Key Regression: Enabling Efficient Key Distribution for Seare Distributed
Storage

Kevin Fu Seny Kamara Tadayoshi Kohno
U. Mass. Amherst Johns Hopkins University U.C. San Diego

Abstract mediately re-encrypt all pre-existing content since the
evicted member could have already cached that content.
The Plutus file system introduced the notion of key The content publisher can use the CDN to distribute
rotation as a means to derive a sequence of temporally-the encrypted content, but without the aid of a trusted
related keys from the most recent key. In this paper server, the content publisher must distribute all the cryp-
we show that, despite natural intuition to the contrary, tographic keys to members directly. To prevent the pub-
key rotation schemes cannot generically be used to keylisher’s connection from becoming a bottleneck, the Plu-
other cryptographic objects; in fact, keying an encryp- tus file system [32] introduced a new cryptographic ob-
tion scheme with the output of a key rotation scheme canject called akey rotation schemePlutus uses the sym-
yield a composite system that is insecure. To addressmetric key K; to encrypt content during theth time
these shortcomings, we introduce a new cryptographic period, e.g., before theth eviction. If a user becomes
object called a key regression scheme, and we proposea member during theth time period, then Plutus gives
three constructions that are provably secure under stan- that member theé-th key K;. From [32], the critical
dard cryptographic assumptions. We implement key re- properties of a key rotation scheme are that given the
gression in a secure file system and empirically show i-th key Kj it is (1) easy to compute the keys; for
that key regression can significantly reduce the band- all previous time periodg < i, but (2) computation-
width requirements of a content publisher under real- ally infeasible to compute the keys; for future time
istic workloads using lazy revocation. Our experiments periods! > i. Property (1) enables the content pub-
also serve as the first empirical evaluation of either a lisher to transfer only a single small ké§; to new mem-
key rotation or key regression scheme. bers wishing to access all current and past content, rather
than the potentially large set of key&;, Ko, ..., K;};
this property reduces the bandwidth requirements on the
content publisher. Property (2) is intended to prevent a
member evicted during theth time period from access-
ing (learning the contents of) content encrypted during
thel-th time period] > i.

Keywords. Key regression, key rotation, lazy revoca-
tion, key distribution, content distribution network, has
chain, security proofs.

1 Introduction
Content distribution networks (CDNs) such as Aka- 1.1 Overview of contributions
mai [3], BitTorrent [14], and Coral [20] enableon-
tent publishersvith low-bandwidth connections to make
single-writer, many-reader content available at high
throughput. When a CDN is untrusted and the content
publisher cannot rely on the network to enforce proper
access control, the content publisher can achieve acces
control by encrypting the content and distributing the
cryptographic keys to legitimate users [22, 25, 30, 32,
39, 42]. Under thdazy revocationmodel for access
control [22, 32], following theevictionof a user from
the set of members, the content publisher will encrypt Negative results on key rotation.We begin by present-
future content with a new cryptographic key and will, ing a design flaw with the definition of key rotation: for
upon request, distribute that new key to all remaining any realistic key rotation scheme, even though a mem-
and future members. The content publisher does notim-ber evicted during the-th time periodcannot predict

In this work we uncover a design flaw with the def-
inition of a key rotation scheme. To address the defi-
ciencies with key rotation, we introduce a new cryp-
tographic object called &ey regression schemeWe
Qresent RSA-based, SHA1-based, and AES-based key
regression schemes. We implement and analyze the per-
formance of key regression in the context of a secure file
system. The following paragraphs summarize our con-
tributions in more detail.

wind wind wind
stpg - stp4 P stp, P stps
unwind unwind
stm, e stm, | simg
* keyder * keyder * keyder
Ky Ko Ks

Figure 1. Key regression overview; stp, and stm; respectively represent the i-th publisher and
member states.

(except with negligible probability) subsequent kéys rectly, the content publisher would give the member a
[> i, the evicted memberan distinguishsubsequent = member statetm,. From the member state, the member
keys K; from random. The lack of pseudorandomness could derive the encryption kel; for thei-th time pe-
follows from the fact that if an evicted member is given riod, as well as all previous member states;, j < i.

the real keyK, then by definition (i.e., by property (1)) By transitivity, a member given theth member state
the evicted member can recover the real K€y but could also derive all previous keys,;. By separating
given a random key instead &f;, the evicted member the member states from the keys, we can build key re-
will with high probability recover a keyx # K. The gression schemes where the kéys [> i, are pseu-
difference between unpredictability and lack of pseudo- dorandom to evicted members possessing onlyi-te
randomness can have severe consequences in practiceaember statetm;. Intuitively, the trick that we use in
To illustrate the seriousness of this design flaw, we de- our constructions to make the keks pseudorandom is
scribe a key rotation scheme and a symmetric encryp-to ensure that given botR; andstm,, it is still compu-
tion scheme that individually meet their desired security tationally infeasible for the evicted member to compute
properties (property (2) for key rotation and IND-CPA the(-th member statetm;. Viewed another way, there
privacy for symmetric encryption [7]), but when com- is no path fromkK; to stm, in Figure 1 and vice-versa.
bined (e.g., when a content publisher uses the keys from
the key rotation scheme to key the symmetric encryp-
tion scheme) result in a system that fails to provide even
a weak form of privacy.

Our constructions. We refer to our three preferred
key regression schemes &R-RSA, KR-SHA1, and
KR-AES. Rather than rely solely on potentially error-
prone heuristic methods for analyzing the security of our
Fixing key rotation with key regression. While the constructions, we prove under reasonable assumptions
above counter example does not imply that all systemsthat all three are secure key regression schemes. Our
employing key rotation will fail just as drastically, it security proofs use the reduction-based provable secu-
does motivate finding a key rotation-like object that still rity approach pioneered by Goldwasser and Micali [27]
achieves property (1) (or something similar) but (prop- and lifted to the concrete setting by Bellare, Kilian, and
erty 2')) produces future keys that are pseudorandom to Rogaway [8]. ForKR-RSA, our proof is based on the
evicted members (as opposed to just unpredictable). As-assumption that RSA is one-way. For the proof of both
suming the new object achieves pseudorandomness, on&R-RSA andKR-SHA1, we assume that SHA1 is a ran-
could use it as a black box to key other cryptographic dom oracle [9]. For the proof dkR-AES, we assume
constructs without worrying about the resulting system that AES is a secure pseudorandom permutation [8, 35].

failing as drastically as the one described abov&e | jementation and evaluation. We integrated key re-
regression scherie such a key rotation-like object. gression into a secure file system to measure the per-
To describe key regression, we must enact a paradigmformance characteristics of key regression in a real ap-
shift: rather than give a new member thth key K di- pjication. Our measurements show that key regression
1we stress that the novelty here is in identifying the desigw fl ean Slgmflcanﬂy redl-me the ban-dWIdth requirements of
with key rotation, notin presenting a specific counter examimdeed, a pUb“Sher dlstrlbutmg decryptlon keys to members.

the counter example follows naturally from our observatiuat a key On a Si_mUIated Qab_le modem, a publisher U_Sing key
rotation scheme does not produce pseudorandom keys. regression can distribute 1000 keys to 181 clients/sec

whereas without key regression the cable modem limits 1.2 Related work

the publisher to 20 clients/sec. The significant gain in

throughput conservation comes at no observable costto The key rotation scheme in Plutus [32] inspired our

client latency, even though key regression requires moreresearch in key regression. Bellare and Yee [10] in-

client-side computation. Our measurements show thattroduce the notion of a forward-secure pseudorandom

key regression actually reduces client latency in casesbit generator (FSPRG). One can roughly view forward-

of highly dynamic group membership. Our study rep- secure pseudorandom bit generation as the mirror im-

resents the first empirical measurements of either a keyage of key regression. Whereas a key regression scheme

regression or key rotation scheme. is designed to prevent an evicted member in possession
Contrary to conventional wisdom, on our testbed we Of stm; from distinguishingsubsequengncryption keys

find thatKR-AES can perform more than four times as Ki, [> 4, from random, a FSPRG is designed to pre-

many unwinds/sec thaliR-SHA1. Our measurements Vent an adversary who learns the state of the FSPRG

can assist developers in selecting the most appropriateat some point in time from distinguishirgyeviousout-

key regression scheme for particular applications. puts of the FSPRG from random. In our security proof
for KR-AES, we make the relationship between key re-

Applications. Key regression benefits publishers of g assion and FSPRGs concrete by first proving that one
popular content who have limited bandwidth to their .4 puild a secure key regression scheme from any se-
trusted servers, or who may not always be online, but ;e FSPRG by essentially running the FSPRG back-
who can use an untrusted CDN to distribute encrypted yards. Abdalla and Bellare formally analyze methods

content at high throughpgt. Our experimental results for rekeying symmetric encryption schemes [1], and one
show that a publisher using key regression on a low- ¢ iheir constructions is a FSPRG.

bandwidth connection can serve more clients than the As pointed out by Boneh et al. [13], one possible

strawman approach of having the publisher distribute all e chanism for distributing updated content encryption
keys{ K1, Ks,. .., K;} directly to members. Moreover, eys for a secure file system is to use a broadcast en-
our experimental results suggest that key regression Canryption scheme [17, 18, 19, 40]. Indeed, one of the
be significantly better than the strawman approach whenyain challenges faced by an encrypted file system is the
i is large, as might be the case if the publisher has a yistripution of the encryption keys to the remaining (not
high membership turnover rate. Such a publisher might \jcted) set of users, and broadcast encryption provides
be an individual, a startup, or a cooperative with popu- o jgeal solution. We note, however, that key distribu-
lar content but with few network resources. The possi- tjo is orthogonal to the specific problem addressed by
bilities for such content range from blogs and amateur key regression: a key regression scheme is agesy
press to operating systems and various forms of multi- o ation algorithm as opposed to a keljstribution al-
media. To elaborate on one such form of content, Operat'gorithm. Key regression simply assumes the existence

ing systems, Mandriva Linux currently uses the BitTor- of 4 secure distribution channel, of which broadcast en-
rent CDN to distribute its latest Linux distributions to its cryption is one possible instantiation. Self-healing key

Mandriva Club members [37]. Mandriva controls access gigiripution with revocation [48] protocols are resilient

to these distributions by only releasing theor r ent even when broadcasts are lost on the network. One can

files to its members. Using key regression and encryp-yjey key regression as having the self-healing property
tion for access control, Mandriva could exercise finer- in perpetuity.

