
Key Regression: Enabling Efficient Key Distribution for Secure Distributed
Storage

Kevin Fu
U. Mass. Amherst

Seny Kamara
Johns Hopkins University

Tadayoshi Kohno
U.C. San Diego

Abstract

The Plutus file system introduced the notion of key
rotation as a means to derive a sequence of temporally-
related keys from the most recent key. In this paper
we show that, despite natural intuition to the contrary,
key rotation schemes cannot generically be used to key
other cryptographic objects; in fact, keying an encryp-
tion scheme with the output of a key rotation scheme can
yield a composite system that is insecure. To address
these shortcomings, we introduce a new cryptographic
object called a key regression scheme, and we propose
three constructions that are provably secure under stan-
dard cryptographic assumptions. We implement key re-
gression in a secure file system and empirically show
that key regression can significantly reduce the band-
width requirements of a content publisher under real-
istic workloads using lazy revocation. Our experiments
also serve as the first empirical evaluation of either a
key rotation or key regression scheme.

Keywords: Key regression, key rotation, lazy revoca-
tion, key distribution, content distribution network, hash
chain, security proofs.

1 Introduction

Content distribution networks (CDNs) such as Aka-
mai [3], BitTorrent [14], and Coral [20] enablecon-
tent publisherswith low-bandwidth connections to make
single-writer, many-reader content available at high
throughput. When a CDN is untrusted and the content
publisher cannot rely on the network to enforce proper
access control, the content publisher can achieve access
control by encrypting the content and distributing the
cryptographic keys to legitimate users [22, 25, 30, 32,
39, 42]. Under thelazy revocationmodel for access
control [22, 32], following theevictionof a user from
the set of members, the content publisher will encrypt
future content with a new cryptographic key and will,
upon request, distribute that new key to all remaining
and future members. The content publisher does not im-

mediately re-encrypt all pre-existing content since the
evicted member could have already cached that content.

The content publisher can use the CDN to distribute
the encrypted content, but without the aid of a trusted
server, the content publisher must distribute all the cryp-
tographic keys to members directly. To prevent the pub-
lisher’s connection from becoming a bottleneck, the Plu-
tus file system [32] introduced a new cryptographic ob-
ject called akey rotation scheme. Plutus uses the sym-
metric keyKi to encrypt content during thei-th time
period, e.g., before thei-th eviction. If a user becomes
a member during thei-th time period, then Plutus gives
that member thei-th key Ki. From [32], the critical
properties of a key rotation scheme are that given the
i-th key Ki it is (1) easy to compute the keysKj for
all previous time periodsj < i, but (2) computation-
ally infeasible to compute the keysKl for future time
periodsl > i. Property (1) enables the content pub-
lisher to transfer only a single small keyKi to new mem-
bers wishing to access all current and past content, rather
than the potentially large set of keys{K1, K2, . . . , Ki};
this property reduces the bandwidth requirements on the
content publisher. Property (2) is intended to prevent a
member evicted during thei-th time period from access-
ing (learning the contents of) content encrypted during
thel-th time period,l > i.

1.1 Overview of contributions

In this work we uncover a design flaw with the def-
inition of a key rotation scheme. To address the defi-
ciencies with key rotation, we introduce a new cryp-
tographic object called akey regression scheme. We
present RSA-based, SHA1-based, and AES-based key
regression schemes. We implement and analyze the per-
formance of key regression in the context of a secure file
system. The following paragraphs summarize our con-
tributions in more detail.

Negative results on key rotation.We begin by present-
ing a design flaw with the definition of key rotation: for
any realistic key rotation scheme, even though a mem-
ber evicted during thei-th time periodcannot predict

� � � � � � � � � � � �

� � � � � � � � � � � �

� � � � � � � � � � � � � � � � � �

	
 � �

	

 �

� �

	
 � �

	

 �

� �

	
 � �

	

 �

� �

	
 � �

Figure 1. Key regression overview; stpi and stmi respectively represent the i-th publisher and
member states.

(except with negligible probability) subsequent keysKl,
l > i, the evicted membercan distinguishsubsequent
keysKl from random. The lack of pseudorandomness
follows from the fact that if an evicted member is given
the real keyKl, then by definition (i.e., by property (1))
the evicted member can recover the real keyKi; but
given a random key instead ofKl, the evicted member
will with high probability recover a keyK ′

i 6= Ki. The
difference between unpredictability and lack of pseudo-
randomness can have severe consequences in practice.
To illustrate the seriousness of this design flaw, we de-
scribe a key rotation scheme and a symmetric encryp-
tion scheme that individually meet their desired security
properties (property (2) for key rotation and IND-CPA
privacy for symmetric encryption [7]), but when com-
bined (e.g., when a content publisher uses the keys from
the key rotation scheme to key the symmetric encryp-
tion scheme) result in a system that fails to provide even
a weak form of privacy.1

Fixing key rotation with key regression. While the
above counter example does not imply that all systems
employing key rotation will fail just as drastically, it
does motivate finding a key rotation-like object that still
achieves property (1) (or something similar) but (prop-
erty (2′)) produces future keys that are pseudorandom to
evicted members (as opposed to just unpredictable). As-
suming the new object achieves pseudorandomness, one
could use it as a black box to key other cryptographic
constructs without worrying about the resulting system
failing as drastically as the one described above. Akey
regression schemeis such a key rotation-like object.

To describe key regression, we must enact a paradigm
shift: rather than give a new member thei-th keyKi di-

1We stress that the novelty here is in identifying the design flaw
with key rotation, not in presenting a specific counter example. Indeed,
the counter example follows naturally from our observationthat a key
rotation scheme does not produce pseudorandom keys.

rectly, the content publisher would give the member a
member statestmi. From the member state, the member
could derive the encryption keyKi for thei-th time pe-
riod, as well as all previous member statesstmj , j < i.
By transitivity, a member given thei-th member state
could also derive all previous keysKj. By separating
the member states from the keys, we can build key re-
gression schemes where the keysKl, l > i, are pseu-
dorandom to evicted members possessing only thei-th
member statestmi. Intuitively, the trick that we use in
our constructions to make the keysKl pseudorandom is
to ensure that given bothKl andstmi, it is still compu-
tationally infeasible for the evicted member to compute
the l-th member statestml. Viewed another way, there
is no path fromKl to stmi in Figure 1 and vice-versa.

Our constructions. We refer to our three preferred
key regression schemes asKR-RSA, KR-SHA1, and
KR-AES. Rather than rely solely on potentially error-
prone heuristic methods for analyzing the security of our
constructions, we prove under reasonable assumptions
that all three are secure key regression schemes. Our
security proofs use the reduction-based provable secu-
rity approach pioneered by Goldwasser and Micali [27]
and lifted to the concrete setting by Bellare, Kilian, and
Rogaway [8]. ForKR-RSA, our proof is based on the
assumption that RSA is one-way. For the proof of both
KR-RSA andKR-SHA1, we assume that SHA1 is a ran-
dom oracle [9]. For the proof ofKR-AES, we assume
that AES is a secure pseudorandom permutation [8, 35].

Implementation and evaluation.We integrated key re-
gression into a secure file system to measure the per-
formance characteristics of key regression in a real ap-
plication. Our measurements show that key regression
can significantly reduce the bandwidth requirements of
a publisher distributing decryption keys to members.
On a simulated cable modem, a publisher using key
regression can distribute 1 000 keys to 181 clients/sec

whereas without key regression the cable modem limits
the publisher to 20 clients/sec. The significant gain in
throughput conservation comes at no observable cost to
client latency, even though key regression requires more
client-side computation. Our measurements show that
key regression actually reduces client latency in cases
of highly dynamic group membership. Our study rep-
resents the first empirical measurements of either a key
regression or key rotation scheme.

Contrary to conventional wisdom, on our testbed we
find thatKR-AES can perform more than four times as
many unwinds/sec thanKR-SHA1. Our measurements
can assist developers in selecting the most appropriate
key regression scheme for particular applications.

Applications. Key regression benefits publishers of
popular content who have limited bandwidth to their
trusted servers, or who may not always be online, but
who can use an untrusted CDN to distribute encrypted
content at high throughput. Our experimental results
show that a publisher using key regression on a low-
bandwidth connection can serve more clients than the
strawman approach of having the publisher distribute all
keys{K1, K2, . . . , Ki} directly to members. Moreover,
our experimental results suggest that key regression can
be significantly better than the strawman approach when
i is large, as might be the case if the publisher has a
high membership turnover rate. Such a publisher might
be an individual, a startup, or a cooperative with popu-
lar content but with few network resources. The possi-
bilities for such content range from blogs and amateur
press to operating systems and various forms of multi-
media. To elaborate on one such form of content, operat-
ing systems, Mandriva Linux currently uses the BitTor-
rent CDN to distribute its latest Linux distributions to its
Mandriva Club members [37]. Mandriva controls access
to these distributions by only releasing the.torrent
files to its members. Using key regression and encryp-
tion for access control, Mandriva could exercise finer-
grained access control over its distributions, allowing
members through time periodi to access all versions of
the operating system including patches, minor revisions
and new applications added through time periodi, but
no additions to the operating system after thei-th time
period.2

Versions. This is an extended abstract. The full version
of this paper appears on the IACR ePrint Archive [24].
Part of this work also appears as Chapter 4 of [22].

2While Mandriva may wish to exercise access control over non-
security-critical patches and upgrades, Mandriva would likely wish to
allow all Mandriva users, including evicted Mandriva Club members,
access to all security-critical patches. To enable such access, Mandriva
could encrypt all security-critical patches with the key for the time
period to which the patch is first applicable, or Mandriva could simply
not encrypt security-critical patches.

