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ABSTRACT

A strong method to authenticate information in spite of
small changes is described, analyzed, and implemented.

PROBLEM DESCRIPTION

In many communications protocols, authenticating the
source and integrity of information is equally as impor-
tant as preserving confidentiality. Even when confiden-
tiality is the primary security concern, an analysis of
data encryption protocols reveals that blindly accepting
encrypted data as legitimate may endanger confidenti-
ality [Bel96]. Message authentication codes (MACs) are
a widely used method for Alice and Bob, who share a
secret key, to ensure each other that their messages are
authentic and unmodified [Sim91]. The creator of a
MAC takes a message and key as inputs and computes a
checksum in a way that is hard, given some set of
messages and their MACs but not the key, to forge a
MAC for a new message or to discover the key. The
usual tools for constructing MACs are cryptographic
hash functions [PGV93, Pie93, FIPS95] and block
ciphers [FIPS93, FIPS80, and FIPS85]. However, all
of these are deliberately constructed to be as unforgiving
as possible. A change of a single bit of the message is
designed to affect the calculation of all of the checksum
bits and to change each one in roughly half of the cases.

In some applications (e.g., electronic payments) Alice
and Bob’s security requirement is to reject any message
that has been altered to the slightest extent. In other
applications (e.g., voice or imagery), incidental noise or
the effects of lossy downstream compression are at least
somewhat acceptable, so long as Alice and Bob can
identify and reject all-out forgeries, substantial modifi-
cations of content, “cut-and-paste” attacks, etc. In
certain applications, in particular the one that motivated
this work [Arc97], the “acceptable modification” to the
message may include the insertion of hidden data: e.g.,
digital watermarks or fingerprints to signify ownership
or to mark a particular copy (see [ABGM99]). Three
traditional approaches to this problem come to mind:
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1. Use error correcting codes to restore the exact mes-
sage. While often practical in the case of channel
noise, this approach expands the data stream and
runs counter to the purpose of lossy compression.
It is for the most part independent of the goals of
information hiding schemes, although some infor-
mation hiding schemes use error correcting codes to
increase robustness within the hidden data.

2. Pre-compute the expected modifications of the
lossy compression scheme and compute a MAC
based on the result of this expected operation. This
may be practical in the cases of downstream com-
pression, but it cannot anticipate unpredictable
channel noise and can only handle hidden data that
are already known at the time the message authenti-
cator is created.

3. Compute a MAC on the statistics of the message
that must be preserved (e.g., the high contrast edges
in an image). The difficulty with this approach is
capturing the essential properties and recording the
correct granularity in the statistics, because these
properties may vary from message to message.

A fourth approach is taken here. A new cryptographic
primitive called an Approximate MAC (AMAC) is intro-
duced. It is a probabilistic cryptographic checksum,
based on a shared key, with the following properties:

1. The messages close to a given message (measured
by Hamming distance) may all have the same
AMAC (for example, if the messages differ in less
than one bit out of every ten thousand).

2. A slightly larger difference between two messages
tends to result in a small difference (i.e., small
Hamming distance) between their AMACs (for
example, if one bit out of every several thousand is
changed, on the average).

3. The actual bit positions in which these small dif-
ferences occur may or may not provide some infor-
mation about the differences between the two mes-
sages. (E.g., some bit positions within a pixel or
some coefficients in a transform domain may be
more significant.) Thus, conveying information in
the AMAC about the underlying data structures may
be desirable in some applications.

4. Any change in the key has the same type of effect
on AMACsS as on ordinary MACs: each bit changes
in approximately half the cases. The same is true



for any change in the probabilistic “coin tosses”
used to create a given AMAC.

AMACs do not directly address whether, for example,
one source image was obtained from another by crop-
ping, stretching, rotating, and so forth. There is no
attempt made at pattern matching, so, for example,
dropping bits through loss of synchronization, moving
the top row of pixels in an image to the bottom, or de-
leting a column of pixels results in something entirely
new, not in something “approximately the same.” The
security goals for AMACs address only authentication
and approximate bit-by-bit data integrity. They aim
simply (1) to alert one to the occurrence of small chan-
ges possibly resulting from unpredictable noise, inser-
tion of watermarks or fingerprints, or lossy compres-
sion followed by decompression, and (2) to make all-out
forgery and significant undetected tampering difficult.
Digital watermarks or fingerprints themselves may, in
turn, be required to be robust in the face of various at-
tempts to remove, to disguise, or to alter them, but that
is a separate question (sce [ABGM99]).