grained access control over its distributions, allowing |, concurrentwork, and also motivated by the key ro-
members through time periado access all versions of i5ti0n scheme in Plutus [32], Backes, Cachin, and Oprea
the operating _sysFem including patche;, MiNor revisions formalize the notion okey-updating for lazy revoca-
and new applications added through time perip8ut tjon scheme$6] and consider the composition of key-
no f';lddz|t|ons to the operating system after tHé time nqating for lazy revocation schemes with other cryp-
period: tographic objects [5]. The notion of a key-updating for
Versions. This is an extended abstract. The full version lazy revocation scheme in [6] is essentially identical to
of this paper appears on the IACR ePrint Archive [24]. Our notion of a key regression scheme. Using our par-

Part of this work also appears as Chapter 4 of [22]. lance, in [6] they also propose several ways of building
key regression schemes; one of their proposals is identi-
2While Mandriva may wish to exercise access control over non- cal to ourkR-PRG .ConStrUCt'on (Cons_tructlon 7-3)* and
security-critical patches and upgrades, Mandriva woldelyi wish to another proposal is a natural extension of our construc-
allow all Mandriva users, including evicted Mandriva Clutembers, tion KR-RSA-RO (Construction 10.1). Although we re-
access to all secur|ty-cr|_t|cal _p_atches. To ena_ble suoﬁsacd&/lanc_irlva mark on the existence of a tree-based key regression
could encrypt all security-critical patches with the key fhe time . . .
period to which the patch is first applicable, or Mandrivaldaimply scheme in Section 5, [6] take the idea of a tree-based

not encrypt security-critical patches. key regression scheme further by formally defining and

proving the security of a slightly different tree-based the desired security property of a key rotation scheme is
construction. In [6] the authors also observe that one that, given onlyK; andpk, it should be computation-
can use the keys output by a key regression schemaally infeasible for an evicted member (the adversary) to
as the randomness source for teup algorithm of a computek;, for anyl > i. The Plutus construction in
(possibly different) key regression scheme; this observa-Figure 2 has this property under the RSA one-wayness
tion enables the composition of multiple key regression assumption (defined in Section 10), and the construction

schemes. in Figure 3 has this property if one replaces SHA1 with
a random oracle [9].
2 Notation The problem. In Section 1 we observed that théh key

output by a key rotation scheme cannot be pseudoran-

If 2 andy are strings, thefz| denotes the length of dom, i.e., will be d_istinguisha_ble from a random string,
2 in bits andz ||y denotes their concatenation.dfand 0 @n ex-member in possession of the Keyfor some
y are two variables, we use« y to denote the assign- Previous time perlod_ < 1.2 We _con3|der the following
ment of the value of to z. If Y is a set, we denote the examplg to_empha5|ze how_thls lack of pseudorandom-
selection of a random elementihand its assignmentto N€SS Mightimpact the security of a real system that com-
rasz < Y. If fis a deterministic (resp., randomized) bines a key rotation scheme and a symmetric encryption

function, thenr — f(y) (resp.,x & f(y)) denotes the scheme as a black box.

f . inout q ‘anina th it For our example, we first present a key rotation
process of running on inputy and assigning the resuit ¢ .pemeco and an encryption schen# that individu-
to 2. We use the special symbalto denote an error.

. ally satisfy their respective security goals (unpredittab
We use AE‘%(.M) to o_lenote the process of running ity for the key rotation scheme and IND-CPA privacy [7]
the AES block cipher with key< on input blockM. 5y symmetric encryption scheme). To bulld, we
We use SHALM) to .denote_the process of running start with a secure key rotation scheii®; KO out-
the SHAL hash function on 'r.]le' An R.SA [43] puts keys twice as long d@§0. The KO winding algo-
key generator _for some security param_e?tels aran- rithm wndkey invokesCO’s winding algorithm to obtain
domized algorithmC,s, that returns a triplg NV, e, d). akeyK; wndkey then returns< || K as its key. On input
Since our analyses are in the concrete setting, we Writea keyK,HK, unwndkey invokeskO's unwinding algo-
(N, e,d) ‘i_ Kisa rather than(\, e, d) < Kisa(k). The yithm with input & to obtain a keyk”: unwndkey then
modulusN is the product of two distinct odd primesg returnsk’|| K’ as its key. If the keys output byndkey

such thaR"~! < V< 2¥; the encryption exponeate are unpredictable to evicted members, then so must be
Z,y and the decryption exponedte Z¢,) are such he keys output bywndkey. To buildSE, we start with a
thated = 1 mod p(N), wherep(N) = (p—1)(¢—1). secure symmetric encryption sche\&; SE uses keys
Section 10 describes what it means for an RSA key gen-that are twice as long aS€. The SE encryption and
erator to be one-way. decryption algorithms take the key, split it into two

halvesK = L;|| L2, and run the respective algorithms
3 Problems with key rotation of S&€ with key L1® L. Ifthe key K is random, then the

key L@ Lo is random andS€ runs theSE encryption
algorithm with a uniformly selected random key. This
means thalS¢ satisfies the standard IND-CPA security
goal if S€ does.

Despite the individual security of bofiO andS¢€,
when the keys output bitO are used to ke &, SE
will always runS€& with the all-zero key; i.e., the con-
tent publisher will encrypt all content under the same
constant key. An adversary can thus trivially compro-
mise the privacy of all encrypted data, including data

A key rotation scheme [32] consists of three al-
gorithms: setup, wndkey, and unwndkey. Figure 2
shows the original (RSA-based) Plutus key rotation
scheme [32]. Following Plutus, and as Naor, Shen-
hav, and Wool also observe [41], one familiar with hash
chains [34] and S/KEY [29] might design the key rota-
tion scheme in Figure 3. Such a scheme is more effi-
cient than the scheme in Figure 2, but is limited because
it can only produc®MW (“max wind”) keys, wheréViW
is a parameter chosen by the implementor or at con- *Technically, there may be pathological examples wherel-the
figuration time. A content publisher runs teetup al- key is pseudorandom to a member given #k key, but these exam-

. L . . ples seem to have other problems of their own. For examptesider
QO”th”_‘ tQ |n|t|aI|;e a key rotation scheme; the result a key rotation scheme like the one in Figure 3, but where StAg-i
is public informationpk for all users and a secrek; placed with a function mapping all inputs to some constaimgC,
for the content publisher. The content publisher in- €.9. the all 0 key. Now s¢f!W = 2, i = 1, andl = 2. In this patho-

) :) logical examplek; is clearly random to the evicted member, meaning
VOkESNndkey(skz) to obtain the ke)Kz anda new secret (better than) pseudorandom. But this construction stdady lacks

SkiJrl- Any user in posseSSion (ﬁ’i* i > 1, andpk can our desired pseudorandomness property since thelidkeys always
invoke unwndkey(K;, pk) to obtainK;_;. Informally, the constant string’.

Alg. set -
g. setup Alg. wndkey(sk = (K, N, d)) Alg. unwndkey (K, pk = (N, ¢))

(N,e,d) & Krsa; K & 7% K’ «+ K%mod N RetUMICe mod N
pk — (N,e); sk — (K,N,d) | sk’ — (K',N,d) mo
Return(pk, sk) Return(K, sk’)

Figure 2. The Plutus key rotation scheme; KsaiS an RSA key generator.

Alg. setup
Kuw <& {0,1}169; pk « ¢ | Alg. wndkey(sk = (i, K1,..., Kmw)) | Alg. unwndkey(K, pk)
Fori = MW downto2 do If ¢ > MW return(_L, sk) Il ignorepk
K; 1 «— SHALK;) sk’ — (i+1,Kq,..., Kuw) K' «— SHAL(K)
sk« (1,K1,..., Kmw) Return(K;,sk’) ReturnK’
Return(pk, sk)

Figure 3. A hash chain-based key rotation scheme.

encrypted during time periods> i after being evicted. rows in Figure 1 suggest, givetm;, a member can effi-
Although the construction o0 and S€ may seem ciently compute all previous member states and the keys
somewhat contrived (though we hope less contrived than K, ..., K;. Although it would be possible for an ex-
some other possible counter examples), this examplemember to distinguish future member states;, [> i,
shows that combining a key rotation scheme and anfrom random (the ex-member would extend our obser-
encryption scheme may have undesirable consequencegation on the lack of pseudorandomness in key rotation
and, therefore, that it is not wise to use (even a secure)schemes), because there is no efficient path between the
key rotation scheme as a black box to directly key other future keysK; and the ex-member’s last member state

cryptographic objects. stm,, it is possible for a key regression scheme to pro-
duce future keyss; that are pseudorandom (indistin-
4 Key Regression guishable from random). We present some such con-

structions in Section 5.

The negative result in Section 3 motivates our quest
to find a new cryptographic object, similar to key rota-
tion, but for which the keys generated at time periods
! > i are pseudorandom to any adversary evicted at
timei. Here we formalize such an object: a key regres-
sion scheme. Following the reduction-based practice-

oriented provable security approach [8, 27], our for- oracle and if the key rotation scheme produces unpre-

malisms ir_lvolve carefully defiping the syntax, correct_— dictable future keyd;, then it might seem reasonable
ness requirements, and security goal of a key regression .ooclude that an ex-member givéh should not be

i((:)heme. 'tl'r?etse form?llsmds enalile uf 10, In Sections 8=, 0 14 distinguish future values SHAR;), I > i, from
q » prove ?)I ourpre e:_re c?/rc/s ;UC.IOI’]S are ;Fcure ur‘t'random. While this reasoning may be sound for some

erreasonable assumptions. We desire provable secur %pecific key rotation schemes (this reasoning actually
over solelyad hocanalyses since, unded hocmeth-

. serves as the basis for our derivative of the construc-
ods alone, one can never_be _completely conv_lnced thattion in Figure 2,KR-RSA in Construction 5.3) we dis-
a cryptographic constru_cnon is secure even if one 3% Jike this approach for several reasons. First, we believe
sumes that the u.nderlymg components (e.g., block ci- that it is unreasonable to assume that every engineer will
phers, hash functions, RSA) are secure. know to or remember to use the hash function. Further,
Overview of key regression Figure 1 gives an abstract even if the engineer knew to hash the keys, the engineer
overview of a key regression scheme. The content pub-might not realize that simply computing SHAR ;) may
lisher has content publisher statgp, from which it not work with all key rotation schemes, which means
derives future publisher and member states. When us-that the engineer cannot use a key rotation scheme as a
ing a key regression scheme, instead of giving a newblack box. For example, while SHAK;) would work
member thei-th key K;, the content publisher would for the scheme in Figure 2, it would cause problems for

give the member théth member statetm,;. As the ar- the scheme in Figure 3. We choose to consider a new

On an alternative: Use key rotation carefully.
Figure 1 might suggest an alternative approach for fix-
ing the problems with key rotation. Instead of using
the keysK; from a key rotation scheme to directly key
other cryptographic objects, use a functionkf, like
SHAL(K;), instead. If one models SHA1 as a random

cryptographic object, key regression, because we desirdion may use multiple random oracles, but since one
a cryptographic object that is not as prone to acciden-can always obtain multiple random oracles from a sin-
tal misuse. Additionally, by focusing attention on a new gle random oracle [9], our definitions assume just one.
cryptographic object, we allow ourselves greater flexi- It is straightforward to modify our syntax, correctness
bility in how we construct objects that meet our require- requirements, and (subsequent) security definition to ac-
ments. For example, one of our preferred constructionscommodate key regression schemes for which the ran-

(KR-AES, Construction 5.2) does not use a hash func-

tion and is therefore secure in the standard model in-

stead of the random oracle model; see #d$FSPRG
(Construction 6.1) anKR-PRG (Construction 7.3).