1.2 Related work

The key rotation scheme in Plutus [32] inspired our
research in key regression. Bellare and Yee [10] in-
troduce the notion of a forward-secure pseudorandom
bit generator (FSPRG). One can roughly view forward-
secure pseudorandom bit generation as the mirror im-
age of key regression. Whereas a key regression scheme
is designed to prevent an evicted member in possession
of stmi from distinguishingsubsequentencryption keys
Kl, l > i, from random, a FSPRG is designed to pre-
vent an adversary who learns the state of the FSPRG
at some point in time from distinguishingpreviousout-
puts of the FSPRG from random. In our security proof
for KR-AES, we make the relationship between key re-
gression and FSPRGs concrete by first proving that one
can build a secure key regression scheme from any se-
cure FSPRG by essentially running the FSPRG back-
wards. Abdalla and Bellare formally analyze methods
for rekeying symmetric encryption schemes [1], and one
of their constructions is a FSPRG.

As pointed out by Boneh et al. [13], one possible
mechanism for distributing updated content encryption
keys for a secure file system is to use a broadcast en-
cryption scheme [17, 18, 19, 40]. Indeed, one of the
main challenges faced by an encrypted file system is the
distribution of the encryption keys to the remaining (not
evicted) set of users, and broadcast encryption provides
an ideal solution. We note, however, that key distribu-
tion is orthogonal to the specific problem addressed by
key regression; a key regression scheme is a keygen-
eration algorithm as opposed to a keydistribution al-
gorithm. Key regression simply assumes the existence
of a secure distribution channel, of which broadcast en-
cryption is one possible instantiation. Self-healing key
distribution with revocation [48] protocols are resilient
even when broadcasts are lost on the network. One can
view key regression as having the self-healing property
in perpetuity.

In concurrent work, and also motivated by the key ro-
tation scheme in Plutus [32], Backes, Cachin, and Oprea
formalize the notion ofkey-updating for lazy revoca-
tion schemes[6] and consider the composition of key-
updating for lazy revocation schemes with other cryp-
tographic objects [5]. The notion of a key-updating for
lazy revocation scheme in [6] is essentially identical to
our notion of a key regression scheme. Using our par-
lance, in [6] they also propose several ways of building
key regression schemes; one of their proposals is identi-
cal to ourKR-PRG construction (Construction 7.3), and
another proposal is a natural extension of our construc-
tion KR-RSA-RO (Construction 10.1). Although we re-
mark on the existence of a tree-based key regression
scheme in Section 5, [6] take the idea of a tree-based
key regression scheme further by formally defining and

proving the security of a slightly different tree-based
construction. In [6] the authors also observe that one
can use the keys output by a key regression scheme
as the randomness source for thesetup algorithm of a
(possibly different) key regression scheme; this observa-
tion enables the composition of multiple key regression
schemes.

2 Notation

If x andy are strings, then|x| denotes the length of
x in bits andx‖y denotes their concatenation. Ifx and
y are two variables, we usex← y to denote the assign-
ment of the value ofy to x. If Y is a set, we denote the
selection of a random element inY and its assignment to
x asx

$

← Y . If f is a deterministic (resp., randomized)
function, thenx ← f(y) (resp.,x

$

← f(y)) denotes the
process of runningf on inputy and assigning the result
to x. We use the special symbol⊥ to denote an error.

We use AESK(M) to denote the process of running
the AES block cipher with keyK on input blockM .
We use SHA1(M) to denote the process of running
the SHA1 hash function on inputM . An RSA [43]
key generator for some security parameterk is a ran-
domized algorithmKrsa that returns a triple(N, e, d).
Since our analyses are in the concrete setting, we write
(N, e, d)

$

← Krsa rather than(N, e, d)
$

← Krsa(k). The
modulusN is the product of two distinct odd primesp, q

such that2k−1 ≤ N < 2k; the encryption exponente ∈
Z
∗
ϕ(N) and the decryption exponentd ∈ Z

∗
ϕ(N) are such

thated ≡ 1 mod ϕ(N), whereϕ(N) = (p− 1)(q− 1).
Section 10 describes what it means for an RSA key gen-
erator to be one-way.

3 Problems with key rotation

A key rotation scheme [32] consists of three al-
gorithms: setup, wndkey, and unwndkey. Figure 2
shows the original (RSA-based) Plutus key rotation
scheme [32]. Following Plutus, and as Naor, Shen-
hav, and Wool also observe [41], one familiar with hash
chains [34] and S/KEY [29] might design the key rota-
tion scheme in Figure 3. Such a scheme is more effi-
cient than the scheme in Figure 2, but is limited because
it can only produceMW (“max wind”) keys, whereMW

is a parameter chosen by the implementor or at con-
figuration time. A content publisher runs thesetup al-
gorithm to initialize a key rotation scheme; the result
is public informationpk for all users and a secretsk1

for the content publisher. The content publisher in-
vokeswndkey(ski) to obtain the keyKi and a new secret
ski+1. Any user in possession ofKi, i > 1, andpk can
invoke unwndkey(Ki, pk) to obtainKi−1. Informally,

the desired security property of a key rotation scheme is
that, given onlyKi andpk, it should be computation-
ally infeasible for an evicted member (the adversary) to
computeKl, for any l > i. The Plutus construction in
Figure 2 has this property under the RSA one-wayness
assumption (defined in Section 10), and the construction
in Figure 3 has this property if one replaces SHA1 with
a random oracle [9].

The problem. In Section 1 we observed that thel-th key
output by a key rotation scheme cannot be pseudoran-
dom, i.e., will be distinguishable from a random string,
to an ex-member in possession of the keyKi for some
previous time periodi < l.3 We consider the following
example to emphasize how this lack of pseudorandom-
ness might impact the security of a real system that com-
bines a key rotation scheme and a symmetric encryption
scheme as a black box.

For our example, we first present a key rotation
schemeKO and an encryption schemeSE that individu-
ally satisfy their respective security goals (unpredictabil-
ity for the key rotation scheme and IND-CPA privacy [7]
for the symmetric encryption scheme). To buildKO, we
start with a secure key rotation schemeKO; KO out-
puts keys twice as long asKO. TheKO winding algo-
rithmwndkey invokesKO’s winding algorithm to obtain
a keyK; wndkey then returnsK‖K as its key. On input
a keyK‖K, unwndkey invokesKO’s unwinding algo-
rithm with inputK to obtain a keyK ′; unwndkey then
returnsK ′‖K ′ as its key. If the keys output bywndkey

are unpredictable to evicted members, then so must be
the keys output bywndkey. To buildSE , we start with a
secure symmetric encryption schemeSE ; SE uses keys
that are twice as long asSE . TheSE encryption and
decryption algorithms take the keyK, split it into two
halvesK = L1‖L2, and run the respective algorithms
of SE with keyL1⊕L2. If the keyK is random, then the
key L1⊕L2 is random andSE runs theSE encryption
algorithm with a uniformly selected random key. This
means thatSE satisfies the standard IND-CPA security
goal if SE does.

Despite the individual security of bothKO andSE ,
when the keys output byKO are used to keySE , SE
will always runSE with the all-zero key; i.e., the con-
tent publisher will encrypt all content under the same
constant key. An adversary can thus trivially compro-
mise the privacy of all encrypted data, including data

3Technically, there may be pathological examples where thel-th
key is pseudorandom to a member given thei-th key, but these exam-
ples seem to have other problems of their own. For example, consider
a key rotation scheme like the one in Figure 3, but where SHA1 is re-
placed with a function mapping all inputs to some constant string C,
e.g., the all 0 key. Now setMW = 2, i = 1, andl = 2. In this patho-
logical exampleK2 is clearly random to the evicted member, meaning
(better than) pseudorandom. But this construction still clearly lacks
our desired pseudorandomness property since the keyK1 is always
the constant stringC.

Alg. setup

(N, e, d)
$

← Krsa ; K
$

← Z
∗
N

pk← 〈N, e〉 ; sk← 〈K, N, d〉
Return(pk, sk)

Alg. wndkey(sk = 〈K, N, d〉)
K ′ ← Kd mod N

sk′ ← 〈K ′, N, d〉
Return(K, sk′)

Alg. unwndkey(K, pk = 〈N, e〉)
ReturnKe mod N

Figure 2. The Plutus key rotation scheme; Krsa is an RSA key generator.

Alg. setup

KMW
$

← {0, 1}160 ; pk← ε

For i = MW downto2 do
Ki−1 ← SHA1(Ki)

sk← 〈1, K1, . . . , KMW〉
Return(pk, sk)

Alg. wndkey(sk = 〈i, K1, . . . , KMW〉)
If i > MW return(⊥, sk)
sk′ ← 〈i + 1, K1, . . . , KMW〉
Return(Ki, sk

′)

Alg. unwndkey(K, pk)
// ignorepk

K ′ ← SHA1(K)
ReturnK ′

Figure 3. A hash chain-based key rotation scheme.

encrypted during time periodsl > i after being evicted.
Although the construction ofKO and SE may seem
somewhat contrived (though we hope less contrived than
some other possible counter examples), this example
shows that combining a key rotation scheme and an
encryption scheme may have undesirable consequences
and, therefore, that it is not wise to use (even a secure)
key rotation scheme as a black box to directly key other
cryptographic objects.

4 Key Regression

The negative result in Section 3 motivates our quest
to find a new cryptographic object, similar to key rota-
tion, but for which the keys generated at time periods
l > i are pseudorandom to any adversary evicted at
time i. Here we formalize such an object: a key regres-
sion scheme. Following the reduction-based practice-
oriented provable security approach [8, 27], our for-
malisms involve carefully defining the syntax, correct-
ness requirements, and security goal of a key regression
scheme. These formalisms enable us to, in Sections 8–
10, prove that our preferred constructions are secure un-
der reasonable assumptions. We desire provable security
over solelyad hocanalyses since, underad hocmeth-
ods alone, one can never be completely convinced that
a cryptographic construction is secure even if one as-
sumes that the underlying components (e.g., block ci-
phers, hash functions, RSA) are secure.