1t is unclear how to build an AMAC from traditional
cryptographic primitives like hash functions and block
ciphers, so an alternative was sought. Anderson and
Manifavas [AM97] solved the following problem,
which helped inspire the construction of this AMAC:

A movie will be broadcast in encrypted form to pre-
vent theft of the broadcast signal, but each paying
customer will be given a different decryption key,
which will result in small differences in the decrypted
data from customer to customer, so the broadcaster
can identify particular decrypted copies.

AN EXAMPLE

Suppose that Alice’s message, M, is a gray-scale image
consisting of 1024 x 1024 eight-bit pixels, which
amount to 2* bits (one megabyte) altogether, and Alice
will generate a 128-bit AMAC. Consider her message to
be a table, M, of 2' rows of 128-bit words, M[0]
through MI2" - 1], where the 2'° pixels (2" bits) in the
i row of the image occupy rows 64i through 64i+63
of M. Suppose that Alice and Bob have:

® A shared key, e.g., computed by using Diffie-
Hellman key exchange [DvOW92]. The length of
the shared key is variable, but should be sufficient
to prevent forgeries by trying all keys. In most of
the anticipated applications, Alice and Bob will
authenticate each other, generate a shared key, use it
immediately, and discard it, so attacks against a
given key are only possible “on line.”

® A cryptographically strong pseudo-random number

generator. In practice, this primitive can be the key
stream generator for a stream cipher (e.g., RC4
[Sch96] or VRA [ARV99]). This PRNG will be

called upon to produce about as many bits as the
total sizes of the messages authenticated.

® A family of pseudo-random permutations. A block
cipher like DES [FIPS93] or IDEA [Lai92] can be
used. The present example uses 12 round, 16 bit
RCS5 [Riv95]. One such unpredictable permutation
is selected and used to construct each AMAC.

For a given key, K, and message, M, Alice can produce
a family of AMACs parameterized by an initialization
vector (IV), I, which does not need to be secret. Each I
defines different neighborhoods, that is, a different
partition of messages into ones with the same AMAC.

The following specifies an algorithm for the construc-
tion of an AMAC A for a one-megabyte image M:

1.  Alice and Bob agree on a shared key K. Then
Alice performs steps 2 .. 15.

2. ChooseanlV, L
Seed the PRNG with K and I.

4. Use the PRNG to select a pseudo-random
permutation P on 16 bit numbers. (For
example choose a 96-bit key for 12-round, 16-
bit RC5, which is then used to encrypt the
entire range of values O .. o 1Y

5. For j = 0 through 255, repeat steps 6 .. 10.
6. Fori =0..255, repeat step 7.

7.  Fill the array S with 256 128-bit words from
M: Set S[i] = M[P(256j + D)].

8.  Set S[256] = 0.

9.  Exclusive OR all 257 rows of S with pseudo-
random bits from the PRNG.

10. For k =0 .. 127, set the kth bit of T[] to the
MAJORITY of the kth column of bits of S.

11. Set 71256] = 0.

12. Exclusive OR all 257 rows of T with pseudo-
random bits from the PRNG.

13. For k=0 .. 127, set the kth bit of A to the
MAJORITY of the kth column of bits of 7.

14. Send ] and A to Bob over a reliable channel,
e.g., using an error correcting code or an out-of-
band channel.

15. Send M to Bob over the “noisy channel.”

The idea behind the construction is as follows: permute
the 2'° rows of M, and then regard the permuted M as
2k “pages” of 2® rows each. Then “encrypt” the permu-
ted M by exclusive ORing M with random bits. Now
cach permuted, encrypted page of M consists of 256
rows and 128 columns. For each of these 256 pages,



add a 257" row of bits from the PRNG to make the
number of rows odd, and then build a new row by
calculating the MAJORITY of each column. Make a new
page called T out of these 256 MAJORITY rows, add a
row of pseudo-random bits to give T an odd number of
rows, and compute the MAJORITY of each column of T.
These 128 bits, together with 7, are the AMAC. Note:

® Bob receives a modified version of M, say M,
performs the same calculations as Alice (steps 3
through 13), and gets A*. If (A @ A™) has
sufficiently low Hamming weight, he accepts M.

® If correlation of positions within a row is not
desired, add step 7a after step 7:

7a. Obtain a seven bit number 4 from the PRNG and
shift S circularly # bits to the left.

ANALYSIS

We assume that Alice and Bob compute A and A™ as
above on slightly different versions of a 1 megabyte @*
bit) file, and we calculate how much their AMACs will
differ. If between 10™* and 107 of the bits delivered to
Bob from Alice are chanz%ed, he will see about 2'° to 2"
differences among the 2 bits sent by Alice. These are
distributed across 128 columns in the 256 pages (Bob’s

S-arrays) and may or may not affect the MAJORITY.