4.1 Syntax and correctness requirements

Syntax. Here we formally define the syntax of a key re-
gression schemER = (setup, wind, unwind, keyder).
Let H be a random oracle; for notational consistency,

all four algorithms are given access to the random ora-
cle, though the algorithms for some constructions may

dom oracle depends on the outputsefup. We stress
thatMW is a correctness parameter/ofk, not a secu-

rity parameter, meaning that even though the correctness
criteria must hold foMW invocations ofwind, the se-
curity goal may not. One can also further generalize our
definition and allowunwind andkeyder to be random-
ized, though we do not envision such constructions in
practice.

4.2 Security goal

For security, we desire that if a member (adversary)

not use the random oracle in their computations. Via is evicted during the-th time period, then the adversary

stp < setup’, the randomized setup algorithm returns
a publisher state. Vidstp’,stm) < wind® (stp), the

randomized winding algorithm takes a publisher state
stp and returns a pair of publisher and member states

or the error codé L, 1). Via stm’ — unwind (stm)

the deterministic unwinding algorithm takes a member
statestm and returns a member state or the error chde
Via K — keyder® (stm) the deterministic key deriva-
tion algorithm takes a member staten and returns a
key K € DK, whereDK is thederived key spactor
KR. LetMW € {1,2,...} U{co} denote the maximum
number of derived keys th&tR is designed to produce.
We do not define the behavior of the algorithms when
input the error codd..

Correctness.Our first correctness criterion for a key re-
gression scheme is that the firdWV times thatwind is

will not be able to distinguish the keys derived from any
subsequent member staten;, [> ¢, from randomly se-
lected keys. Definition 4.1 captures this goal as follows.
We allow the adversary to obtain as many member states
as it wishes (via &VindO oracle). TheNindO oracle re-
turns only a member state rather than both a member and
publisher state. Once the adversary is evicted, its goal is
to break the pseudorandomness of subsequently derived
keys. To model this, we allow the adversary to query a
key derivation oraclé&eyderQO. The key derivation ora-

cle will either return real derived keys (via internal calls
to wind and keyder) or random keys. The adversary’s
goal is to guess whether tieyderO oracle’s responses
are real derived keys or random keys.

Definition 4.1 [Security for key regression schemes.]
Let R = (setup,wind, unwind, keyder) be a key re-

invoked, it always outputs valid member states, i.e., the gression scheme. Le#l be an adversary. Consider

outputs are nevet.. Our second correctness require-
ment ensures that #tm; is thei-th member state out-
put by wind, and if; > 1, then fromstm;, one can
derive all previous member statesn;, 0 < j < 4.

Formally, letstp, < setup and, fori 1,2,...,
let (stp,,stm;) < wind”(stp, ;). For eachi €
{1,2,...,MW}, we require thastm; # L and that,
fori > 2, unwindH(stmi) =stm;_1.

Remarks. Although we allowwind to be randomized,
the wind algorithms in all of our constructions are de-
terministic. We allowwind to return(L, 1) since we
only require thatvind return non-error states for its first
MW invocations. We use the pa(rL, 1), rather than
simply L, to denote an error frowind since doing so
makes our pseudocode cleaner. We allowwind to
return | since the behavior ofinwind may be unde-
fined when input the first member state. A construc-

the experimentExpy 4, b € {0,1}, and the oracles

WindO andKeyderO, below. The adversary runs in two
stagesmember andnon-member, and returns a bit.

Experiment Expiy 4

Pick random oracléf
i—0; stp < setup?
st & AWINdO.H (member)
by & AKeyderOu.H (non-member, st)
Returnd’

Oracle WindO
i— i+ 1; If i > MW then returnlL
(stp,stm) < wind® (stp)
Returnstm

Oracle KeyderO,

i— i+ 1; If i > MW then returnL
(stp, stm) < wind® (stp)

If b =1thenK «— keyderH(stm) KR-RSA. Table 1 summarizes some of their main prop-

If b = 0thenk < DK erties. KR-SHAL1 is a derivative of the key rotation
Returnk scheme in Figure 3 andR-RSA is a derivative of the
Plutus key rotation scheme in Figure 2. The primary
TheKR-advantagef A in breaking the security d€R differences between the new key regression schemes
is defined as KR-SHA1 and KR-RSA and the original key rotation
kr schemes are the addition of the new, SHA1-baegder
AdVICR,A

algorithms and the adjusting of terminology (e.g., mem-

= P[E k-1 :1}—P [E =1]. : e : ;
r | Expir 4 I'| BXPKR.A keys in the original key rotation scheme$jR-AES is
tnew but is based on one of Bellare and Yee’s forward-

Under the concrete security approach [8], we say tha -
secure pseudorandom bit generators (FSPRGs) [10].

KR is KR-securdf for any adversaryA attackingiCR
with resources (running time, size of code, humber of
oracle queries) limited to “practical” amounts, the KR- 5.1 TheKR-SHA1 construction
advantage ofd is “small.” 1

Construction 5.1 details owtR-SHA1 construction.
Remarks. Since the publisher is in charge of winding In the construction oKR-SHA1, we prepend the string
and is not supposed to invoke the winding algorithm 02 to the input to SHA1 inkeyder to ensure that the
more than the prescribed maximum number of times, inputs to SHAL never collide between theyder and
MW, the WindO andKeyderO oracles in our security unwind algorithms; note that thetm variable always
definition only respond to the fir8iW queries fromthe denotes a 160-bit string.
adversary. Alternatively, we could remove the condi-

tional check for: > MW in the pseudocode faindO Construction 5.1 [KR-SHA1.] The key regression
and KeyderO and instead ask that the underlyiwind schemeKR-SHAL = (setup, wind, unwind, keyder) is

algorithm behave appropriately if invoked more than gefined as followsMW is a positive integer and a pa-
MW times, e.g., by maintaining the counter internally. 5meter of the construction.

Since a key regression scheme will have multiple recip-
ients of member keys, we must consider coalitions of a|g. setup

adversaries; i.e., can two or more adversaries collude to sty < {0, 1160
obtain additional information? Because of the property Fori — MW éiownto2 do
that given any member state one can derive all previ-
ous member states, multiple colluding adversaries can-
not obtain more information than a single adversary who
makes the mostVindO andKeyderO oracle queries. In
addition to desiring that future derived keys be pseu-
dorandom to evicted members, we desire that all the

stm;_1 < unwind(stm;)
stp «— (1,stmy,...,stmuw)
Returnstp
Alg. wind(stp)
If stp = L thenreturn(L, 1)

. . Parsestp as(i,stmy,...,stm
derived keys be pseudorandom to adversaries that are a4 (i, stmy, .. stmww)
.) If i« > MW return(.L, 1)
never members. If a key regression scheme is secure un- ; .
stp’ — (i 4+ 1,stmy,...,stmpw)

der Definition 4.1, then the key regression scheme also
satisfies this weaker security goal since one can view
adversaries that are never members as adversaries that
make zerd/NindO oracle queries. Unlike with key rota-

tion schemes (Section 3), the pseudorandomness of fu-
ture keys means that a content publisher can use the
keys output by a secure key regression scheme to keyrhe derived key space for the sche&-SHAL is
other cryptographic objects like symmetric encryption py _ {0,11160,]

schemes [7] and MACs [8]; as [1, 10] do for rekeying
schemes and FSPRGs, [5] makes this reasoning forma
for key regression schemes.

Return(stp’, stm;)
Alg. unwind(stm)

stm’ — SHA1(stm) ; Returnstm’
Alg. keyder(stm)

K « SHA1(08|stm) ; ReturnkK

'In practice we assume that tM8V might be some rea-

sonable value lik@2°. We give a proof of security for

] KR-SHA1 in Section 9. In our proof of security we

5 Our preferred constructions view the application of SHA®) in unwind as one ran-
dom oracle and the application of SHAE ||-) in keyder

We are now in a position to describe our three pre- as another random oracle. The proof of security for

ferred key regression schem&R-SHAL, KR-AES and KR-SHAL is thus in the random oracle model [9].

kr-0 ber states in these key regression schemes correspond to

KR-SHA1 KR-AES KR-RSA
MW = oo No No Yes
Random oracles Yes No Yes
setup cost MW SHA1 ops| MW AES ops| 1 RSA key generation
wind cost no crypto no crypto 1 RSA decryption
unwind cost 1 SHAl op 1 AES op 1 RSA encryption
keyder cost 1 SHAl op 1 AES op 1 SHAl op

Table 1. Our preferred constructions. There are ways of impl ementing these constructions with
different wind costs. The “random oracles” line refers to whether our secur ity proof is in the
random oracle model or not.

5.2 TheKR-AES construction scheme that we calR-PRG. KR-AES is then an instan-
tiation of KR-PRG with a PRG that, on input a 128-bit
Our next preferred constructiofR-AES, uses the stringstm, outputs AES, (0'2%)||AES;:m (1'2%). Since
AES block cipher and is provably secure in the standard the construction&KR-FSPRG and KR-PRG have mul-
model, meaning without random oracles but assumingtiple possible instantiations, we consider them to be of

that AES is a secure pseudorandom permutation [8, 35].independent interest. Details in Sections 6 through 8.

Remark. On can also viewKR-SHA1 as an instan-
tiation of KR-PRG with a PRG (in the random ora-
cle model) that, on input a stringgm € {0,1}6°,
outputs SHAIstm)||SHAL(08|stm). In Section 9 we
prove KR-SHA1 directly, rather than by instantiating
KR-PRG, in order to obtain tighter bounds.

Construction 5.2 [KR-AES.] The key regression
schemeKR-AES = (setup, wind, unwind, keyder) is de-
fined as follows.MW is a positive integer and a param-
eter of the construction.