Overview of key regression.Figure 1 gives an abstract
overview of a key regression scheme. The content pub-
lisher has content publisher statesstpi from which it
derives future publisher and member states. When us-
ing a key regression scheme, instead of giving a new
member thei-th key Ki, the content publisher would
give the member thei-th member statestmi. As the ar-

rows in Figure 1 suggest, givenstmi, a member can effi-
ciently compute all previous member states and the keys
K1, . . . , Ki. Although it would be possible for an ex-
member to distinguish future member statesstml, l > i,
from random (the ex-member would extend our obser-
vation on the lack of pseudorandomness in key rotation
schemes), because there is no efficient path between the
future keysKl and the ex-member’s last member state
stmi, it is possible for a key regression scheme to pro-
duce future keysKl that are pseudorandom (indistin-
guishable from random). We present some such con-
structions in Section 5.

On an alternative: Use key rotation carefully.
Figure 1 might suggest an alternative approach for fix-
ing the problems with key rotation. Instead of using
the keysKi from a key rotation scheme to directly key
other cryptographic objects, use a function ofKi, like
SHA1(Ki), instead. If one models SHA1 as a random
oracle and if the key rotation scheme produces unpre-
dictable future keysKl, then it might seem reasonable
to conclude that an ex-member givenKi should not be
able to distinguish future values SHA1(Kl), l > i, from
random. While this reasoning may be sound for some
specific key rotation schemes (this reasoning actually
serves as the basis for our derivative of the construc-
tion in Figure 2,KR-RSA in Construction 5.3) we dis-
like this approach for several reasons. First, we believe
that it is unreasonable to assume that every engineer will
know to or remember to use the hash function. Further,
even if the engineer knew to hash the keys, the engineer
might not realize that simply computing SHA1(Kl) may
not work with all key rotation schemes, which means
that the engineer cannot use a key rotation scheme as a
black box. For example, while SHA1(Kl) would work
for the scheme in Figure 2, it would cause problems for
the scheme in Figure 3. We choose to consider a new

cryptographic object, key regression, because we desire
a cryptographic object that is not as prone to acciden-
tal misuse. Additionally, by focusing attention on a new
cryptographic object, we allow ourselves greater flexi-
bility in how we construct objects that meet our require-
ments. For example, one of our preferred constructions
(KR-AES, Construction 5.2) does not use a hash func-
tion and is therefore secure in the standard model in-
stead of the random oracle model; see alsoKR-FSPRG

(Construction 6.1) andKR-PRG (Construction 7.3).

4.1 Syntax and correctness requirements

Syntax. Here we formally define the syntax of a key re-
gression schemeKR = (setup, wind, unwind, keyder).
Let H be a random oracle; for notational consistency,
all four algorithms are given access to the random ora-
cle, though the algorithms for some constructions may
not use the random oracle in their computations. Via
stp

$

← setupH , the randomized setup algorithm returns
a publisher state. Via(stp′, stm)

$

← windH(stp), the
randomized winding algorithm takes a publisher state
stp and returns a pair of publisher and member states
or the error code(⊥,⊥). Via stm′ ← unwindH(stm)
the deterministic unwinding algorithm takes a member
statestm and returns a member state or the error code⊥.
Via K ← keyderH(stm) the deterministic key deriva-
tion algorithm takes a member statestm and returns a
key K ∈ DK, whereDK is thederived key spacefor
KR. LetMW ∈ {1, 2, . . .}∪{∞} denote the maximum
number of derived keys thatKR is designed to produce.
We do not define the behavior of the algorithms when
input the error code⊥.

Correctness.Our first correctness criterion for a key re-
gression scheme is that the firstMW times thatwind is
invoked, it always outputs valid member states, i.e., the
outputs are never⊥. Our second correctness require-
ment ensures that ifstmi is the i-th member state out-
put by wind, and if i > 1, then fromstmi, one can
derive all previous member statesstmj , 0 < j < i.

Formally, let stp0
$

← setup and, for i = 1, 2, . . .,
let (stpi, stmi)

$

← windH(stpi−1). For eachi ∈
{1, 2, . . . , MW}, we require thatstmi 6= ⊥ and that,
for i ≥ 2, unwindH(stmi) = stmi−1.

Remarks. Although we allowwind to be randomized,
the wind algorithms in all of our constructions are de-
terministic. We allowwind to return(⊥,⊥) since we
only require thatwind return non-error states for its first
MW invocations. We use the pair(⊥,⊥), rather than
simply⊥, to denote an error fromwind since doing so
makes our pseudocode cleaner. We allowunwind to
return⊥ since the behavior ofunwind may be unde-
fined when input the first member state. A construc-

tion may use multiple random oracles, but since one
can always obtain multiple random oracles from a sin-
gle random oracle [9], our definitions assume just one.
It is straightforward to modify our syntax, correctness
requirements, and (subsequent) security definition to ac-
commodate key regression schemes for which the ran-
dom oracle depends on the output ofsetup. We stress
thatMW is a correctness parameter ofKR, not a secu-
rity parameter, meaning that even though the correctness
criteria must hold forMW invocations ofwind, the se-
curity goal may not. One can also further generalize our
definition and allowunwind andkeyder to be random-
ized, though we do not envision such constructions in
practice.

4.2 Security goal

For security, we desire that if a member (adversary)
is evicted during thei-th time period, then the adversary
will not be able to distinguish the keys derived from any
subsequent member statestml, l > i, from randomly se-
lected keys. Definition 4.1 captures this goal as follows.
We allow the adversary to obtain as many member states
as it wishes (via aWindO oracle). TheWindO oracle re-
turns only a member state rather than both a member and
publisher state. Once the adversary is evicted, its goal is
to break the pseudorandomness of subsequently derived
keys. To model this, we allow the adversary to query a
key derivation oracleKeyderO. The key derivation ora-
cle will either return real derived keys (via internal calls
to wind andkeyder) or random keys. The adversary’s
goal is to guess whether theKeyderO oracle’s responses
are real derived keys or random keys.

Definition 4.1 [Security for key regression schemes.]
Let KR = (setup, wind, unwind, keyder) be a key re-
gression scheme. LetA be an adversary. Consider
the experimentsExpkr-b

KR,A, b ∈ {0, 1}, and the oracles
WindO andKeyderOb below. The adversary runs in two
stages,member andnon-member, and returns a bit.

Experiment Expkr-b
KR,A

Pick random oracleH

i← 0 ; stp
$

← setupH

st
$

← AWindO,H(member)

b′
$

← AKeyderO
b
,H(non-member, st)

Returnb′

Oracle WindO

i← i + 1 ; If i > MW then return⊥

(stp, stm)
$

← windH(stp)
Returnstm

Oracle KeyderOb

i← i + 1 ; If i > MW then return⊥

(stp, stm)
$

← windH(stp)

If b = 1 thenK ← keyderH(stm)

If b = 0 thenK
$

← DK

ReturnK

TheKR-advantageof A in breaking the security ofKR
is defined as

Advkr
KR,A

= Pr
[

Expkr-1
KR,A = 1

]

− Pr
[

Expkr-0
KR,A = 1

]

.

Under the concrete security approach [8], we say that
KR is KR-secureif for any adversaryA attackingKR
with resources (running time, size of code, number of
oracle queries) limited to “practical” amounts, the KR-
advantage ofA is “small.”

Remarks. Since the publisher is in charge of winding
and is not supposed to invoke the winding algorithm
more than the prescribed maximum number of times,
MW, the WindO andKeyderO oracles in our security
definition only respond to the firstMW queries from the
adversary. Alternatively, we could remove the condi-
tional check fori > MW in the pseudocode forWindO

andKeyderO and instead ask that the underlyingwind

algorithm behave appropriately if invoked more than
MW times, e.g., by maintaining the counter internally.
Since a key regression scheme will have multiple recip-
ients of member keys, we must consider coalitions of
adversaries; i.e., can two or more adversaries collude to
obtain additional information? Because of the property
that given any member state one can derive all previ-
ous member states, multiple colluding adversaries can-
not obtain more information than a single adversary who
makes the mostWindO andKeyderO oracle queries. In
addition to desiring that future derived keys be pseu-
dorandom to evicted members, we desire that all the
derived keys be pseudorandom to adversaries that are
never members. If a key regression scheme is secure un-
der Definition 4.1, then the key regression scheme also
satisfies this weaker security goal since one can view
adversaries that are never members as adversaries that
make zeroWindO oracle queries. Unlike with key rota-
tion schemes (Section 3), the pseudorandomness of fu-
ture keys means that a content publisher can use the
keys output by a secure key regression scheme to key
other cryptographic objects like symmetric encryption
schemes [7] and MACs [8]; as [1, 10] do for rekeying
schemes and FSPRGs, [5] makes this reasoning formal
for key regression schemes.

5 Our preferred constructions

We are now in a position to describe our three pre-
ferred key regression schemes,KR-SHA1, KR-AES and

KR-RSA. Table 1 summarizes some of their main prop-
erties. KR-SHA1 is a derivative of the key rotation
scheme in Figure 3 andKR-RSA is a derivative of the
Plutus key rotation scheme in Figure 2. The primary
differences between the new key regression schemes
KR-SHA1 and KR-RSA and the original key rotation
schemes are the addition of the new, SHA1-basedkeyder

algorithms and the adjusting of terminology (e.g., mem-
ber states in these key regression schemes correspond to
keys in the original key rotation schemes).KR-AES is
new but is based on one of Bellare and Yee’s forward-
secure pseudorandom bit generators (FSPRGs) [10].

