted
defibrillators are to mobile phones as external defibrillators are
to public phone call boxes. The former are prescribed and tuned
to a particular person whereas the latter are available for general
use when you can find one. There are two further classifications
of external defibrillators: manual or automated. Trained health
care professionals may use manual external defibrillators to
treat a wide range of arrhythmias. Our work analyzes the
second class: automated external defibrillators (AEDs) that a
person with limited medical training may use to treat a more
limited (but common) number of cardiac arrhythmias such as
ventricular fibrillation.

AEDs are significantly different from implantable cardiac de-
fibrillators, both physically in terms of their hardware, software
and connectivity, and in terms of risk. An AED is typically
attached to the chest of the individual using two pads, and it
delivers an electric shock to reestablish a normal heart rhythm.
The conditions that can be treated through defibrillation, for
example cardiac arrhythmias of ventricular fibrillation and ven-
tricular tachycardia, generally require prompt attention in order
to prevent severe brain damage or death. Studies have shown
that the chances of survival improve if an individual receives
defibrillation within 3-5 minutes of collapse [1]. For this reason,
AEDs are widely available in airports, community centers,
schools, government buildings, and other public locations. As
of 2009, an estimated 1.5 million AEDs are in circulation
worldwide [13], and industry expects an annual growth in sales
of 9-12% [11], [8]. In 2005, over 192,400 AED units were sold
in the U.S. marketplace; this represents approximately a ten-
fold increase in AED sales from 1996–2005 [18].

The FDA has received more than 28,000 adverse event
reports for external defibrillators between January 2005 and
May 2010, including malfunctions, patient injuries, and deaths.
As a result, the FDA has issued 68 recalls, 17 alone in 2009.
In 2010, the FDA reported that 280,000 external defibrillators
across 14 different models were susceptible to malfunction [9].
16.2% of AED advisories were confirmed as resulting from
software-related issues, with 6 advisories affecting 12,311 in-
dividual devices [18]. Only one category had a higher incidence
(electrical issues at 21.6% of the causes of a recall) [18].
Given the importance of these devices in saving lives, the FDA
began an initiative to promote the development of safer external
defibrillators in 2010 [2].

In this paper, we study one particular model of AED, the
Cardiac Science G3 Plus with model number 9390A-501. We
decided to examine an Automated External Defibrillator (AED)
because of its reliance on software updates to address an FDA
recall. Depending on how the device is configured, the shock

Fig. 1. The Cardiac Science G3 Plus exploited to install our custom
firmware. The AED displays DEVICE COMPROMISED.

administered can be 150-300 Joules, which can be administered
multiple times on one battery before the device requires a
recharge. The G3 Plus is pictured in Figure 1.

III. CASE STUDY

In this section, we analyze the Cardiac Science G3 Plus
Automated External Defibrillator. In order to analyze the de-
vice, we used IDA Pro 5.6—an inexpensive, commercially
available software package—to statically reverse engineer the
device’s update and diagnostic software, communication pro-
tocol, and firmware [3]. Our analysis was conducted using
COTS hardware and software, and took upwards of 100 hours.
During our analysis, we discovered that 4 vulnerabilities were
readily prevalent from reversing the device and its software.
We verify our analysis and show the gravity of software
exploits on medical devices by executing concrete attacks and
demonstrating their potential impact. Both the FDA and the
manufacturer of the studied device were notified of our findings.
One thing to note is that we explicitly chose not to provide a
detailed set of steps for reproducing the attack; instead, we
provide the minimal evidence for a security expert to verify
our results.

A. Analyzing the G3 Plus

Performing a security analysis of the G3 Plus necessitated
reverse engineering device operation and controlling software
because it is a closed-platform device, with proprietary hard-
ware, firmware and software.

We discovered that the AED’s CPU implements a 16-bit x86
ISA by examining the internals of the AED with CPU processor
manuals. From this, we applied static reverse engineering
techniques to the firmware.

The device comes with three software packages: MDLink,
RescueLink and AEDUpdate, responsible for programming
device parameters (like shock value), collecting post-cardiac
arrest reports, and updating the AED, respectively. We focus
our analysis on the device firmware (252 KB), AEDUpdate
(8 MB), and MDLink (680 KB) because of their potential
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impact on correct device operation; they are responsible for
communicating with the host computer, updating firmware,
and programming device parameters.

B. Vulnerabilities in the Cardiac Science G3 AED

Below we detail the key findings of our investigation into
the security of the AED and its software. First, we discuss
the bugs and vulnerabilities we found in the MDLink and
AEDUpdate software. Following that, we discuss how we can
arbitrarily change the G3 Plus’s firmware.

Vulnerability 1: AEDUpdate integer/buffer overflow. Initially,
AEDUpdate sends a packet over the COM port to the AED and
then receives a response. In order to verify the vulnerability,
we spoofed packets coming from the COM port such that we
were able to control the data that AEDUpdate received from
the device; we thereby triggered the vulnerability and achieved
arbitrary code execution.