Alg. setup
stmmw & {0, 1}128
Fori = MW downto2 do
stm;_1 < unwind(stm;)
stp «— (1,stmy,...,stmmw)
Returnstp
Alg. wind(stp)
If stp = L thenreturn(L, L)
Parsestp as (i, stmy, ..., stmuw)
If ¢ > MW return(.L, 1)
stp’ « (i + 1,stmy,...,stmuw)
Return(stp’, stm;)
Alg. unwind(stm)
stm’ «— AES;m(01?%) ; Returnstm’
Alg. keyder(stm)
K « AES;n(1'%8); ReturnK

5.3 TheKR-RSA construction

Our final preferred constructiorkKR-RSA derives
from the key rotation scheme in Figure RR-RSA dif-
fers from KR-SHA1 and KR-AES in that MW = oo,
meaning that a content provider can invoke iti¢: RSA
winding algorithm an unbounded number of times with-
out violating the correctness properties of key regres-
sion schemes. This ability is particularly useful be-
cause it means that an implementor need notiiw/
to some finite value at implementation or configuration
time. Nevertheless, our security proofin Section 10 sug-
gest that in practice a content publisher should limit the
number of times it invokesvind to some reasonable
value. As another motivation fdfR-RSA, we note that
if MW is large, then maintaining the publisher states
for KR-SHA1 and KR-AES may require a non-trivial
As with KR-SHA1, we assume that thelW might be amount of space (if the publisher stores the entire vector
some reasonable value lik#°. We prove the secu- stp) or time (if the publisher re-derivesp during every
rity of KR-AES in stages. We first show how to build a wind operation).
secure key regression scheme from any forward-secure
pseudorandom bit generator (FSPRG) [10]; we call our Construction 5.3 [KR-RSA.]

The derived key space for the scheKR-AES is DK =
{0,111, 1

The key regression

constructiorKR-FSPRG. We then recall one of Bellare
and Yee's [10] method$6PRG-PRG) for building se-

scheméR-RSA = (setup, wind, unwind, keyder) is de-
fined as follows. Lef s be an RSA key generator for

cure FSPRGs from standard pseudorandom bit generasome security parametérand letm: Z,x — {0,1}*

tors (PRGS) [10, 11, 51]. InstantiatitdR-FSPRG with

denote the standard big-endian encoding of the integers

FSPRG-PRG yields a secure PRG-based key regression in Z,: to k-bit strings.

Alg. setup
(N,e,d) & Krsa; S <& Z% ; stp «— (N, e,d, S)
Returnstp

Alg. wind(stp)
Parsestp as(N, e, d, S) ; §' « S? mod N
stp’ « (N,e,d,S") ; stm — (N,e, S)
Return(stp’, stm)

SHAL, particularly because the content publisher is the
entity responsible for determining the inputs to SHA1
and, under our model, the content publisher would not
wish to intentionally compromise the pseudorandom-
ness of its keys. Alternatively, one could replace the use
of SHAL in our constructions with another hash func-
tion, perhaps a hash function that behaves like a random

oracle assuming that the underlying compression func-
tion is a random oracle [15].

Alg. unwind(stm)
Parsestm as(V, e, S)
S’ «— S¢mod N ; stm’ « (N,e, S")
Returnstm’

Alg. keyder(stm)
Parsestm as(N, e, S) ; K «— SHAL(m(S))
ReturnkK

The derived key space f¢¢R-RSA is DK = {0, 1}160.
In our experiments, we sét = 1024, and s, returns
e = 3 as the RSA public exponend

6 Key regression from FSPRGs

Toward proving the security oKR-AES, we first
show how to construct a key regression scheme
from a forward-secure pseudorandom bit generator
(FSPRG) [10]. We call our constructidiR-FSPRG;

. o , see Construction 6.1. Since there are multiple pos-
The proof of security foKR-RSA is in Section 10. The gipa ways to instantiat&R-FSPRG, we believe that

proofis in the random oracle model and assumes that theKR-FSPRG may be of independent interest. Moreover
RSA key generator is one-way; we define one-wayness, . regit in this section suggests that future work in

in Section 10. forward-secure pseudorandom bit generators could have

. . useful applications to key regression schemes.
5.4 Discussion PP y reg

Alternate constructions. BesidesKR-SHA1L, KR-AES, 6.1 Forward-secure pseudorandomgenerators

and KR-RSA, there are numerous possible ways to

build key regression schemes, some of which are sim- BeJlare and Yee [10] define stateful pseudorandom
ple variants of the more general constructions that we hjt generators and describe what it means for a stateful
present in subsequent sectioM&R(FSPRG, KR-PRG, pseudorandom bit generator to be forward-secure. Intu-
KR-RO, andKR-RSA-RO). Using advanced tree-based jtively a stateful PRG is forward-secure if even adver-
schemes [4, 6, 36, 38], a publisher could give access tosaries that are given the generator's current state cannot

any contiguous sequence of keys using only a logarith- gistinguish previous outputs from random.
mic humber of nodes from a key tree. We do not con-

sider key trees here because one of our primary designSyntax. A stateful PRG consists of two algorithms:
goals is to minimize the size of the member states thatSBY = (seed, next). The randomized setup algorithm
the content publisher must transmit to members. For in- returns an initial state; we write this sig < seed. The
stance, it is desirable to have constant-sized metadata irdeterministic next step algorithm takes a state as input
file systems. and returns a new state and an output flO@mSps g,

. _ . : ,
On the use of SHA1.We completed the bulk of our re- or E?et g)alrv\(/:ré),uilgethgiliietrgesmafs(ag ’II{S) ef?—
search prior to Wang, Yin, and Yu [49] showing how to gieexntls ia.\m Iablel(\q/l L 1 2“ PsSg o
find collisions in SHAL faster than brute force. The re- y samp axLenspg € {1,2,...}U{oo}

sult of Wang, Yin, and Yu raises the question of whether potes the maximum number of output blocks th&g

one should continue to use SHA1 in real constructions, is designed to produce from a correctness (not security)

includingKR-SHA1 andKR-RSA. This concern is well perspective.

justified, particularly because other researchers [31, 33]Correctness. The correctness requirement for state-
have shown how to extend certain types of collision- | pRGs is as follows: lettg, < seed and, for
finding attacks ag('?unst hash functions to break cryp- i=1,2,... let(stg;, K;) & next(stg;_,). We require
tosystems that, at first glance, appear to depen.d onlly Nhat fori < MaxLenssg, (stg;, Ki) # (L, 1).

a weaker property of the underlying hash function (like ‘
second-preimage resistance) and therefore initially ap-Security. Let SBG = (seed, next) be a stateful bit gen-
pear to be immune to collision-finding attacks. Still, we erator. Let4 be an adversary. Consider the experiments
currently suspect that our constructions will resist im- Expggrgg;z, b € {0,1}, and the oracleBlextO, below.
mediate extensions to collision-finding attacks against The adversary runs in two stagésid andguess.

. fi -b
Experiment Exp g 4 | Oracle NextO,,

stg < seed (stg, K) < next(stg)
ot & ANextOs (find) If b =0then

$
Y & A(guess, stg, st) K — OutSpspg
Returnd/ Returni

TheFSPRG-advantagef A in breaking the security of
SBG is defined as

fsprg
Advg BG.A

fsprg=1 1

Pr [ExpSBg_’A = 1.

=] —Pr [Expggrgg;g =
Under the concrete security approach, the sch65@

is said to be=FSPRG-securd the FSPRG-advantage of
all adversariesd using reasonable resources is “small.”

6.2 An FSPRG-based key regression scheme

We defineKR-FSPRG in Construction 6.1 below. At
a high level, one can vieWR-FSPRG'’s setup algorithm
as running the FSPRGBG backward, meaningetup
runsseed and the output ofeed becomesR-FSPRG’s
MW-th member state. From tHdW-th member state,
setup invokesnext to obtain the(MW — 1)-st member
state;setup continues in this manner until deriving the
1-st member state. Theetup algorithm then outputs a
content publisher statep consisting of an index, ini-
tially 1, and theMW member states. Theind algo-
rithm, on input a publisher statep with indexi < MW,
outputs the-th member state in the vector and outputs a
revised publisher statep’ with index: + 1. On input a
member statetm, thewind andkeyder algorithms both
invokenext onstm to obtain a paifstm’, K'); wind then
outputs the revised member staten’ whereaskeyder
outputs the keyx'.

Construction 6.1 [KR-FSPRG.] Given a stateful
generator SBG (seed, next), we can con-
struct a key regression schemkR-FSPRG
(setup, wind, unwind, keyder) as follows. MW <
MaxLengpg is a positive integer and a parameter of the
construction.

Alg. setup
stguw & seed
Fori = MW downto2 do

(stg; 1, Ki—1) < next(stg;)

stp < (1,stgy,...,stguw)
Returnstp

Alg. wind(stp)
If stp = L thenreturn(L, 1)
Parsestp as(i, stgy, - - -, stguw)
If i« > MW return(.L, 1)
stp’ < (i + 1,stgy, ..., Stguw)

Return(stp’, stg;)
Alg. unwind(stm)

(stm’, K) < next(stm) ; Returnstm’
Alg. keyder(stm)

(stm’, K) < next(stm) ; ReturnkK

The derived key space foKR-FSPRG is DK
OutSpspg. |

In order forsetup andwind to be “efficient,” we assume
that MW has some “reasonable” value lié°; in the
asymptotic setting we would require thgW be poly-
nomial in some security parameter.

Security. The theorem below states that 85G

is a secure forward-secure pseudorandom bit gen-
erator (i.e., is FSPRG-secure), then the resulting
key regression schemiER-FSPRG built from SBG

via Construction 6.1 will be secure (i.e., KR-secure).
Specifically, Theorem 6.2 says that given an adversary
A againstKR-FSPRG, one can construct an adversary
B againstSBG such that’s uses reasonable resources
(if A does and iMW is small) and Equation (1) in the
theorem statement holdgijs the minimum ofMW and

the maximum number of wind and key derivation ora-
cle queries thatd makes. These properties imply secu-
rity for KR-FSPRG since, ifSBG is FSPRG-secure and

if A uses reasonable resources, tlz&mhvfggrgg’s andq

must both be small, which means thﬁﬂv?RyA, the
advantage of4 in attackingkKR-FSPRG, must be small
as well.

Theorem 6.2 If SBG is FSPRG-secure, theGR built
from SBG via KR-FSPRG (Construction 6.1) is KR-
secure. Concretely, given an adversahattackingCR,
we can construct an adversaly attackingSBG such
that

(1)

wheregq is the minimum oMW and the maximum num-
ber of wind and key derivation oracle queries th4t
makes 3 makes up tdIW queries to its oracle and uses
within a small constant factor of the other resources of
A plus the time to run theetup algorithm. |

kr fsprg
Advig 4 < (g +1)-Advgpd s

Intuitively, Theorem 6.2 follows from the fact that
KR-FSPRG runs SBG backward, which means that if
an adversaryl againstKR-FSPRG in possession of the
first i member states can distinguish a k&y, I > 1,
from random, then an adversafyagainstSBG in pos-
session of thé MW — ¢)-th state output ohext could
distinguish the(MW — [)-th key output ofnext from
random. The actual proof involvésguessing the num-
ber of WindO oracle queries thatl will make. The full
proofis in [24].