We estimated the expected Hamming weight of A ® A*

for 210, 2“, 2’2, and 2" bit changes as follows:

1. Compute the distribution function for the number
of differences d per column across all 2" 2= 2P
columns in the 256 pages of S-arrays' with a
hyper-geometric distribution [Fel68] (Table 1).

2. Compute the distribution of the Hamming weights
w of the columns of S (or T), which are balanced,
independent, identically distributed bits (Table 2).2

3. Using (2), compute the probability that 4 differ-
ences in a given column will change the
MAJORITY function (Table 3).

4. Using (1) and (3), compute the expected number of
differences between the two T-arrays (Table 4).

5. Apply Bose-Einstein statistics to estimate the dis-
tribution of these differences across the columns of
the T-array (Table 5) and repeat step (3) (Table 6).

! This calculation was repeated by considering the differ-
ences to fall into a hypergeometric distribution across the
256 pages and then approximating the distribution of these
differences with Maxwell-Boltzmann and Bose-Einstein
statistics [Fel68]. The results are slightly smaller this
way, due to the “sampling with replacement” effect. For
distance 4096, the expected value was 4.79 versus 4.82; for
8192, 6.75 versus 7.07.

2 The MAJORITY of balanced i.i.d. bits is balanced i.i.d.

In summary, if M and M* have Hamming distance
1024, A @ A" has an expected Hamming weight of
1.88 bits; distance 2048 produces an expected weight of
3.11 bits; 4096 yields an expected 4.82 bits; an §192
bit difference results in an expected 7.07 bit weight.

Hamming Distance between 1 Megabyte Files

d 1024 2048 4096 8192

0 0.969231 0.939406 0.882470 0.778706

1 0.030292 0.058727 0.110363 0.194867

2 0.000472 0.001828 0.006874 0.024287

3 0.000005 0.000038 0.000284 0.002010

4 ) 0.000001 0.000009 0.000124

5 0.000006

Table 1: Fraction of columns with d differences.

257 257% 257 257
w 257 +2 w 257 +2
—w w = w
129 128 0.049626 140 117 0.017813
130 127 0.048863 141 116 0.014718
131 126 0.047371 142 115 0.012074
132 125 0.045217 143 114 0.009710
133 124 0.042498 144 113 0.007687

134 123 0.039326 145 112 0.005991

135 122 0.035830 146 111 0.004596

136 121 0.032142 147 110 0.003470

137 120 0.028388 148 109 0.002579
138 119 0.024685 149 108 0.001888
139 118 0.021134 150 107 0.001358

Table 2: Probability of Hamming weight w or
257 - w for 257 Bernoulli trials, p = 0.5.

d p d p

1 0.0498191 11 0.1381793
2 0.0500127 12 0.1386563
3 0.0751117 13 0.1503662
4 0.0753957 14 0.1508134
5 0.0943590 15 0.1618091
6 0.0947080 16 0.1623409
7 0.1106218 17 0.1726495
8 0.1110220 18 0.1732027
9 0.1250401 19 0.1829885
10 0.1254821 20 0.1835597

Table 3: Probability p of a d-bit
difference changing the MAJORITY
of 257 balanced i.i.d. bits.