5.1 TheKR-SHA1 construction

Construction 5.1 details ourKR-SHA1 construction.
In the construction ofKR-SHA1, we prepend the string
08 to the input to SHA1 inkeyder to ensure that the
inputs to SHA1 never collide between thekeyder and
unwind algorithms; note that thestm variable always
denotes a 160-bit string.

Construction 5.1 [KR-SHA1.] The key regression
schemeKR-SHA1 = (setup, wind, unwind, keyder) is
defined as follows.MW is a positive integer and a pa-
rameter of the construction.

Alg. setup

stmMW
$

← {0, 1}160

For i = MW downto2 do
stmi−1 ← unwind(stmi)

stp← 〈1, stm1, . . . , stmMW〉
Returnstp

Alg. wind(stp)
If stp = ⊥ then return(⊥,⊥)
Parsestp as〈i, stm1, . . . , stmMW〉
If i > MW return(⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMW〉
Return(stp′, stmi)

Alg. unwind(stm)
stm′ ← SHA1(stm) ; Returnstm′

Alg. keyder(stm)
K ← SHA1(08‖stm) ; ReturnK

The derived key space for the schemeKR-SHA1 is
DK = {0, 1}160.

In practice we assume that theMW might be some rea-
sonable value like220. We give a proof of security for
KR-SHA1 in Section 9. In our proof of security we
view the application of SHA1(·) in unwind as one ran-
dom oracle and the application of SHA1(08‖·) in keyder

as another random oracle. The proof of security for
KR-SHA1 is thus in the random oracle model [9].

KR-SHA1 KR-AES KR-RSA

MW =∞ No No Yes
Random oracles Yes No Yes
setup cost MW SHA1 ops MW AES ops 1 RSA key generation
wind cost no crypto no crypto 1 RSA decryption
unwind cost 1 SHA1 op 1 AES op 1 RSA encryption
keyder cost 1 SHA1 op 1 AES op 1 SHA1 op

Table 1. Our preferred constructions. There are ways of impl ementing these constructions with
different wind costs. The “random oracles” line refers to whether our secur ity proof is in the
random oracle model or not.

5.2 TheKR-AES construction

Our next preferred construction,KR-AES, uses the
AES block cipher and is provably secure in the standard
model, meaning without random oracles but assuming
that AES is a secure pseudorandom permutation [8, 35].

Construction 5.2 [KR-AES.] The key regression
schemeKR-AES = (setup, wind, unwind, keyder) is de-
fined as follows.MW is a positive integer and a param-
eter of the construction.

Alg. setup

stmMW
$

← {0, 1}128

For i = MW downto2 do
stmi−1 ← unwind(stmi)

stp← 〈1, stm1, . . . , stmMW〉
Returnstp

Alg. wind(stp)
If stp = ⊥ then return(⊥,⊥)
Parsestp as〈i, stm1, . . . , stmMW〉
If i > MW return(⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMW〉
Return(stp′, stmi)

Alg. unwind(stm)
stm′ ← AESstm(0128) ; Returnstm′

Alg. keyder(stm)
K ← AESstm(1128) ; ReturnK

The derived key space for the schemeKR-AES is DK =
{0, 1}128.

As with KR-SHA1, we assume that theMW might be
some reasonable value like220. We prove the secu-
rity of KR-AES in stages. We first show how to build a
secure key regression scheme from any forward-secure
pseudorandom bit generator (FSPRG) [10]; we call our
constructionKR-FSPRG. We then recall one of Bellare
and Yee’s [10] methods (FSPRG-PRG) for building se-
cure FSPRGs from standard pseudorandom bit genera-
tors (PRGs) [10, 11, 51]. InstantiatingKR-FSPRG with
FSPRG-PRG yields a secure PRG-based key regression

scheme that we callKR-PRG. KR-AES is then an instan-
tiation of KR-PRG with a PRG that, on input a 128-bit
stringstm, outputs AESstm(0128)‖AESstm(1128). Since
the constructionsKR-FSPRG andKR-PRG have mul-
tiple possible instantiations, we consider them to be of
independent interest. Details in Sections 6 through 8.

Remark. On can also viewKR-SHA1 as an instan-
tiation of KR-PRG with a PRG (in the random ora-
cle model) that, on input a stringstm ∈ {0, 1}160,
outputs SHA1(stm)‖SHA1(08‖stm). In Section 9 we
prove KR-SHA1 directly, rather than by instantiating
KR-PRG, in order to obtain tighter bounds.

5.3 TheKR-RSA construction

Our final preferred construction,KR-RSA derives
from the key rotation scheme in Figure 2.KR-RSA dif-
fers fromKR-SHA1 and KR-AES in that MW = ∞,
meaning that a content provider can invoke theKR-RSA

winding algorithm an unbounded number of times with-
out violating the correctness properties of key regres-
sion schemes. This ability is particularly useful be-
cause it means that an implementor need not fixMW

to some finite value at implementation or configuration
time. Nevertheless, our security proof in Section 10 sug-
gest that in practice a content publisher should limit the
number of times it invokeswind to some reasonable
value. As another motivation forKR-RSA, we note that
if MW is large, then maintaining the publisher states
for KR-SHA1 and KR-AES may require a non-trivial
amount of space (if the publisher stores the entire vector
stp) or time (if the publisher re-derivesstp during every
wind operation).

Construction 5.3 [KR-RSA.] The key regression
schemeKR-RSA = (setup, wind, unwind, keyder) is de-
fined as follows. LetKrsa be an RSA key generator for
some security parameterk and letm: Z2k → {0, 1}k

denote the standard big-endian encoding of the integers
in Z2k to k-bit strings.

Alg. setup

(N, e, d)
$

← Krsa ; S
$

← Z
∗
N ; stp← 〈N, e, d, S〉

Returnstp

Alg. wind(stp)
Parsestp as〈N, e, d, S〉 ; S′ ← Sd mod N

stp′ ← 〈N, e, d, S′〉 ; stm← 〈N, e, S〉
Return(stp′, stm)

Alg. unwind(stm)
Parsestm as〈N, e, S〉
S′ ← Se mod N ; stm′ ← 〈N, e, S′〉
Returnstm′

Alg. keyder(stm)
Parsestm as〈N, e, S〉 ; K ← SHA1(m(S))
ReturnK

The derived key space forKR-RSA is DK = {0, 1}160.
In our experiments, we setk = 1 024, andKrsa returns
e = 3 as the RSA public exponent.

The proof of security forKR-RSA is in Section 10. The
proof is in the random oracle model and assumes that the
RSA key generator is one-way; we define one-wayness
in Section 10.

5.4 Discussion

Alternate constructions. BesidesKR-SHA1, KR-AES,
and KR-RSA, there are numerous possible ways to
build key regression schemes, some of which are sim-
ple variants of the more general constructions that we
present in subsequent sections (KR-FSPRG, KR-PRG,
KR-RO, andKR-RSA-RO). Using advanced tree-based
schemes [4, 6, 36, 38], a publisher could give access to
any contiguous sequence of keys using only a logarith-
mic number of nodes from a key tree. We do not con-
sider key trees here because one of our primary design
goals is to minimize the size of the member states that
the content publisher must transmit to members. For in-
stance, it is desirable to have constant-sized metadata in
file systems.

On the use of SHA1.We completed the bulk of our re-
search prior to Wang, Yin, and Yu [49] showing how to
find collisions in SHA1 faster than brute force. The re-
sult of Wang, Yin, and Yu raises the question of whether
one should continue to use SHA1 in real constructions,
includingKR-SHA1 andKR-RSA. This concern is well
justified, particularly because other researchers [31, 33]
have shown how to extend certain types of collision-
finding attacks against hash functions to break cryp-
tosystems that, at first glance, appear to depend only on
a weaker property of the underlying hash function (like
second-preimage resistance) and therefore initially ap-
pear to be immune to collision-finding attacks. Still, we
currently suspect that our constructions will resist im-
mediate extensions to collision-finding attacks against

SHA1, particularly because the content publisher is the
entity responsible for determining the inputs to SHA1
and, under our model, the content publisher would not
wish to intentionally compromise the pseudorandom-
ness of its keys. Alternatively, one could replace the use
of SHA1 in our constructions with another hash func-
tion, perhaps a hash function that behaves like a random
oracle assuming that the underlying compression func-
tion is a random oracle [15].

6 Key regression from FSPRGs

Toward proving the security ofKR-AES, we first
show how to construct a key regression scheme
from a forward-secure pseudorandom bit generator
(FSPRG) [10]. We call our constructionKR-FSPRG;
see Construction 6.1. Since there are multiple pos-
sible ways to instantiateKR-FSPRG, we believe that
KR-FSPRG may be of independent interest. Moreover,
our result in this section suggests that future work in
forward-secure pseudorandom bit generators could have
useful applications to key regression schemes.

6.1 Forward-securepseudorandomgenerators

Bellare and Yee [10] define stateful pseudorandom
bit generators and describe what it means for a stateful
pseudorandom bit generator to be forward-secure. Intu-
itively a stateful PRG is forward-secure if even adver-
saries that are given the generator’s current state cannot
distinguish previous outputs from random.

Syntax. A stateful PRG consists of two algorithms:
SBG = (seed, next). The randomized setup algorithm

returns an initial state; we write this asstg
$

← seed. The
deterministic next step algorithm takes a state as input
and returns a new state and an output fromOutSpSBG ,
or the pair (⊥,⊥); we write this as(stg′, K) ←
next(stg). We require that the setOutSpSBG is effi-
ciently samplable.MaxLenSBG ∈ {1, 2, . . .}∪ {∞} de-
notes the maximum number of output blocks thatSBG
is designed to produce from a correctness (not security)
perspective.

Correctness. The correctness requirement for state-
ful PRGs is as follows: letstg0

$

← seed and, for
i = 1, 2, . . ., let (stgi, Ki)

$

← next(stgi−1). We require
that fori ≤ MaxLenSBG , (stgi, Ki) 6= (⊥,⊥).