7 Key regression from standard PRGs

We proceed by showing how to build secure key re-

and we allow the trivial case that = 0. Lemma7.2
states that if5 is a secure PRG, then the stateful bit gen-
eratorFSPRG-PRG built from G via Construction 7.1

gression schemes from standard (not forward-secure)will also be secure. Specifically, & is a secure PRG,
. T . .
pseudorandom bit generators; we call our PRG-basedthenAdvy;%; must be small for all adversariésusing

constructionKR-PRG. Our approach capitalizes on a
method from Bellare and Yee [10] for building FSPRGs

reasonable resources. Further, if an adverghagainst
FSPRG-PRG uses reasonable resources, then the num-

from standard PRGs; we recall the Bellare-Yee method ber of oracle querieg that it makes must also be small

in Section 7.1. As wittKR-FSPRG from Section 6, we
believe thakKR-PRG will be of independent interest.

7.1 FSPRGs from pseudorandom bit genera-
tors

Pseudorandom bit generators. A pseudorandom bit
generator (PRG) [10, 11, 51]is a functiéh {0,1}* —
{0,1}**! that takes as input &-bit seed and returns a
string that is longer than the seed blyits, k,1 > 1. The
standard security notion for a PRG is as followsAlfs
an adversary, we let

prg
Adv FA

Pr{Kﬁ{O,l}k;aw—G(K) : A(x)zl}

—Pr [x S0, 1 L Ar) = 1]

denote thePRG-advantagef A in attackingG. Under
the concrete security approachjs said to be a “secure
PRG” if the PRG-advantage of all adversariésising
reasonable resources is “small.”

A PRG-based FSPRG.Bellare and Yee [10] show
how to construct an FSPRG from a standard PRG.
We dub their schemd&SPRG-PRG and recall it in
Construction 7.1 below. ThESPRG-PRG'’s seed algo-
rithm selects a randot-bit initial seed. Thenext algo-
rithm, on input &-bit stringstg, computes thék+1)-bit
stringG(stg) and outputs the first bits of G(stg) as the
next state and the remainihdits as the key.

Construction 7.1 [FSPRG-PRG, Construction 2.2 of
[10].] Given a PRGG : {0,1}* — {0,1}*+ we can
constructa FSPRGBG = (seed, next) as shown below

Alg. next(stg;)

Alg. seed r & G(stg,)
$ k i
stgo < {0,1} stg; | first k bits ofr
returnstg,

K « lastl bits of r
return(stg, ,,, K)

The output space a§5G is OutSpgg = {0,1}' and
I\/IaxLenggg = OQ.

The following lemma comes from Bellare and Yee [10]
except that we treaj as a parameter of the adversary

andB must also use reasonable resources. These prop-
erties, coupled with Equation (2), means that the advan-
tage of all adversaried againstFSPRG-PRG that use
reasonable resources must be small; FEPRG-PRG

must be FSPRG-secure.

Lemma 7.2 [Theorem 2.3 of [10].] LetG : {0,1}F —
{0,1}**+! be a PRG, and leSBG be the FSPRG built
usingG according to Construction 7.1. Given an adver-
sary A attackingSBG that makes at most queries to
its oracle, we can construct an adversa$ysuch that

AdvERE , < 2¢- AdvPE)

whereB uses within a small constant factor of the re-
sources ofd and compute& up tog times. |

7.2 A PRG-based key regression scheme

CombiningKR-FSPRG andFSPRG-PRG in the nat-
ural way yields a key regression scheme that we call
KR-PRG. For concreteness we descri§B-PRG in de-
tail below.

—

We

Construction 7.3 [KR-PRG.] Let G: {0,1}*
{0,1}**! be a pseudorandom bit generator.
can construct a key regression scheiR-PRG =
(setup, wind, unwind, keyder) from G as follows. MW

is a positive integer and a parameter of the construction.

Alg. setup
stmpmw <i {O, 1}k
Fori = MW downto2 do

stm;_1 < unwind(stm;)

stp «— (1,stmy, ..., stmmw)
Returnstp

Alg. wind(stp)
If stp = L thenreturn(L, 1)

Parsestp as(i,stmy, ..., stmyw)
If i > MW return(_L, 1)
stp’ « (i + 1,stmy,...,stmmw)

Return(stp’, stm;)

Alg. unwind(stm)
x — G(stm) ; stm’ — firstk bits of z
Returnstm’

Alg. keyder(stm)
x «— G(stm); K «— lastl bits of z
ReturnkK

The derived key space f&fR-PRG is DK = {0, 1}'. |

In order forsetup andwind to be “efficient,” we assume
that MW has some “reasonable” value liR&"; in the
asymptotic setting we would require thgtW be poly-
nomial in some security parameter.

Security. The theorem below states thatifis a secure
PRG, then the resulting key regression sch&RePRG
built from G via Construction 7.3 will be KR-secure.

Specifically, Theorem 7.4 says that given an adversary

A againstKR-PRG that uses reasonable resources, and
assuming thaW is small, one can construct an adver-
saryB againstG such thatB uses reasonable resources
and Equation (3) in the theorem statement hajds;the
minimum ofMW and the maximum number of wind and
key derivation oracle queries thdtmakes. These prop-
erties imply security foKR-PRG since, ifG is PRG-
secure and sincd uses reasonable resourcasivy

andg must both be small, which means thhdvk,gKA,
the advantage ofl in attackingKR-PRG, must be small
as well.

Theorem 7.4 1f G: {0,1}F — {0,1}**! is a secure
PRG, then the key regression schef@® built from
G via KR-PRG (Construction 7.3) is KR-secure. Con-
cretely, given an adversaryl attacking/XCR, we can
construct an adversar§ attackingG such that

Advig 4 < 2 (q+1)% Advi ()

wheregq is the minimum oMW and the maximum num-
ber of queriesd makes to it4VindO andKeyderO ora-
cles. AdversanB uses within a small constant factor of
the resources aofd, plus the time to computetup and

G MW times. |

Proof of Theorem 7.4: Construction 7.3 is exactly
Construction 6.1 built from the forward secure pseudo-
random bit generator defined by Construction 7.1. The
theorem statement therefore follows from Theorem 6.2
and Lemma 7.2l

8 The security of KR-AES

Having shown how to construct secure key regres-
sion schemes from secure pseudorandom bit genera
tors KR-PRG and Construction 7.3), we are now able
to prove the security oKR-AES (Construction 5.2) by
observing thakKR-AES is exactlyKR-PRG with & =
[= 128 and with the PRGG defined asG(X) =
AESx (02%)||AESx (11%®) for all X € {0,1}!?%. Be-
fore stating our formal result faKR-AES, we first re-
call the standard notion of a pseudorandom permuta-
tion [8, 35].

Pseudorandom permutations. Let E: {0,1}* x
{0,1} — {0, 1} be a block cipher and let Peff de-
note the set of all permutations d0, 1}!. If A is an
adversary with access to an oracle, we let

Adv%r_’li’4
- Pr{Ki{o,uk : AEK<'>=1}
_Pr[gipemﬂ) : Ag<'>:1]

denote thePRP-advantagef A in attackingE. Under
the concrete security approadhjs said to be a “secure
PRP” if the PRP-advantage of all adversari¢sising
reasonable resources is “small.”

Instantiating KR-AES from KR-PRG. As noted
above, it is straightforward to instantiatdr-AES from
KR-PRG. Numerous other instantiations exist, e.g., to
use a block cipheF with £ > [, one might definegz
asG(X) = Ex(a)||Ex(az)|... whereay, as, ...

are distinctl-bit strings. SinceKR-AES is one of our
preferred constructions, we state the following theorem
specifically forKR-AES; it is straightforward to extend
our result to other natural instantiations R-PRG.
The security proof foKR-AES is in the standard model
and assumes that AES is a secure pseudorandom permu-
tation.

Theorem 8.1 If AES is a secure PRP, thekR-AES
(Construction 5.2) is KR-secure. Concretely, given an
adversary.A attacking KR-AES, we can construct an
adversaryB attacking AES such that

Adviip 4 < 2:(g+1)% (AdviR s +27%) (@)

wheregq is the minimum oMW and the maximum num-
ber of queries4 makes to itaVindO and KeyderO or-
acles. Adversary3 makes 2 oracle queries and uses
within a small constant factor of the resources4fplus
the time to computsetup and AEMW times. |

We interpret Theorem 8.1 as follows. Suppodeis

an adversary again$tR-AES that uses reasonable re-
sources, and in particular makes at most a reasonable
number of querieg to its wind and key derivation or-
acles. Then we can construct an adverdarggainst
AES that also uses reasonable resources viiéh is
small. Because of the resource restrictiongsand un-

der the assumption that AES is a secure PRP, it follows
that Advgs s must be small. If botly and Advigs

are small, then by Equation (48)dv1,‘<rR7A must also be
small, meaning thakR-AES must be KR-secure.

As a concrete example of the bound in Theorem 8.1,
consider the case wheMW andq are both22°, Then
Equation (4) becomes

k 42 prp —86
AdVK:rR7A S 2 . AdVAES,B + 2 y

Alg. wind™ 2 (stp)
If stp = L thenreturn(L, 1)

which means that unles4 exploits a property of AES
itself, A will not be able to break the security 6R-AES

with probability better tha2—36. Since it is widely be- Parsestp as{i,stmy,...,stmyw)
lieved that AES is secure, Theorem 8.1 tells us that it is If ¢ > MW return(.L, 1)
reasonable to assume thé&R-AES is secure for reason- stp’ « (i + 1,stmy, ..., stmymw)

able choices oMW.

To prove Theorem 8.1 we use Theorem 7.4, the
relationship betweenKR-AES and KR-PRG, and
the fact that the functions defined asG(X)
AESx (0128)||AESx (1'%%), X € {0,1}'%8, is a secure
PRG if AES is a secure PRP. Details in [24].

Return(stp’, stm;)
Alg. unwind™* "2 (stm)

stm’ «— Hj(stm) ; Returnstm’
Alg. keyder™*H#2 (stm)

K «— Hj(stm); ReturnK

The derived key space f&R-RO is DK = {0, 1}%. 1
9 The security of KR-SHA1

In order forsetup andwind to be “efficient,” we assume
that MW has some “reasonable” value lié°; in the
asymptotic setting we would require thgW be poly-
nomial in some security parameter.