Original Hamming Distance Original Hamming Distance/Expected T-Array Distance
d 1024 2048 4096 8192 d 1024/50 2048/99 4096/192 8192/363
1 0.19316 0.37449 0.70378 1.24264 1 1.299851 1.576717 1.532826 1.226906
2 0.00302 0.01170 0.04401 0.15547 2 0.365365 0.692480 0.927134 0.913641
3 0.00005 0.00037 0.00273 0.01933 3 0.151375 0.452387 0.837231 1.017161
4 0.00001 0.00009 0.00120 4 0.041281 0.196367 0.504238 0.756302
5 0.00007 5 0.013817 0.105642 0.377833 0.700623
S-Total 0.19623 0.38657 0.75059 1.41870 6 0.003649 0.045305 0.226569 0.520146
T-Total 50.236 98.962 192.151 363.188 7 0.001103 0.022472 0.157766 0.449056
Table 4: Expected number of differences 4 in 5 0.000282 0.009518 0.094187 0.332868
the S- and T-arrays (256 x S). 9 0.000079 0.004495 0.062964 0.276691
10 0.000020 0.001880 0.037421 0.204781
Original Hamming Distance/Expected Hamming Distance 11 0.000005 0.000857 0.024350 0.166184
between Alice and Bob’s T-Arrays
12 .000354 . 0.122801
d 1024/50 2048/99 4096/192 8192/363 2 S-0ldnle
13 0.009190 0.097994
0 0.717514 0.561947 0.398119 0.259184
14 0.005409 0.072269
1 0.203839 0.247257 0.240374 0.192400
15 0.003398 0.056970
2 0.057075 0.108175 0.144831 0.142723
16 0.001992 0.041964
3 0.015745 0.047054 0.087082 0.105797
17 0.032740
4 0.004277 0.020348 0.052249 0.078368
18 0.024077
5 0.001144 0.008747 0.031283 0.005801
19 0.018632
6 0.000301 0.003737 0.018690 0.042907
20 0.013680
7 0.000078 0.001587 0.011142 0.031714
. .1084 ; 07444
8 0.000020 | 0.000670 |  0.006629 |  0.023424 Joal L8707 e T N 000
. . *
9 0.000005 0.000281 0.003934 0.017288 Table 6: Expected Hamming Weight of A o A",
10 0.000001 0.000117 0.002330 0.012750 Because the likelihood of seeing a Hamming distance of
: 24
11 0.000048 0.001377 0.009396 10 or smaller by chance is less than 107", one may say
18 650805 RS, 6 /GDE5TS w1t}} some cpnfldence that AMACs that differ in at most
5 bits are likely to have resulted from data that are
LE grovay | 800900 99.9% identical, and that AMACs that differ in at most
14 0.000280 0.003744 10 bits are likely to have resulted from data that are
15 0.000164 0.002751 99% identical. More precise statements of this sort
would be desirable, so more work will be directed
16 0.000096 0.002019 : e s gl :
toward computing or estimating the variances as well as
X7 0.001:482 expected values for these distributions.
18 0.001086
IMPLEMENTATION AND SIMULATION
19 0.000795
20 0.000582 The algorithm described above was implemented in C

Table 5: Probability of d differences in a
column between Alice and Bob’s T-arrays.

Continuing as before, we multiply each element in
Table 5 by the probability that the given number of bit
differences in a column will change the MAJORITY
(Table 3) and multiply each entry by the number of
columns, 128. The sum in Table 6 is the number we
are seeking: the expected number of bits in which Alice
and Bob’s AMACs will differ, given the number of bits
in the message that differ between them.

and tested on a Sun SPARCStation. We used a one
megabyte Portable Graymap image file to test the effect
of changing M on the T-array and AMAC. A was
generated, a fixed number of bits in the image M were
changed, then A* was regenerated with the same K and
I, and the two were compared. This was repeated 1000
times each for 1024, 2048, 4096, and 8192 bit changes.
The results are shown in Table 7. Note that just
slightly fewer bit changes in T° were observed than
predicted in Section 3. However, somewhat more
changes in A" were observed than predicted. (When the
calculation was repeated with the rotations in step 7a,



the results were similar.) Determining why we saw the
larger differences in A* will require further investigation.

Hamming Distance between M and M*

1024 2048 4096 8192
rer" 48.56 96.09 185.19 351.23
Ao 2.829 4.647 6.998 9.708

Table 7: Mean Observed Hamming Weights of
ToT and A ®A” (1000 Trials).

No attempt has been made to optimize the imple-
mentation. More efficient data structures may be found,
the calculation of the S-arrays can be done in parallel,
and much of the cryptography can be pre-computed.

ADJUSTING PARAMETERS

If A is not sensitive enough to changes in M, two solu-
tions are (1) to increment I, repeat, and construct the
AMAC from multiple values of A, or (2) to replace each
bit of A with bits containing more information about
the Hamming weight of the & column of T.

For a general system, it is inconvenient to assume that
the input has a fixed size or can be padded to a full
megabyte. If the input is shorter than 1 megabyte, it
could be padded with zeros; if it is longer, multiple 128
bit A values could be computed. Perhaps a better solu-
tion is to divide the length of the input by the length of
A, round this up to the next odd perfect square to get the
number of rows of M (the square root becomes the
number of rows of S and T), pad M with zeros, and
proceed as before. Clearly practical lower and upper
bounds on the lengths of the input and of A exist.

DIRECTIONS AND OPEN QUESTIONS

Several extensions and open problems are:

« Alternative constructions, e.g., using other Boolean
functions instead of MAJORITY.

» Performance measurements and improvements.

+ Variations that pinpoint which locations in the input
contain changes.

» Appropriate definitions of security for AMACs and
provable security results.

» A similar technique in the public key instead of
shared key model.
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