Security. Let SBG = (seed, next) be a stateful bit gen-
erator. LetA be an adversary. Consider the experiments
Exp

fsprg-b
SBG,A, b ∈ {0, 1}, and the oraclesNextOb below.

The adversary runs in two stages:find andguess.

Experiment Exp
fsprg-b
SBG,A

stg
$

← seed

st
$

← ANextOb(find)

b′
$

← A(guess, stg, st)
Returnb′

Oracle NextOb

(stg, K)← next(stg)
If b = 0 then

K
$

← OutSpSBG

ReturnK

TheFSPRG-advantageof A in breaking the security of
SBG is defined as

Adv
fsprg
SBG,A

= Pr
[

Exp
fsprg-1
SBG,A = 1

]

− Pr
[

Exp
fsprg-0
SBG,A = 1

]

.

Under the concrete security approach, the schemeSBG
is said to beFSPRG-secureif the FSPRG-advantage of
all adversariesA using reasonable resources is “small.”

6.2 An FSPRG-based key regression scheme

We defineKR-FSPRG in Construction 6.1 below. At
a high level, one can viewKR-FSPRG’s setup algorithm
as running the FSPRGSBG backward, meaningsetup

runsseed and the output ofseed becomesKR-FSPRG’s
MW-th member state. From theMW-th member state,
setup invokesnext to obtain the(MW − 1)-st member
state;setup continues in this manner until deriving the
1-st member state. Thesetup algorithm then outputs a
content publisher statestp consisting of an indexi, ini-
tially 1, and theMW member states. Thewind algo-
rithm, on input a publisher statestp with indexi ≤ MW,
outputs thei-th member state in the vector and outputs a
revised publisher statestp′ with indexi + 1. On input a
member statestm, thewind andkeyder algorithms both
invokenext onstm to obtain a pair(stm′, K); wind then
outputs the revised member statestm′ whereaskeyder

outputs the keyK.

Construction 6.1 [KR-FSPRG.] Given a stateful
generator SBG = (seed, next), we can con-
struct a key regression schemeKR-FSPRG =
(setup, wind, unwind, keyder) as follows. MW ≤
MaxLenSBG is a positive integer and a parameter of the
construction.

Alg. setup

stgMW

$

← seed

For i = MW downto2 do
(stgi−1, Ki−1)← next(stgi)

stp← 〈1, stg1, . . . , stgMW〉
Returnstp

Alg. wind(stp)
If stp = ⊥ then return(⊥,⊥)
Parsestp as〈i, stg1, . . . , stgMW〉
If i > MW return(⊥,⊥)
stp′ ← 〈i + 1, stg1, . . . , stgMW〉

Return(stp′, stgi)
Alg. unwind(stm)

(stm′, K)← next(stm) ; Returnstm′

Alg. keyder(stm)
(stm′, K)← next(stm) ; ReturnK

The derived key space forKR-FSPRG is DK =
OutSpSBG .

In order forsetup andwind to be “efficient,” we assume
that MW has some “reasonable” value like220; in the
asymptotic setting we would require thatMW be poly-
nomial in some security parameter.

Security. The theorem below states that ifSBG
is a secure forward-secure pseudorandom bit gen-
erator (i.e., is FSPRG-secure), then the resulting
key regression schemeKR-FSPRG built from SBG
via Construction 6.1 will be secure (i.e., KR-secure).
Specifically, Theorem 6.2 says that given an adversary
A againstKR-FSPRG, one can construct an adversary
B againstSBG such thatB uses reasonable resources
(if A does and ifMW is small) and Equation (1) in the
theorem statement holds;q is the minimum ofMW and
the maximum number of wind and key derivation ora-
cle queries thatA makes. These properties imply secu-
rity for KR-FSPRG since, ifSBG is FSPRG-secure and
if A uses reasonable resources, thenAdv

fsprg
SBG,B andq

must both be small, which means thatAdvkr
KR,A, the

advantage ofA in attackingKR-FSPRG, must be small
as well.

Theorem 6.2 If SBG is FSPRG-secure, thenKR built
from SBG via KR-FSPRG (Construction 6.1) is KR-
secure. Concretely, given an adversaryA attackingKR,
we can construct an adversaryB attackingSBG such
that

Adv
kr
KR,A ≤ (q + 1) ·Adv

fsprg
SBG,B (1)

whereq is the minimum ofMW and the maximum num-
ber of wind and key derivation oracle queries thatA
makes.Bmakes up toMW queries to its oracle and uses
within a small constant factor of the other resources of
A plus the time to run thesetup algorithm.

Intuitively, Theorem 6.2 follows from the fact that
KR-FSPRG runsSBG backward, which means that if
an adversaryA againstKR-FSPRG in possession of the
first i member states can distinguish a keyKl, l > i,
from random, then an adversaryB againstSBG in pos-
session of the(MW − i)-th state output ofnext could
distinguish the(MW − l)-th key output ofnext from
random. The actual proof involvesB guessing the num-
ber ofWindO oracle queries thatA will make. The full
proof is in [24].

7 Key regression from standard PRGs

We proceed by showing how to build secure key re-
gression schemes from standard (not forward-secure)
pseudorandom bit generators; we call our PRG-based
constructionKR-PRG. Our approach capitalizes on a
method from Bellare and Yee [10] for building FSPRGs
from standard PRGs; we recall the Bellare-Yee method
in Section 7.1. As withKR-FSPRG from Section 6, we
believe thatKR-PRG will be of independent interest.

7.1 FSPRGs from pseudorandom bit genera-
tors

Pseudorandom bit generators. A pseudorandom bit
generator (PRG) [10, 11, 51] is a functionG: {0, 1}k →
{0, 1}k+l that takes as input ak-bit seed and returns a
string that is longer than the seed byl bits,k, l ≥ 1. The
standard security notion for a PRG is as follows. IfA is
an adversary, we let

Adv
prg
F,A

= Pr
[

K
$

← {0, 1}k ; x← G(K) : A(x) = 1
]

−Pr
[

x
$

← {0, 1}k+l : A(x) = 1
]

denote thePRG-advantageof A in attackingG. Under
the concrete security approach,G is said to be a “secure
PRG” if the PRG-advantage of all adversariesA using
reasonable resources is “small.”

A PRG-based FSPRG.Bellare and Yee [10] show
how to construct an FSPRG from a standard PRG.
We dub their schemeFSPRG-PRG and recall it in
Construction 7.1 below. TheFSPRG-PRG’s seed algo-
rithm selects a randomk-bit initial seed. Thenext algo-
rithm, on input ak-bit stringstg, computes the(k+l)-bit
stringG(stg) and outputs the firstk bits ofG(stg) as the
next state and the remainingl bits as the key.

Construction 7.1 [FSPRG-PRG, Construction 2.2 of
[10].] Given a PRGG : {0, 1}k → {0, 1}k+l we can
construct a FSPRGSBG = (seed, next) as shown below

Alg. seed

stg0
$

← {0, 1}k

returnstg0

Alg. next(stgi)

r
$

← G(stgi)
stgi+1 ← first k bits ofr
K ← lastl bits ofr
return(stgi+1, K)

The output space ofSBG is OutSpSBG = {0, 1}l and
MaxLenSBG =∞.

The following lemma comes from Bellare and Yee [10]
except that we treatq as a parameter of the adversary

and we allow the trivial case thatq = 0. Lemma 7.2
states that ifG is a secure PRG, then the stateful bit gen-
eratorFSPRG-PRG built from G via Construction 7.1
will also be secure. Specifically, ifG is a secure PRG,
thenAdv

prg
G,B must be small for all adversariesB using

reasonable resources. Further, if an adversaryA against
FSPRG-PRG uses reasonable resources, then the num-
ber of oracle queriesq that it makes must also be small
andB must also use reasonable resources. These prop-
erties, coupled with Equation (2), means that the advan-
tage of all adversariesA againstFSPRG-PRG that use
reasonable resources must be small; i.e.,FSPRG-PRG

must be FSPRG-secure.

Lemma 7.2 [Theorem 2.3 of [10].] Let G : {0, 1}k →
{0, 1}k+l be a PRG, and letSBG be the FSPRG built
usingG according to Construction 7.1. Given an adver-
saryA attackingSBG that makes at mostq queries to
its oracle, we can construct an adversaryB such that

Adv
fsprg
SBG,A ≤ 2q ·Adv

prg
G,B (2)

whereB uses within a small constant factor of the re-
sources ofA and computesG up toq times.

7.2 A PRG-based key regression scheme

CombiningKR-FSPRG andFSPRG-PRG in the nat-
ural way yields a key regression scheme that we call
KR-PRG. For concreteness we describeKR-PRG in de-
tail below.

Construction 7.3 [KR-PRG.] Let G: {0, 1}k →
{0, 1}k+l be a pseudorandom bit generator. We
can construct a key regression schemeKR-PRG =
(setup, wind, unwind, keyder) from G as follows. MW

is a positive integer and a parameter of the construction.

Alg. setup

stmMW
$

← {0, 1}k

For i = MW downto2 do
stmi−1 ← unwind(stmi)

stp← 〈1, stm1, . . . , stmMW〉
Returnstp

Alg. wind(stp)
If stp = ⊥ then return(⊥,⊥)
Parsestp as〈i, stm1, . . . , stmMW〉
If i > MW return(⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMW〉
Return(stp′, stmi)

Alg. unwind(stm)
x← G(stm) ; stm′ ← first k bits ofx
Returnstm′

Alg. keyder(stm)
x← G(stm) ; K ← lastl bits ofx
ReturnK

The derived key space forKR-PRG is DK = {0, 1}l.

In order forsetup andwind to be “efficient,” we assume
that MW has some “reasonable” value like220; in the
asymptotic setting we would require thatMW be poly-
nomial in some security parameter.