The following theorem states that Construction 9.1 is
secure in the random oracle model for adversaries that

SHAL(X)||SHAL(0®|| X) for all X € {0,1}'®. Ifwe make a reasonable number of queries to their random
view SHA1 as a random oracle, thehis a secure PRG racles.

in the random oracle model, and we can use this observa-

tion and Theorem 7.4 to prove the security<df-SHA1 Theorem 9.2 The key regression scheme in

in the random oracle model. Construction 9.1 is secure in the random oracle
Here we give a direct proof of security f&iR-SHA1 model. Formally, letd,: {0,1}* — {0,1}* and

in order to obtain a tighter bound. The tightness is- H,: {0,1}* — {0,1}' be random oracles and l&fR

sue with usingKR-PRG and Theorem 7.4 to prove the be the key regression scheme built fraify, H, via

Although we derivedKR-SHA1 from the key ro-
tation scheme in Figure 3, we find that one can
also view KR-SHA1 as an instantiation oKR-PRG
with k¥ = [= 160 and G defined asG(X) =

security of KR-SHAL rests in the fact that the advan-
tage of an adversary in attackiggin the random oracle
model must be upper bounded by a function of the num-

ber of random oracle queries that the adversary makes,

and this function will percolate through the bound in
Theorem 7.4.

In what follows we view SHAL) in KR-SHA1's
unwind algorithm and SHAL®||) in KR-SHAL's
keyder algorithm as two different random oracles.
Construction 9.1KR-RO, makes this generalization of
KR-SHAL concrete. We choose not to model SHA1
and SHAL08||-) as a single random oracle because we
do not wish to restrict our analysis to the case where
keyder must prefix its inputs to the random oracle with
the zero byte.

Construction 9.1 [KR-RO.] Let H;: {0,1}* —
{0,1}* and Hy: {0,1}* — {0,1}' be random or-
acles.
KR-RO (setup, wind, unwind, keyder) from H;
and H; as shown belowMW is a positive integer and a
parameter of the construction.

Alg. setup - H2
stmpmw <i {O, 1}k
Fori = MW downto2 do
stm;_; < unwind 2 (stm;)
stp < (1,stmy, ..., stmuw)
Returnstp

KR-RO (Construction 9.1). Then for any adversary
we have that
q - MW
5
MW g (5)
wheregq is the maximum number of queries total thét
makes to itdf; and H, random oracles. |

MW)?2
Advig 4 (MW)

S oEn

As a concrete example of the bound in Theorem 9.2,
consider the case wheMW = 22° and an adversary
A makes at mosyy = 240 queries to its random ora-
cles. Then Equation (5) tells us that the advantage of
A in attackingKR-RO is upper bounded bg—8. Al-
though SHA1 is not a random oracle, Theorem 9.2 gives
us confidence thakR-SHA1 may provide a reasonable
level of security in practice; see Section 5 for additional
discussion.

We prove Theorem 9.2 in [24], but remark that we

We can construct a key regression SchemeCOU|d Slmp“fy the proof If, instead of deflnlngR-RO

as in Construction 9.1, we include the indicem the
member states, and hence in the input$ftoand Ho.
We choose to omit the indicésrom the member states
in KR-RO because we viewlKR-RO and KR-SHA1 as
closer to what developers might wish to implement in
practice.

We remark that in addition to viewingR-SHA1 as
an instantiation oKR-PRG, one could viewKR-AES as
an instantiation oKR-RO with ¥ = [= 128 and, for
all X € {0,1}'%8, with H,(X) defined as AES (0!2%)

and Hy(X) defined as AEg(11%®); Diffie and Hell-

Security for RSA key generators.Let Ksa be an RSA

man suggest using a block cipher as a hash function inkey generator with security parameterif A is an ad-
this manner in [16]. We choose to prove the security versary, we let

of KR-AES directly in Section 8, rather than instanti-
ate KR-RO, because we desire a proof of security for
KR-AES in the standard model.

10 The security ofKR-RSA

In our proof of security forKR-RSA we view
the use of SHAL inkeyder as a random oracle.
Construction 10.1KR-RSA-RO, makes this generaliza-
tion concrete.

Construction 10.1 [KR-RSA-RO.] Given an RSA key
generatoiC,s; for some security parametgrand a ran-
dom oracleH: Z.,» — {0,1}!, we can construct a
key regression schemi¢R-RSA-RO = (setup,wind,
unwind, keyder) as shown below, whefdW = oc.

Alg. setup?
(N,e,d) & Krsa; S & Z% ; stp «— (N, e,d, S)
Returnstp

Alg. wind® (stp)
Parsestp as(N, e, d, S) ; §" « S? mod N
stp’ « (N,e,d,S’) ; stm — (N,e, S)
Return(stp’, stm)

Alg. unwind® (stm)
Parsestm as(N, e, S)
S" «— 8¢ mod N ; stm’ «— (N,e, S")
Returnstm’

Alg. keyder (stm)
Parsestm as(N,e, S) ; K «— H(S)
ReturnK

The derived key space for the scheiiB-RSA-RO is
DK = {0,1}. 1

Toward proving KR-RSA secure, we first prove in
Section 10.1 thaKR-RSA-RO is KR-secure against ad-

Advig
(N,e,d) & Krsa;
= Pr &7 : A(y,e,N) =z
y «— x¢ mod NV

denote the RSA one-way advantage4fin inverting
RSA with the key generatot,s,, Under the concrete
security approach(;s, is said to be a “one-way” if the
RSA one-way advantage of all adversatiesising rea-
sonable resources is “small.”

10.1 Security ofKR-RSA under oneKeyderO or-
acle query

Lemma 10.2 below states that if the RSA key gen-
eratorKCrsq is one-way, then the resulting construction
KR-RSA-RO is secure against adversaries that use rea-
sonable resources and that make at mostksyelerO
oracle query.

Lemma 10.2 If K55 is an RSA key generator with se-
curity parameterk, then the key regression scheli®
built from K55 via KR-RSA-RO (Construction 10.1) is
KR-secure in the random oracle model against adver-
saries restricted to onEeyderO oracle query assuming
that KCrs4 is one-way. Concretely, given an adversaty
attacking/CR that makes at most one key derivation or-
acle query, we can construct an advers#hattacking
Kisa Such that

(g+1) - Adver %,

rsa, (6)
where ¢ is the maximum number of winding oracle
gueries that4d makes. Adversari uses within a small
constant factor of the resources asplus performs up

to ¢ RSA encryption operationdl

k

To prove Lemma 10.2 we observe that in order for an

versaries that use reasonable resources and that makadversaryA in possession of thé-th member state

at most oneKeyderO oracle query; the result in
Section 10.1 assumes that the RSA key genefatgin
KR-RSA-RO is one-way. We then show in Section 10.2

(N,e,S;) to distinguish the(i + 1)-st key from ran-
dom, the adversary must query its random oracle with
Si+1, where(N, e, S;11) is the(i + 1)-st member state.

that if a key regression scheme is secure against ad-SinceS; = S, ; mod N, querying the random oracle

versaries restricted to orteeyderO oracle query, then

with S;+1 amounts to inverting;. The actual proof of

the key regression scheme is secure against advertemma 10.2 involve# guessing the number §¥indO

saries making multipleKeyderO oracle queries. In

Section 10.3 we combine these two results to show that

oracle queries thatl makes. Details in [24].

KR-RSA-RO is secure against adversaries that use rea-10.2 Security under oneKeyderO oracle query

sonable resources but make an otherwise unrestricted

number ofKeyderO oracle queries.
Before proceedings with Section 10.1, we first define
what it means for an RSA key generator to be one-way.

implies security under many

The following lemma states that if a key regression
scheme is secure against adversaries restricted to one

KeyderO oracle query, then the key regression schneme 11 Performance of key

is secure against adversaries allowed multidgderO
oracle queries. The proof of Lemma 10.3 is in [24].

Lemma 10.3 If a key regression scheme is secure when
an adversary is limited to on&eyderO oracle query,
then the key regression scheme is secure when an adve
sary is allowed multipl&eyderO oracle queries. Con-
cretely, letCR be a key regression scheme. Given an ad-
versary A attacking/CR that makes at mogt queries

to WindO andgs queries toKeyderO, we can construct
an adversarys attacking/CR such that

k k
AdVICrR,A S qs - AdV/CrRB)

()

B makes at mosf; + ¢ — 1 queries towWindO (or 0
queries ifq; + g2 = 0), B makes at most one query to
KeyderO, andB has other resource requirements within
a small constant factor of the resource requirements
of A. 1

10.3 The security of KR-RSA under multiple
KeyderO oracle queries

From Lemma 10.2 and Lemma 10.3 it follows that
KR-RSA-RO is secure in the random oracle model as-
suming thatXs, is one-way, even for adversaries al-
lowed multipleKeyderO oracle queries. Theorem 10.4
makes this reasoning formal. Although SHA1 is not a

random oracle, Theorem 10.4 suggests that when instan

tiated with a suitable RSA key generatiiR-RSA may
provide a reasonable level of security in practice; see
Section 5 for additional discussion.

Theorem 10.4If K55 is an RSA key generator with
security parameterk, then R built from sy via
KR-RSA-RO (Construction 10.1) is KR-secure in the

random oracle model under the RSA assumption. Con-

cretely, given an adversaryl attacking/XCR, we can
construct an adversarg attackingkC,s, such that
Advip 4 <2¢° - Adv

rsa“ow

’Cl‘Sa7B

)

where ¢ is the maximum number of winding and key
derivation oracle queries thatl makes. Adversarjs

uses resources within a constant factor of the resources

of A plus the time to perform RSA encryption opera-
tions. 1

Proof of Theorem 10.4: The proof of Theorem 10.4
follows from Lemma 10.3 and Lemma 10.2. Note that
for the application of Lemma 10.3 we s@t = ¢ and

g2 = ¢, meaning the adversay/from Lemma 10.3 may
make up t2qg — 1 queries to it3VindO oracle, or2q if
g=0.1

regression in

access-controlled content distribution

We integrated key regression into the Chefs file sys-
tem [22] to measure the performance characteristics of
key regression in a real application. We first give an
'dverview of Chefs. Then we provide measurements to
show that key regression enables efficient key distribu-
tion even for publishers with low-bandwidth and high-
latency connections such as cable and analog modems.

Chefs for access-controlled content distribution.
Chefs [22] is a secure, single-writer, many-reader file
system for access-controlled content distribution using
untrusted servers. Chefs extends the SFS read-only file
system [23] to provide access control. Chefs uses lazy
revocation [21, 32] an&KR-SHA1 key regression to re-
duce the amount of out-of-band communication neces-
sary for group key distribution.