The AEDUpdate program counts the number of ‘0’-
characters in the response and then performs a memcpy based
on the number of zeros found. Specifically, the program expects
to find no more than 8 zeros, so it uses the expression
8-num_zeros to calculate the size of the buffer to copy.
However, if there are more than 8 zeros, the size parameter
underflows and results in attempting to copy around 4.3 billion
bytes of data into a 16-byte buffer, causing the program to throw
an exception. In order to exploit this vulnerability, we need to
overwrite the most recently registered exception handler with
our own and cause this exception to occur before the corrupted
return address is checked, which allows us to redirect program
flow into arbitrary code.

Fig. 2. AEDUpdate buffer overflow. Executed code includes a message box
showing the potential flow of the vulnerability from the AED (if the firmware
were replaced) to the software.

In Windows XP SP2, nearly every module linked into a
binary uses Safe Structured Exception Handling (SSEH). This
means that the exception handler must be registered with the
operating system, and if during execution it is discovered that
it is not registered, the process is terminated by the OS [4].
oledlg.dll was the only DLL imported into the binary
that did not employ SSEH. Using this, we overwrote the
exception handler on the stack with a subverted one, forcing

the program to execute our payload when an exception was
thrown3. Figure 2 shows AEDUpdate being exploited.

Automatic Vulnerability Discovery. Although the AEDUpdate
integer/buffer overflow vulnerability was initially found through
manual analysis, we later verified that, given appropriate
program entry points obtained through reverse engineering,
it could also be automatically found within minutes using
our vulnerability discovery tool called BitFuzz [7], [19], [6].
BitFuzz applies dynamic symbolic execution [7], [14] to
generate test inputs that explore different paths in the program,
including paths that contain a crash. When a crash is found,
the tool provides a crash report that consists of a crashing
execution trace and a crashing input. We run BitFuzz in
Linux on a 3.0Ghz Dual Core Intel CPU with 4GB of RAM.
After running for 16 minutes and 18 seconds, it successfully
generates a crash report that confirms the existence of the
integer/buffer overflow vulnerability in AEDUpdate.

Vulnerability 2: Weak password authentication scheme. The
MDLink software has individual user profiles protected by a
password. However, the password file is stored on the local
hard drive, and anyone with privileges can simply delete it in
order to circumvent the protection mechanisms or circumvent
it completely by installing the software fresh on a machine
that does not have access restrictions. Furthermore, after we
reverse engineered the MDLink authentication mechanism, we
discovered that the password was obfuscated using a simple
XOR scheme. From there, we extracted the scheme and wrote
a small utility to arbitrarily change or recover a user’s password.

Vulnerability 3: Credentials stored in plaintext. While
examining AEDUpdate, we came across functionality that
seemed to upload a file to a remote FTP server. Upon further
investigation, we found that the AEDUpdate stores the address
of the FTP server, username, and password in plain text
within the update software. When warranted, due either to
a failed upgrade or to some other diagnostic problem, the
diagnostic file is sent to Cardiac Science. This private user
information is collected when a firmware upgrade is started by
AEDUpdate and includes contact information, serial number,
and the firmware version—all potentially available to anyone
who accesses the login credentials.

Vulnerability 4: Improper use of weak CRC as digital sig-
nature. We discovered that the software begins the update
process by sending a cyclic redundancy check (CRC) value of
the new firmware. Once transferred, the device calculates the
CRC of the received firmware and allows the current firmware
to be replaced only if the values match. In order to install
custom firmware, we populated its CRC verification table with
new values calculated over the entirety of our custom image.
To obtain the precise integrity check employed by the AED,
we extracted the code responsible for CRC calculation and
verification from AEDUpdate, which we used to generate a
new CRC to convince the AED that our image was legitimate.

This vulnerability allows malicious modifications that could
lead to device failure, patient harm, and financial burden. These
attacks include: (1) disabling or falsifying integrity checking so

3For instance, by corrupting a pointer on the stack.
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that when a component fails, the device will pass verification;
(2) setting arbitrary shock protocols and shock strength; (3)
failing to administer shocks despite the device’s appearance of
normal operation; (4) bricking the device; (5) destroying the
AED’s integrity and audit trail; (6) resource exhaustion and
DoS by exhausting the device’s battery; and (7) executing a
conditional payload, depending on the date or time.

C. Impact

Besides the direct security implications of the vulner-
abilities discovered, perhaps less obviously, the resulting
vulnerabilities—namely Vulnerability 1 and Vulnerability 4—
can be combined to create a hybrid piece of malware capable
of infecting both AEDs and PCs. Consider the scenario where
an attacker replaces the firmware of an AED with custom
malware designed to exploit the AEDUpdate buffer overflow.
This would allow the AED to execute arbitrary code. An
attacker could create a worm that infects the host computer and
subsequently other AEDs connected to the host. This type of
attack could have the purpose of damaging other equipment
within an organization or obtaining private data stored in
systems other than the affected medical devices. Risks like
these punctuate the necessity of designing medical devices
with security and privacy in mind from the early stages of
requirements specification and throughout the entire software
development lifecycle.

IV. IMPROVING SOFTWARE-BASED MEDICAL DEVICE
SECURITY

In order to improve the security of medical devices, we
discuss four key principles which, based on our experiences,
mitigate the attacks outlined in this paper against the G3 Plus.
Most importantly, we discuss future areas of exploration—
including defenses—and stress that solutions must work effec-
tively in the context of patient care.