Security. The theorem below states that ifG is a secure
PRG, then the resulting key regression schemeKR-PRG

built from G via Construction 7.3 will be KR-secure.
Specifically, Theorem 7.4 says that given an adversary
A againstKR-PRG that uses reasonable resources, and
assuming thatMW is small, one can construct an adver-
saryB againstG such thatB uses reasonable resources
and Equation (3) in the theorem statement holds;q is the
minimum ofMW and the maximum number of wind and
key derivation oracle queries thatAmakes. These prop-
erties imply security forKR-PRG since, if G is PRG-
secure and sinceA uses reasonable resources,Adv

prg
G,B

andq must both be small, which means thatAdvkr
KR,A,

the advantage ofA in attackingKR-PRG, must be small
as well.

Theorem 7.4 If G: {0, 1}k → {0, 1}k+l is a secure
PRG, then the key regression schemeKR built from
G via KR-PRG (Construction 7.3) is KR-secure. Con-
cretely, given an adversaryA attackingKR, we can
construct an adversaryB attackingG such that

Advkr
KR,A ≤ 2 · (q + 1)2 ·Adv

prg
G,B (3)

whereq is the minimum ofMW and the maximum num-
ber of queriesA makes to itsWindO andKeyderO ora-
cles. AdversaryB uses within a small constant factor of
the resources ofA, plus the time to computesetup and
G MW times.

Proof of Theorem 7.4: Construction 7.3 is exactly
Construction 6.1 built from the forward secure pseudo-
random bit generator defined by Construction 7.1. The
theorem statement therefore follows from Theorem 6.2
and Lemma 7.2.

8 The security ofKR-AES

Having shown how to construct secure key regres-
sion schemes from secure pseudorandom bit genera-
tors (KR-PRG and Construction 7.3), we are now able
to prove the security ofKR-AES (Construction 5.2) by
observing thatKR-AES is exactlyKR-PRG with k =
l = 128 and with the PRGG defined asG(X) =
AESX(0128)‖AESX(1128) for all X ∈ {0, 1}128. Be-
fore stating our formal result forKR-AES, we first re-
call the standard notion of a pseudorandom permuta-
tion [8, 35].

Pseudorandom permutations. Let E: {0, 1}k ×
{0, 1}l → {0, 1}l be a block cipher and let Perm(l) de-
note the set of all permutations on{0, 1}l. If A is an
adversary with access to an oracle, we let

Adv
prp
E,A

= Pr
[

K
$

← {0, 1}k : AEK(·) = 1
]

−Pr
[

g
$

← Perm(l) : Ag(·) = 1
]

denote thePRP-advantageof A in attackingE. Under
the concrete security approach,E is said to be a “secure
PRP” if the PRP-advantage of all adversariesA using
reasonable resources is “small.”

Instantiating KR-AES from KR-PRG. As noted
above, it is straightforward to instantiateKR-AES from
KR-PRG. Numerous other instantiations exist, e.g., to
use a block cipherE with k > l, one might defineG
as G(X) = EX(α1)‖EX(α2)‖ . . . whereα1, α2, . . .

are distinctl-bit strings. SinceKR-AES is one of our
preferred constructions, we state the following theorem
specifically forKR-AES; it is straightforward to extend
our result to other natural instantiations ofKR-PRG.
The security proof forKR-AES is in the standard model
and assumes that AES is a secure pseudorandom permu-
tation.

Theorem 8.1 If AES is a secure PRP, thenKR-AES

(Construction 5.2) is KR-secure. Concretely, given an
adversaryA attackingKR-AES, we can construct an
adversaryB attacking AES such that

Advkr
KR,A ≤ 2 · (q +1)2 ·

(

Adv
prp
AES,B + 2−128

)

(4)

whereq is the minimum ofMW and the maximum num-
ber of queriesA makes to itsWindO andKeyderO or-
acles. AdversaryB makes 2 oracle queries and uses
within a small constant factor of the resources ofA, plus
the time to computesetup and AES2MW times.

We interpret Theorem 8.1 as follows. SupposeA is
an adversary againstKR-AES that uses reasonable re-
sources, and in particular makes at most a reasonable
number of queriesq to its wind and key derivation or-
acles. Then we can construct an adversaryB against
AES that also uses reasonable resources whenMW is
small. Because of the resource restrictions onB and un-
der the assumption that AES is a secure PRP, it follows
thatAdv

prp
AES,B must be small. If bothq andAdv

prp
AES,B

are small, then by Equation (4)Advkr
KR,A must also be

small, meaning thatKR-AES must be KR-secure.
As a concrete example of the bound in Theorem 8.1,

consider the case whereMW andq are both220. Then
Equation (4) becomes

Advkr
KR,A ≤ 242 ·Adv

prp
AES,B + 2−86 ,

which means that unlessA exploits a property of AES
itself,Awill not be able to break the security ofKR-AES

with probability better than2−86. Since it is widely be-
lieved that AES is secure, Theorem 8.1 tells us that it is
reasonable to assume thatKR-AES is secure for reason-
able choices ofMW.

To prove Theorem 8.1 we use Theorem 7.4, the
relationship betweenKR-AES and KR-PRG, and
the fact that the functionG defined asG(X) =
AESX(0128)‖AESX(1128), X ∈ {0, 1}128, is a secure
PRG if AES is a secure PRP. Details in [24].

9 The security ofKR-SHA1

Although we derivedKR-SHA1 from the key ro-
tation scheme in Figure 3, we find that one can
also view KR-SHA1 as an instantiation ofKR-PRG

with k = l = 160 and G defined asG(X) =
SHA1(X)‖SHA1(08‖X) for all X ∈ {0, 1}160. If we
view SHA1 as a random oracle, thenG is a secure PRG
in the random oracle model, and we can use this observa-
tion and Theorem 7.4 to prove the security ofKR-SHA1

in the random oracle model.
Here we give a direct proof of security forKR-SHA1

in order to obtain a tighter bound. The tightness is-
sue with usingKR-PRG and Theorem 7.4 to prove the
security ofKR-SHA1 rests in the fact that the advan-
tage of an adversary in attackingG in the random oracle
model must be upper bounded by a function of the num-
ber of random oracle queries that the adversary makes,
and this function will percolate through the bound in
Theorem 7.4.

In what follows we view SHA1(·) in KR-SHA1’s
unwind algorithm and SHA1(08‖·) in KR-SHA1’s
keyder algorithm as two different random oracles.
Construction 9.1,KR-RO, makes this generalization of
KR-SHA1 concrete. We choose not to model SHA1(·)
and SHA1(08‖·) as a single random oracle because we
do not wish to restrict our analysis to the case where
keyder must prefix its inputs to the random oracle with
the zero byte.

Construction 9.1 [KR-RO.] Let H1: {0, 1}k →
{0, 1}k and H2: {0, 1}k → {0, 1}l be random or-
acles. We can construct a key regression scheme
KR-RO = (setup, wind, unwind, keyder) from H1

andH2 as shown below.MW is a positive integer and a
parameter of the construction.

Alg. setupH1,H2

stmMW
$

← {0, 1}k

For i = MW downto2 do
stmi−1 ← unwindH1,H2(stmi)

stp← 〈1, stm1, . . . , stmMW〉
Returnstp

Alg. windH1,H2(stp)
If stp = ⊥ then return(⊥,⊥)
Parsestp as〈i, stm1, . . . , stmMW〉
If i > MW return(⊥,⊥)
stp′ ← 〈i + 1, stm1, . . . , stmMW〉
Return(stp′, stmi)

Alg. unwindH1,H2(stm)
stm′ ← H1(stm) ; Returnstm′

Alg. keyderH1,H2(stm)
K ← H2(stm) ; ReturnK

The derived key space forKR-RO is DK = {0, 1}l.

In order forsetup andwind to be “efficient,” we assume
that MW has some “reasonable” value like220; in the
asymptotic setting we would require thatMW be poly-
nomial in some security parameter.

The following theorem states that Construction 9.1 is
secure in the random oracle model for adversaries that
make a reasonable number of queries to their random
oracles.

Theorem 9.2 The key regression scheme in
Construction 9.1 is secure in the random oracle
model. Formally, letH1: {0, 1}k → {0, 1}k and
H2: {0, 1}k → {0, 1}l be random oracles and letKR
be the key regression scheme built fromH1, H2 via
KR-RO (Construction 9.1). Then for any adversaryA
we have that

Advkr
KR,A ≤

(MW)2

2k+1
+

q ·MW

2k −MW − q
, (5)

whereq is the maximum number of queries total thatA
makes to itsH1 andH2 random oracles.

As a concrete example of the bound in Theorem 9.2,
consider the case whereMW = 220 and an adversary
A makes at mostq = 240 queries to its random ora-
cles. Then Equation (5) tells us that the advantage of
A in attackingKR-RO is upper bounded by2−98. Al-
though SHA1 is not a random oracle, Theorem 9.2 gives
us confidence thatKR-SHA1 may provide a reasonable
level of security in practice; see Section 5 for additional
discussion.

We prove Theorem 9.2 in [24], but remark that we
could simplify the proof if, instead of definingKR-RO

as in Construction 9.1, we include the indicesi in the
member states, and hence in the inputs toH1 andH2.
We choose to omit the indicesi from the member states
in KR-RO because we viewKR-RO andKR-SHA1 as
closer to what developers might wish to implement in
practice.

We remark that in addition to viewingKR-SHA1 as
an instantiation ofKR-PRG, one could viewKR-AES as
an instantiation ofKR-RO with k = l = 128 and, for
all X ∈ {0, 1}128, with H1(X) defined as AESX(0128)

and H2(X) defined as AESX(1128); Diffie and Hell-
man suggest using a block cipher as a hash function in
this manner in [16]. We choose to prove the security
of KR-AES directly in Section 8, rather than instanti-
ateKR-RO, because we desire a proof of security for
KR-AES in the standard model.