Three modules comprise the Chefs file system. An
untrusted serveimakes encrypted, integrity-protected
content available in the form of a block store. pAib-
lisher creates the encrypted, integrity-protected content
and manages key distribution. éient downloads con-
tent from an untrusted server, then verifies integrity and
decrypts the content using keys fetched from the pub-
lisher. Our publisher, e.g., a blogger, is expected to have
a low-bandwidth connection.

Several types of keys guard the access control and
confidentiality of content in Chefs. Chefs usesomtent
keyto encrypt content. A member obtains a content key
by opening a lockbox that is encrypted with theup
key, the member derives the group key from the group
member state. After a membership event, e.g., an evic-
tion, the publisher produces a new key regression mem-
ber state. The remaining group members request this
member state on-demand from the publisher; to com-
municate the new member state, the publisher encrypts
the member state with each member’s 1 024-bit public
RSA key using the low exponeat= 3.

11.1 Hypothesis and methodology

Performance measurements validate that (1) key re-
gression allows a publisher to serve many keys per
second to clients effectively independent of the pub-
lisher’s network throughput and the rate of membership
turnover, and (2) key regression does not degrade client
latency. To test these hypotheses, we compare the per-
formance of Chefs to Sous-Chefs, a version of Chefs
without key regression.

Experimental setup. The client and server contained
the same hardware: a 2.8 GHz Intel Pentium 4 with
512 MB RAM. Each machine used a 100 Mbit/sec

full-duplex Intel PRO/1000 Ethernet card and a Max- announced that in the year 2003, they added 31 000 paid
tor 250 GB, Serial ATA 7200 RPM hard drive with an subscribers (for a total of 73 000) and maintained a 71%
8 MB buffer size, 150 MB/sec transfer rate, and less renewal rate. Thus, a 29% eviction rate would generate
than 9.0 msec average seek time. The publisher wasan expected 21170 evictions in one year. This suggests
a 3.06 GHz Intel Xeon with 2 GB RAM, a Broadcom that the total number of membership events would reach
BCM5704C Dual Gigabit Ethernet card, and a Hitachi 52170.
320 GB SCSI-3 hard drive with a 320 MB/sec transfer To represent a workload of searching newspaper con-
rate. tent, the experimenttests a file system containing 10 000
The machines were connected on a 100 Mbit/sec lo- 8 KB encrypted files and the associated content keys.
cal area network and all used FreeBSD 4.9. NetPipe [46] The experiment consists of mounting the file system and
measured the round-trip latency between the pairs ofreading all the files. This causes the client machine to
machines at 248sec, and the maximum sustained TCP fetch all the content keys.
throughput of the connection at 88 Mbit/sec when writ- We further motivate our example workload as fol-
ing data in 4 MB chunks and using TCP send and receivelows. While there is promising research in enabling a
buffers of size 69 632 KB. When writing in 8 KB chunks third party server to search encrypted data [2, 12, 26, 28,
(the block size in Chefs), the peak TCP throughput was 47, 50], current approaches for searchable encryption do
66 Mbit/sec. not prevent the server from outputting false negatives.
The experiments used the dummynet [44] driver in Because Chefs extends the SFS read-only file system, it
FreeBSD to simulate cable modem and analog modeminherits the property that the client can verify whether it
network conditions. For the cable modem on the pub- has received all intended content (i.e., the whole truth)
lisher machine, the round-trip delay was set to 20 msecfrom the server. Therefore, to avoid false negatives, we
and the download and upload bandwidth to 4 Mbit/sec desire a client-based search in which the Chefs client
and 384 Kbit/sec respectively. For the analog modem, downloads all the encrypted content and keys to perform
the round-trip delay was set to 200 msec and the uploadthe search itself.

and download bandwidth each ta 56 Kbit/sec. Sous-Chefs. To determine the cost of key regression,

! . Na%hefs is compared to a version of Chefs with key re-
16 384 entries, a directory block cac.he has 512. entrles'gression disabled. This strawman file system is called
an indirect block cache has 512 entries, and afile block 5 \s chefs. Chefs and Sous-Chefs differ only in how
cache has 64 entries. A large file block cache is unnec-they fetch group keys from the publisher. When using
essary because the NFS loopback server performs MOSk R'SHAT for key regression, Chefs fetches a 20-byte

of the file data caching. _ _ member state, encrypted in the client’s public 1 024-bit

For each measurement, the median result of five sam-pga key with low exponent — 3. Chefs then uses
ples are reported. Errors bars in Figure 5 indicate mini- | o regression to unwind and derive all past versions of
mum and maximum measurements. the group key. Sous-Chefs fetches all the derived group

S keys at once (each 16 bytes). The group keys them-

11.2 Secure content distribution on untrusted selves are encrypted with 128-bit AES in CBC mode.
storage The AES key is encrypted with the client’s RSA public

key. A Sous-Chefs client is allowed to request a single

A standard benchmark is not available for measuring bulk transfer of every version of a group key to fairly
the effects of group membership dynamics. Therefore, amortize the cost of the transfer.
we evaluate Chefs based on how a client might search
for content in a subscription-based newspaper.

Table 2 displays the performance of basic key re-
gression operations. The internal block size of the
hash function matters significantly for the throughput
of KR-SHAL key regression. Because SHA1 uses an
internal 512-bit block size, hashing values smaller than
512 bits results in poorer throughput than one would ex-
pect from SHA1 hashing longer inputs. For this rea-
son,KR-AES key regression performs significantly bet-
ter thanKR-SHA1 key regression.

Reduced throughput requirements. Figure 4 shows
that a publisher can serve many more clients in Chefs
than Sous-Chefs in low-bandwidth, high-latency condi-
tions. The CPU utilization for Chefs under no band-
width limitation is negligible, indicating that the cost of
RSA encryptions on the publisher is not the bottleneck.
Each test asynchronously plays back 20 traces of a
single client fetching the keys for the search workload.
This effectively simulates the effect of 20 clients apply-
ing the same key distribution workload to the publisher.
After all traces have completed, we record the effective
Searching encrypted content. The benchmarks were number of trace playbacks per second. The Sous-Chefs
inspired by the membership dynamics reported at Sa-traces of fetching 10102, 103, 104, 10, and10° keys
lon.com, a subscription-based online journal [45]. Salon generate 4, 4, 5, 24, 200, and 1 966 asynchronous remote

Key regression protocql Winds/sec | Unwinds/sec

KR-SHA1 Not applicable 687720
KR-AES Not applicable 3303900
KR-RSA 158 35236

Table 2. Microbenchmarks of KR-SHA1, KR-AES, KR-RSA key regression.

---@-- chefs

--#-- chefs (cable modem)
---¢-- chefs (analog modem)
—a&— souschefs

—— souschefs (cable modem)
--------------- ¢ —e— souschefs (analog modem)

((0/0F i R R\ A u

Client-sessions/sec

10

¢)
1000 10000 100000 1le+06
Number of keys

T
10 100

Figure 4. Aggregate publisher throughput for key distribut ion plotted on a log-log graph. A
client-session consists of fetching key material sufficien t to generate all the keys to decrypt
the published content. Key regression enables a publisher t 0 support many client-sessions per
second. Chefs always performs better than Sous-Chefs becau se key regression performance
is effectively independent of the rate of membership turnov er.

procedure calls from the client to the publisher respec- is a small component of the Chefs benchmark. With
tively. Chefs always generates a single remote procedurekeys, key regression on the client takes less than 1.5 sec
call, regardless of the number of key versions. with CPU utilization never exceeding of 42%.

Improved client latency. The client latency experi-

ment measures the time for a single client to execute

the search workload. The untrusted server and publisherl2 ~Conclusions
have warm caches while the client has a cold cache.

The log-log chart in Figure 5 shows that Chefs out-

performs Sous-Chefs for the search workload under sev- We presented provably-secure constructions for key
eral network conditions. In Sous-Chefs, the network regression — addressing the shortfalls of key rotation.
transfer time dominates client latency because of theWe also provided the first measurements of either a
sheer volume of keys transferred from the publisher to key regression or key rotation system. Finally, we in-
the client. There is ho measurement for Sous-Chefstegrated key regression in a content distribution appli-
downloading 1 000 000 keys because the kernel assumesation to demonstrate how key regression enables effi-
that the mount failed after waiting 1 000 seconds. On cient key distribution on low-bandwidth, high-latency
a 56 Kbit/sec network, Sous-Chefs is expected to takeconnections. Using key regression, a publisher can ef-
over 2232 seconds to download 1000000 keys eachficiently control access to content independent of group
16 bytes. Thus, only three bars appear for the test casesnembership dynamics and without needing a fast net-
involving 1 000 000 content keys. Key regression itself work connection.

1000

100~

10

Client latency (sec)

VO IVIIIP.
NANNNNNY
VO IIIIIIIIY4

VO I

@ chefs

m souschefs

O souschefs (cable modem)
& souschefs (analog modem)

000T
0000T
00000T

Number of keys

Figure 5. A log-log chart of single client latency to read 100
Key regression maintains a consta
Under low-bandwidth, high-latency cond
dominated my the transfer time of keys after reaching 10000 k

associated content keys.
the number of keys.

much better latency in Chefs.

Acknowledgments

K. Fu was supported in part by Project Oxygen and
an Intel Ph.D. Fellowship. S. Kamara was supported by
a Bell Labs Graduate Research Fellowship. T. Kohno
was supported by an IBM Ph.D. Fellowship, NSF CCR-
0208842, NSF ANR-0129617, and NSF CCR-0093337.
K. Fu performed this research while at The Johns Hop-
kins University and MIT. T. Kohno performed part of
this research while visiting UC Berkeley. We thank
Ron Rivest for detailed comments on this paper; David
Mazieres for suggestions on formalizing definitions of
security; Mahesh Kallahalla and Ram Swaminathan
for our initial work together to define key regression;
Fabian Monrose for early reviews of this paper; Frans
Kaashoek for his guidance and unending support; and
Frank Dabek, Emil Sit, and Jeremy Stribling for help
with the testbed.

References

[1] M. Abdalla and M. Bellare. Increasing the lifetime of a
key: A comparitive analysis of the security of re-keying
techniques. In T. Okamoto, editohdvances in Cryp-
tology — ASIACRYPTvolume 1976 ofLecture Notes
in Computer Sciengepages 546-559, Kyoto, Japan,
Dec. 3-7, 2000.

M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno,
T. Lange, J. Malone-Lee, G. Neven, P. Paillier, and

(2]

(3]
(4]

(5]

(6]

(7]

(8]

0000007

00 8 KB encrypted files and the
nt client latency regardless of
itions, Sous-Chefs latency is
eys. Key regression enables

H. Shi. Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and exten-
sions. In V. Shoup, edito\dvances in Cryptology —
CRYPTO 2005volume 3621 olecture Notes in Com-
puter ScienceSanta Barbara, CA, USA, Aug. 14-18,
2005. Springer-Verlag, Berlin, Germany.