A. Cryptographically secure device updates are needed to
ensure firmware integrity

An end-to-end secure device update prevents attackers from
replacing medical device firmware. Recall that the G3 Plus’
update mechanism relies on a cyclic redundancy check to detect
errors in the transmission of data to the device but lacks a
mechanism to guarantee firmware authenticity. We propose that
in light of this, devices like the AED with on-device firmware
should be designed only to accept signed firmware.

However, the solution to this is not obvious. In addition
to having strict power constraints, a complete solution to the
problem of providing secure software updates for embedded
devices has not yet been found. Cryptographic approaches
would create administrative challenges of key management. At-
tempts have been made to extend a Trusted Computing Platform
for software-supported and hardware-supported updates [17].
However, solutions for applying updates to software on medical
devices remain poorly understood.

B. Device telemetry verified for integrity and authenticity

Software or devices that rely on medical device telemetry
should treat input data as adversarial and should design the
device’s software to handle a wide range of malformed or

malicious inputs. As we saw with the G3 Plus, the update
software did not correctly handle the case where a packet
was malformed. Accurate modeling of device protocols and
testing are the obvious choices to ensure correct operation.
Furthermore, greater assurance of correct device operation is
attainable by implicitly not trusting telemetry and program-
matically employing rigorous sanity checks on inter-device
communication. Good programming practices coupled with
rigorous static and dynamic analysis checking for security
vulnerabilities mitigates many threats, and in the case of the
G3 Plus, could have prevented the overflow that led to arbitrary
code execution.

C. Passwords should be cryptographically secure and easily
managed

The two password mechanisms we found in the program
relied on obscuring the location or text of the password,
which made them easily recoverable. In medical devices, where
passwords potentially provide access to private data or life-
critical functionality, they must be securely protected. However,
traditional protection mechanisms are muddied by the added
complexity of managing passwords in an environment where
many people may need to access the same device or software
functionality. Furthermore, password revocation and access
control add to the intricacy of a secure design.

D. Defenses and updates must be weighed with their risk to
the patient

Mechanisms that ensure and maintain device integrity must
be weighed with their potential risk to the patient. With respect
to updates: What is the purpose of the update? How might it
change device operation? Is the update crucial to patient safety?
In the case of defending against modification, if a device’s
firmware has been modified, it may be necessary to identify
with certainty the severity of the potential integrity flaw. In
other words, the process of verifying that a device has not been
tampered with should not make it easier for a malicious party
to launch a denial of service attack on a device with critical
functionality.

Most notably, we point out the general principle that medical
devices, in most cases, need to fail open. This is particularly
true when emergency access to medical devices is needed.
For instance, if a patient with an implantable defibrillator
collapses, the treating doctor would need to query the device
for information in order to treat the patient. Simply denying
access to the doctor is unacceptable, as it puts security ahead
of accessibility, which is in direct contention with the usability
of the device [15].

This presents a major design challenge for device developers
because they are faced with the difficult problem of providing
security while judiciously restricting accessibility.

E. Recommendations

Despite the risks outlined in this paper, at this current
time, we recommend continued use of AEDs because of their
potential to perform lifesaving functions, rather than to disable
them for a currently unmeasured attack potential. This does not
undermine the severity of the attacks discussed, but serves to
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underscore the potential severity as opposed to the the current
threat level.

Ensure the update machine is secure.
The computer used for updating and configuring
AEDs should be a machine devoted to this purpose
and not used for general purpose tasks, such as read-
ing email, printing prescriptions, or obtaining general
information from the Internet. For example, when
updating a device is necessary, each software update
could be started from a fresh virtual machine that is
destroyed after each update. In the same way a syringe
is freshly unwrapped for each patient and discarded
afterwards, the mechanism used to update an AED
would not be shared between devices.

Follow FDA guilelines and advisories.
FDA protocol for updating and interacting with the
device should be followed. Of note, the FDA begun
an external defibrillator improvement initiative which
seeks to improve the design and testing of AEDs to
offer enhanced ways to notify consumers and react
appropriately depending on the severity of the threat.

Remain vigilant.
Owners and maintainers of AEDs must remain vigi-
lant in ensuring that AEDs are safe including: mon-
itoring physical access to the device, routinely up-
dating afflicted devices, and monitoring advisories
released about the device. This provides a proactive
approach to deterring malicious activity, and constant
attention to adverse event reports allows the maintain-
ers to react appropriately and promptly to an advisory.

V. CONCLUSION

Software security remains an afterthought for medical device
design. Our case study of a popular Automated External
Defibrillator (AED) identified security flaws in both the em-
bedded software and the COTS software update mechanism.
Although our research pertains to a single manufacturer, other
devices from different manufacturers may also be susceptible
to the same risks. For that reason, manufacturers of medical
devices containing software should have plans for assessing
specific security risks, detecting security compromises, and
recovering from computer security incidents—especially if the
manufacturer plans to use wireless communication or Internet
connectivity that would increase the device exposure to the risks
of malicious software.
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