10 The security ofKR-RSA

In our proof of security forKR-RSA we view
the use of SHA1 inkeyder as a random oracle.
Construction 10.1,KR-RSA-RO, makes this generaliza-
tion concrete.

Construction 10.1 [KR-RSA-RO.] Given an RSA key
generatorKrsa for some security parameterk and a ran-
dom oracleH : Z2k → {0, 1}l, we can construct a
key regression schemeKR-RSA-RO = (setup, wind,

unwind, keyder) as shown below, whereMW =∞.

Alg. setupH

(N, e, d)
$

← Krsa ; S
$

← Z
∗
N ; stp← 〈N, e, d, S〉

Returnstp

Alg. windH(stp)
Parsestp as〈N, e, d, S〉 ; S′ ← Sd mod N

stp′ ← 〈N, e, d, S′〉 ; stm← 〈N, e, S〉
Return(stp′, stm)

Alg. unwindH(stm)
Parsestm as〈N, e, S〉
S′ ← Se mod N ; stm′ ← 〈N, e, S′〉
Returnstm′

Alg. keyderH(stm)
Parsestm as〈N, e, S〉 ; K ← H(S)
ReturnK

The derived key space for the schemeKR-RSA-RO is
DK = {0, 1}l.

Toward proving KR-RSA secure, we first prove in
Section 10.1 thatKR-RSA-RO is KR-secure against ad-
versaries that use reasonable resources and that make
at most oneKeyderO oracle query; the result in
Section 10.1 assumes that the RSA key generatorKrsa in
KR-RSA-RO is one-way. We then show in Section 10.2
that if a key regression scheme is secure against ad-
versaries restricted to oneKeyderO oracle query, then
the key regression scheme is secure against adver-
saries making multipleKeyderO oracle queries. In
Section 10.3 we combine these two results to show that
KR-RSA-RO is secure against adversaries that use rea-
sonable resources but make an otherwise unrestricted
number ofKeyderO oracle queries.

Before proceedings with Section 10.1, we first define
what it means for an RSA key generator to be one-way.

Security for RSA key generators.LetKrsa be an RSA
key generator with security parameterk. If A is an ad-
versary, we let

Adv
rsa-ow
Krsa,A

= Pr







(N, e, d)
$

← Krsa ;

x
$

← Z
∗
N ;

y ← xe mod N

: A(y, e, N) = x







denote the RSA one-way advantage ofA in inverting
RSA with the key generatorKrsa. Under the concrete
security approach,Krsa is said to be a “one-way” if the
RSA one-way advantage of all adversariesA using rea-
sonable resources is “small.”

10.1 Security ofKR-RSA under oneKeyderO or-
acle query

Lemma 10.2 below states that if the RSA key gen-
eratorKrsa is one-way, then the resulting construction
KR-RSA-RO is secure against adversaries that use rea-
sonable resources and that make at most oneKeyderO

oracle query.

Lemma 10.2 If Krsa is an RSA key generator with se-
curity parameterk, then the key regression schemeKR
built fromKrsa via KR-RSA-RO (Construction 10.1) is
KR-secure in the random oracle model against adver-
saries restricted to oneKeyderO oracle query assuming
thatKrsa is one-way. Concretely, given an adversaryA
attackingKR that makes at most one key derivation or-
acle query, we can construct an adversaryB attacking
Krsa such that

Advkr
KR,A ≤ (q + 1) ·Advrsa-ow

Krsa,B
, (6)

where q is the maximum number of winding oracle
queries thatA makes. AdversaryB uses within a small
constant factor of the resources asA plus performs up
to q RSA encryption operations.

To prove Lemma 10.2 we observe that in order for an
adversaryA in possession of thei-th member state
〈N, e, Si〉 to distinguish the(i + 1)-st key from ran-
dom, the adversary must query its random oracle with
Si+1, where〈N, e, Si+1〉 is the(i + 1)-st member state.
SinceSi = Se

i+1 mod N , querying the random oracle
with Si+1 amounts to invertingSi. The actual proof of
Lemma 10.2 involvesB guessing the number ofWindO

oracle queries thatA makes. Details in [24].

10.2 Security under oneKeyderO oracle query
implies security under many

The following lemma states that if a key regression
scheme is secure against adversaries restricted to one

KeyderO oracle query, then the key regression scheme
is secure against adversaries allowed multipleKeyderO

oracle queries. The proof of Lemma 10.3 is in [24].

Lemma 10.3 If a key regression scheme is secure when
an adversary is limited to oneKeyderO oracle query,
then the key regression scheme is secure when an adver-
sary is allowed multipleKeyderO oracle queries. Con-
cretely, letKR be a key regression scheme. Given an ad-
versaryA attackingKR that makes at mostq1 queries
to WindO andq2 queries toKeyderO, we can construct
an adversaryB attackingKR such that

Adv
kr
KR,A ≤ q2 ·Adv

kr
KR,B , (7)

B makes at mostq1 + q2 − 1 queries toWindO (or 0
queries ifq1 + q2 = 0), B makes at most one query to
KeyderO, andB has other resource requirements within
a small constant factor of the resource requirements
ofA.

10.3 The security ofKR-RSA under multiple
KeyderO oracle queries

From Lemma 10.2 and Lemma 10.3 it follows that
KR-RSA-RO is secure in the random oracle model as-
suming thatKrsa is one-way, even for adversaries al-
lowed multipleKeyderO oracle queries. Theorem 10.4
makes this reasoning formal. Although SHA1 is not a
random oracle, Theorem 10.4 suggests that when instan-
tiated with a suitable RSA key generator,KR-RSA may
provide a reasonable level of security in practice; see
Section 5 for additional discussion.

Theorem 10.4 If Krsa is an RSA key generator with
security parameterk, then KR built from Krsa via
KR-RSA-RO (Construction 10.1) is KR-secure in the
random oracle model under the RSA assumption. Con-
cretely, given an adversaryA attackingKR, we can
construct an adversaryB attackingKrsa such that

Advkr
KR,A ≤ 2q2 ·Advrsa-ow

Krsa,B
,

where q is the maximum number of winding and key
derivation oracle queries thatA makes. AdversaryB
uses resources within a constant factor of the resources
of A plus the time to performq RSA encryption opera-
tions.

Proof of Theorem 10.4: The proof of Theorem 10.4
follows from Lemma 10.3 and Lemma 10.2. Note that
for the application of Lemma 10.3 we setq1 = q and
q2 = q, meaning the adversaryB from Lemma 10.3 may
make up to2q − 1 queries to itsWindO oracle, or2q if
q = 0.

11 Performance of key regression in
access-controlled content distribution

We integrated key regression into the Chefs file sys-
tem [22] to measure the performance characteristics of
key regression in a real application. We first give an
overview of Chefs. Then we provide measurements to
show that key regression enables efficient key distribu-
tion even for publishers with low-bandwidth and high-
latency connections such as cable and analog modems.

Chefs for access-controlled content distribution.
Chefs [22] is a secure, single-writer, many-reader file
system for access-controlled content distribution using
untrusted servers. Chefs extends the SFS read-only file
system [23] to provide access control. Chefs uses lazy
revocation [21, 32] andKR-SHA1 key regression to re-
duce the amount of out-of-band communication neces-
sary for group key distribution.

Three modules comprise the Chefs file system. An
untrusted servermakes encrypted, integrity-protected
content available in the form of a block store. Apub-
lisher creates the encrypted, integrity-protected content
and manages key distribution. Aclient downloads con-
tent from an untrusted server, then verifies integrity and
decrypts the content using keys fetched from the pub-
lisher. Our publisher, e.g., a blogger, is expected to have
a low-bandwidth connection.

Several types of keys guard the access control and
confidentiality of content in Chefs. Chefs uses acontent
keyto encrypt content. A member obtains a content key
by opening a lockbox that is encrypted with thegroup
key; the member derives the group key from the group
member state. After a membership event, e.g., an evic-
tion, the publisher produces a new key regression mem-
ber state. The remaining group members request this
member state on-demand from the publisher; to com-
municate the new member state, the publisher encrypts
the member state with each member’s 1 024-bit public
RSA key using the low exponente = 3.

11.1 Hypothesis and methodology

Performance measurements validate that (1) key re-
gression allows a publisher to serve many keys per
second to clients effectively independent of the pub-
lisher’s network throughput and the rate of membership
turnover, and (2) key regression does not degrade client
latency. To test these hypotheses, we compare the per-
formance of Chefs to Sous-Chefs, a version of Chefs
without key regression.

Experimental setup. The client and server contained
the same hardware: a 2.8 GHz Intel Pentium 4 with
512 MB RAM. Each machine used a 100 Mbit/sec

full-duplex Intel PRO/1000 Ethernet card and a Max-
tor 250 GB, Serial ATA 7 200 RPM hard drive with an
8 MB buffer size, 150 MB/sec transfer rate, and less
than 9.0 msec average seek time. The publisher was
a 3.06 GHz Intel Xeon with 2 GB RAM, a Broadcom
BCM5704C Dual Gigabit Ethernet card, and a Hitachi
320 GB SCSI-3 hard drive with a 320 MB/sec transfer
rate.

The machines were connected on a 100 Mbit/sec lo-
cal area network and all used FreeBSD 4.9. NetPipe [46]
measured the round-trip latency between the pairs of
machines at 249µsec, and the maximum sustained TCP
throughput of the connection at 88 Mbit/sec when writ-
ing data in 4 MB chunks and using TCP send and receive
buffers of size 69 632 KB. When writing in 8 KB chunks
(the block size in Chefs), the peak TCP throughput was
66 Mbit/sec.