Akamai Technologieht t p: / / ww. akamai . com

S. G. Akl and P. D. Taylor. Cryptographic solution to a
problem of access control in a hierarc®yCM Transac-
tions on Computer Systenig3):239-248, 1983.

M. Backes, C. Cachin, and A. Oprea. Lazy revocation
in cryptographic file systems. Brd International IEEE
Security in Storage Workshppec. 2005.

M. Backes, C. Cachin, and A. Oprea. Secure
key-updating for lazy revocation. IBM Re-
search Report RZ 3627, Oct. 2005. Available

at http://dom no.research.ibm conl

l'i brary/ cyberdi g.nsf/index. htn, key-
word 99637; also archived as Cryptology ePrint Archive
Report 2005/334.

M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
concrete security treatment of symmetric encryption. In
38th Annual Symposium on Foundations of Computer
Science (FOCS '97)pages 394-403. IEEE Computer
Society, 1997.

M. Bellare, J. Kilian, and P. Rogaway. The secu-
rity of the cipher block chaining message authentication
code. In Y. Desmedt, editoAdvances in Cryptology
— CRYPTO’94 volume 839 ofLecture Notes in Com-
puter Sciencepages 341-358, Santa Barbara, CA, USA,
Aug. 21-25, 1994. Springer-Verlag, Berlin, Germany.

[9] M. Bellare and P. Rogaway. Random oracles are prac- [21] K. Fu.

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

tical: A paradigm for designing efficient protocols. In
V. Ashby, editorACM CCS 93: 1st Conference on Com-
puter and Communications Securitiyecture Notes in
Computer Science, Fairfax, Virginia, USA, Nov. 3-5,
1993. ACM Press.

M. Bellare and B. Yee. Forward security in private key
cryptography. In M. Joye, editofopics in Cryptology —
CT-RSA 2003volume 2612 ofLecture Notes in Com-
puter Sciencepages 1-18, San Francisco, CA, USA,
Apr. 13-17, 2003. Springer-Verlag, Berlin, Germany.

M. Blum and S. Micali. How to generate cryptograph-
ically strong sequences of pseudo-random bitsPrior
ceedings of the 23rd IEEE Symposium on Foundations
of Computer Science (FOCS '§2)982.

D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Per-
siano. Public key encryption with keyword search. In
C. Cachin and J. Camenisch, editokslvances in Cryp-
tology — EUROCRYPT 2004/0lume 3027 ofLecture
Notes in Computer Sciencpages 506522, Interlaken,
Switzerland, May 2—-6, 2004. Springer-Verlag, Berlin,
Germany.

D. Boneh, C. Gentry, and B. Waters. Collusion resis-
tant broadcast encryption with short ciphertexts and pri-
vate keys. In V. Shoup, editoAdvances in Cryptology —
CRYPTO 2005volume 3621 olLecture Notes in Com-
puter Sciencepages 258-275, Santa Barbara, CA, USA,
Aug. 14-18, 2005. Springer-Verlag, Berlin, Germany.

B. Cohen. Incentives build robustness in BitTorremt. |
Proceedings of the First Workshop on the Economics of
Peer-to-Peer SystemBerkeley, CA, June 2003.

J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya.
Merkle-Damgard revisited: How to construct a hash
function. In V. Shoup, editoAdvances in Cryptology —
CRYPTO 2005volume 3621 ol ecture Notes in Com-
puter ScienceSpringer-Verlag, Berlin, Germany, 2005.
W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory
22:644-654, 1978.

Y. Dodis and N. Fazio. Public key broadcast encryp-
tion for stateless receivers. Digital Rights Manage-
ment Workshapvolume 2696 ot ecture Notes in Com-
puter Science pages 61-80. Springer-Verlag, Berlin,
Germany, 2002.

Y. Dodis and N. Fazio. Public key broadcast encryp-
tion secure against adaptive chosen ciphertext attack. In
Y. Desmedt, editoPKC 2003: 6th International Work-
shop on Theory and Practice in Public Key Cryptogra-
phy, volume 2567 of ecture Notes in Computer Science
pages 100-115, Miami, USA, Jan. 6-8, 2003. Springer-
Verlag, Berlin, Germany.

A. Fiatand M. Naor. Broadcast encryption. In D. Boneh,
editor, Advances in Cryptology — CRYPTO;9%Ilume
773 ofLecture Notes in Computer Scienpages 22-26,
Santa Barbara, CA, USA, Aug. 17-21, 1993. Springer-
Verlag, Berlin, Germany.

M. Freedman, E. Freudenthal, and D. Maziéres.
mocratizing content publication with coral. Ihst
USENIX/ACM Symposium on Networked Systems De-
sign and ImplementatignSan Francisco, CA, March
2004. Sedt t p: / / www. cor al cdn. org/ .

De-

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

Group sharing and random access in cryp-
tographic storage file systems. Master’s thesis, Mas-
sachusetts Institute of Technology, May 1999.

K. Fu. Integrity and access control in untrusted content
distribution networks PhD thesis, Massachusetts Insti-
tute of Technology, September 2005.

K. Fu, M. F. Kaashoek, and D. Maziéres. Fast and secure
distributed read-only file system. Wth Symposium on
Operating Systems Design and ImplementatR90.

K. Fu, S. Kamara, and T. Kohno. Key regres-
sion: Enabling efficient key distribution for secure dis-
tributed storage. Cryptology ePrint Archive t p: //
eprint.iacr.org/: Report 2005/303, 2005. (Full
version of this paper.).

D. K. Gifford. Cryptographic sealing for informatioes
crecy and authenticatiofCommunications of the ACM
25(4):274-286, 1982.

E.-J. Goh. Secure indexes. Cryptology ePrint Archive
http://eprint.iacr.org/: Report 2003/216,
2003.

S. Goldwasser and S. Micali. Probabilistic encryption
Journal of Computer and System Scien@®(2):270—
299, Apr. 1984.

P. Golle, J. Staddon, and B. R. Waters. Secure conjunc-
tive keyword search over encrypted data. In M. Jakobs-
son, M. Yung, and J. Zhou, editoSCNS 04: 2nd Inter-
national Conference on Applied Cryptography and Net-
work Security volume 3089 ofLecture Notes in Com-
puter Sciencepages 31-45, Yellow Mountain, China,
June 8-11, 2004. Springer-Verlag, Berlin, Germany.

N. M. Haller. The S/KEY one-time password system.
In ISOC Symposium on Network and Distributed System
Security February 1994.

A. Harrington and C. Jensen. Cryptographic access con-
trol in a distributed file system. IRroceedings of 8th
ACM Symposium on Access Control Models and Tech-
nologies (SACMAT 2003)Villa Gallia, Como, lItaly,
June 20083.

A. Joux. Multicollisions in iterated hash functionspA
plication to cascaded constructions. In M. Franklin, ed-
itor, Advances in Cryptology — CRYPTO 20@lume
3152 ofLecture Notes in Computer Scienpages 306—
316. Springer-Verlag, Berlin, Germany, 2004.

M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. Irknd USENIX Conference on File and Storage
Technologies2003.

J. Kelsey and T. Kohno. Herding hash functions and
the Nostradamus attack. Cryptology ePrint Archive
http://eprint.iacr.org/: Report 2005/281,
2005.

L. Lamport. Password authentication with insecure €om
munication. Communications of the ACN24(11):770—
771, November 1981.

M. Luby and C. Rackoff. How to construct pseudoran-
dom permutations from pseudorandom functicBAM
Journal on Computingl7(2), 1988.

S. MacKinnon and S. G. Akl. New key generation algo-
rithms for multilevel security. ISP '83: Proceedings

of the 1983 IEEE Symposium on Security and Priyacy

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

page 72, Washington, DC, USA, 1983. IEEE Computer
Society.

Mandriva Linux http://ww. mandriva. com

en/ communi ty/ users/cl ub.

S. Micali. Fair public-key cryptosystems. In E. F. Bedic
ell, editor, Advances in Cryptology — CRYPT@Ilume
740 of Lecture Notes in Computer Sciengages 113—
138, Aug. 16-20, 1992.

G. Miklau and D. Suciu. Controlling access to published
data using cryptography. Imternational Conference
on Very Large Data Basepages 898-909, September
2003.

D. Naor, M. Naor, and J. Lotspiech. Revocation and
tracing schemes for stateless receivers. In J. Kilian, edi-
tor, Advances in Cryptology — CRYPT@lume 2139 of
Lecture Notes in Computer Scienpages 41-62, Santa
Barbara, CA, USA, Aug. 19-23, 2001.

D. Naor, A. Shenhav, and A. Wool. Toward securing un-
trusted storage without public-key operations. Hrst
International Workshop on Storage Security and Surviv-
ability, november 2005.

D. Reed and L. Svobodova. Swallow: A distributed
data storage system for a local network. In A. West and
P. Janson, editor$,ocal Networks for Computer Com-
munications pages 355-373. North-Holland Publ., Am-
sterdam, 1981.

R. L. Rivest, A. Shamir, and L. M. Adleman. A method
for obtaining digital signatures and public-key cryp-
tosystems. Communications of the ACM1(2):120—
126, 1978.

L. Rizzo. Dummynet: a simple approach to the evalu-
ation of network protocols SIGCOMM Comput. Com-
mun. Rev.27(1):31-41, 1997.

Salon.com http://ww. sal on. com press/

rel ease/ .

Q. Snell, A. Mikler, and J. Gustafson. Netpipe: A net-
work protocol independent performace evaluator. In
IASTED International Conference on Intelligent Infor-
mation Management and Systerh396.

D. X. Song, D. Wagner, and A. Perrig. Practical tech-
niques for searches on encrypted datalHEE Sympo-
sium on Security and Privacpages 44-55, 2000.

J. Staddon, S. Miner, M. Franklin, D. Balfanz,
M. Malkin, and D. Dean. Self-healing key distribution
with revocation. InProceedings of IEEE Symposium on
Security and Privacy2002.

X. Wang, Y. L. Yin, and H. Yu. Finding collisions in
the full SHA-1. In V. Shoup, editorAdvances in Cryp-
tology — CRYPTO 200Q%0lume 3621 ol ecture Notes

in Computer Sciencé&pringer-Verlag, Berlin, Germany,
2005.

B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smet-
ters. Building an encrypted and searchable audit log. In
ISOC Network and Distributed System Security Sympo-
sium (NDSS 20042004.

A. Yao. Theory and applications of trapdoor functions.
In Proceedings of the 23rd IEEE Symposium on Founda-
tions of Computer Science (FOCS '82982.