The experiments used the dummynet [44] driver in
FreeBSD to simulate cable modem and analog modem
network conditions. For the cable modem on the pub-
lisher machine, the round-trip delay was set to 20 msec
and the download and upload bandwidth to 4 Mbit/sec
and 384 Kbit/sec respectively. For the analog modem,
the round-trip delay was set to 200 msec and the upload
and download bandwidth each to 56 Kbit/sec.

In the Chefs measurements, the inode cache has
16 384 entries, a directory block cache has 512 entries,
an indirect block cache has 512 entries, and a file block
cache has 64 entries. A large file block cache is unnec-
essary because the NFS loopback server performs most
of the file data caching.

For each measurement, the median result of five sam-
ples are reported. Errors bars in Figure 5 indicate mini-
mum and maximum measurements.

11.2 Secure content distribution on untrusted
storage

A standard benchmark is not available for measuring
the effects of group membership dynamics. Therefore,
we evaluate Chefs based on how a client might search
for content in a subscription-based newspaper.

Table 2 displays the performance of basic key re-
gression operations. The internal block size of the
hash function matters significantly for the throughput
of KR-SHA1 key regression. Because SHA1 uses an
internal 512-bit block size, hashing values smaller than
512 bits results in poorer throughput than one would ex-
pect from SHA1 hashing longer inputs. For this rea-
son,KR-AES key regression performs significantly bet-
ter thanKR-SHA1 key regression.

Searching encrypted content. The benchmarks were
inspired by the membership dynamics reported at Sa-
lon.com, a subscription-based online journal [45]. Salon

announced that in the year 2003, they added 31 000 paid
subscribers (for a total of 73 000) and maintained a 71%
renewal rate. Thus, a 29% eviction rate would generate
an expected 21 170 evictions in one year. This suggests
that the total number of membership events would reach
52 170.

To represent a workload of searching newspaper con-
tent, the experiment tests a file system containing 10 000
8 KB encrypted files and the associated content keys.
The experiment consists of mounting the file system and
reading all the files. This causes the client machine to
fetch all the content keys.

We further motivate our example workload as fol-
lows. While there is promising research in enabling a
third party server to search encrypted data [2, 12, 26, 28,
47, 50], current approaches for searchable encryption do
not prevent the server from outputting false negatives.
Because Chefs extends the SFS read-only file system, it
inherits the property that the client can verify whether it
has received all intended content (i.e., the whole truth)
from the server. Therefore, to avoid false negatives, we
desire a client-based search in which the Chefs client
downloads all the encrypted content and keys to perform
the search itself.

Sous-Chefs. To determine the cost of key regression,
Chefs is compared to a version of Chefs with key re-
gression disabled. This strawman file system is called
Sous-Chefs. Chefs and Sous-Chefs differ only in how
they fetch group keys from the publisher. When using
KR-SHA1 for key regression, Chefs fetches a 20-byte
member state, encrypted in the client’s public 1 024-bit
RSA key with low exponente = 3. Chefs then uses
key regression to unwind and derive all past versions of
the group key. Sous-Chefs fetches all the derived group
keys at once (each 16 bytes). The group keys them-
selves are encrypted with 128-bit AES in CBC mode.
The AES key is encrypted with the client’s RSA public
key. A Sous-Chefs client is allowed to request a single
bulk transfer of every version of a group key to fairly
amortize the cost of the transfer.

Reduced throughput requirements. Figure 4 shows
that a publisher can serve many more clients in Chefs
than Sous-Chefs in low-bandwidth, high-latency condi-
tions. The CPU utilization for Chefs under no band-
width limitation is negligible, indicating that the cost of
RSA encryptions on the publisher is not the bottleneck.

Each test asynchronously plays back 20 traces of a
single client fetching the keys for the search workload.
This effectively simulates the effect of 20 clients apply-
ing the same key distribution workload to the publisher.
After all traces have completed, we record the effective
number of trace playbacks per second. The Sous-Chefs
traces of fetching 10,102, 103, 104, 105, and106 keys
generate 4, 4, 5, 24, 200, and 1 966 asynchronous remote

Key regression protocol Winds/sec Unwinds/sec
KR-SHA1 Not applicable 687 720
KR-AES Not applicable 3 303 900
KR-RSA 158 35 236

Table 2. Microbenchmarks of KR-SHA1, KR-AES, KR-RSA key regression.

10 100 1000 10000 100000 1e+06

Number of keys

1

10

100

1000

10000

C
lie

nt
-s

es
si

on
s/

se
c

chefs
chefs (cable modem)
chefs (analog modem)
souschefs
souschefs (cable modem)
souschefs (analog modem)

Figure 4. Aggregate publisher throughput for key distribut ion plotted on a log-log graph. A
client-session consists of fetching key material sufficien t to generate all the keys to decrypt
the published content. Key regression enables a publisher t o support many client-sessions per
second. Chefs always performs better than Sous-Chefs becau se key regression performance
is effectively independent of the rate of membership turnov er.

procedure calls from the client to the publisher respec-
tively. Chefs always generates a single remote procedure
call, regardless of the number of key versions.

Improved client latency. The client latency experi-
ment measures the time for a single client to execute
the search workload. The untrusted server and publisher
have warm caches while the client has a cold cache.

The log-log chart in Figure 5 shows that Chefs out-
performs Sous-Chefs for the search workload under sev-
eral network conditions. In Sous-Chefs, the network
transfer time dominates client latency because of the
sheer volume of keys transferred from the publisher to
the client. There is no measurement for Sous-Chefs
downloading 1 000 000 keys because the kernel assumes
that the mount failed after waiting 1 000 seconds. On
a 56 Kbit/sec network, Sous-Chefs is expected to take
over 2 232 seconds to download 1 000 000 keys each
16 bytes. Thus, only three bars appear for the test cases
involving 1 000 000 content keys. Key regression itself

is a small component of the Chefs benchmark. With106

keys, key regression on the client takes less than 1.5 sec
with CPU utilization never exceeding of 42%.

12 Conclusions

We presented provably-secure constructions for key
regression — addressing the shortfalls of key rotation.
We also provided the first measurements of either a
key regression or key rotation system. Finally, we in-
tegrated key regression in a content distribution appli-
cation to demonstrate how key regression enables effi-
cient key distribution on low-bandwidth, high-latency
connections. Using key regression, a publisher can ef-
ficiently control access to content independent of group
membership dynamics and without needing a fast net-
work connection.

1000

10000

100000

1000000

Number of keys

1

10

100

1000
C

lie
nt

 la
te

nc
y

(s
ec

)

chefs
souschefs
souschefs (cable modem)
souschefs (analog modem)

Figure 5. A log-log chart of single client latency to read 10 0 00 8 KB encrypted files and the
associated content keys. Key regression maintains a consta nt client latency regardless of
the number of keys. Under low-bandwidth, high-latency cond itions, Sous-Chefs latency is
dominated my the transfer time of keys after reaching 10 000 k eys. Key regression enables
much better latency in Chefs.

Acknowledgments

K. Fu was supported in part by Project Oxygen and
an Intel Ph.D. Fellowship. S. Kamara was supported by
a Bell Labs Graduate Research Fellowship. T. Kohno
was supported by an IBM Ph.D. Fellowship, NSF CCR-
0208842, NSF ANR-0129617, and NSF CCR-0093337.
K. Fu performed this research while at The Johns Hop-
kins University and MIT. T. Kohno performed part of
this research while visiting UC Berkeley. We thank
Ron Rivest for detailed comments on this paper; David
Mazières for suggestions on formalizing definitions of
security; Mahesh Kallahalla and Ram Swaminathan
for our initial work together to define key regression;
Fabian Monrose for early reviews of this paper; Frans
Kaashoek for his guidance and unending support; and
Frank Dabek, Emil Sit, and Jeremy Stribling for help
with the testbed.

References

[1] M. Abdalla and M. Bellare. Increasing the lifetime of a
key: A comparitive analysis of the security of re-keying
techniques. In T. Okamoto, editor,Advances in Cryp-
tology – ASIACRYPT, volume 1976 ofLecture Notes
in Computer Science, pages 546–559, Kyoto, Japan,
Dec. 3–7, 2000.

[2] M. Abdalla, M. Bellare, D. Catalano, E. Kiltz, T. Kohno,
T. Lange, J. Malone-Lee, G. Neven, P. Paillier, and

H. Shi. Searchable encryption revisited: Consis-
tency properties, relation to anonymous IBE, and exten-
sions. In V. Shoup, editor,Advances in Cryptology –
CRYPTO 2005, volume 3621 ofLecture Notes in Com-
puter Science, Santa Barbara, CA, USA, Aug. 14–18,
2005. Springer-Verlag, Berlin, Germany.

[3] Akamai Technologies. http://www.akamai.com.
[4] S. G. Akl and P. D. Taylor. Cryptographic solution to a

problem of access control in a hierarchy.ACM Transac-
tions on Computer Systems, 1(3):239–248, 1983.

[5] M. Backes, C. Cachin, and A. Oprea. Lazy revocation
in cryptographic file systems. In3rd International IEEE
Security in Storage Workshop, Dec. 2005.

[6] M. Backes, C. Cachin, and A. Oprea. Secure
key-updating for lazy revocation. IBM Re-
search Report RZ 3627, Oct. 2005. Available
at http://domino.research.ibm.com/
library/cyberdig.nsf/index.html, key-
word 99637; also archived as Cryptology ePrint Archive
Report 2005/334.

[7] M. Bellare, A. Desai, E. Jokipii, and P. Rogaway. A
concrete security treatment of symmetric encryption. In
38th Annual Symposium on Foundations of Computer
Science (FOCS ’97), pages 394–403. IEEE Computer
Society, 1997.

[8] M. Bellare, J. Kilian, and P. Rogaway. The secu-
rity of the cipher block chaining message authentication
code. In Y. Desmedt, editor,Advances in Cryptology
– CRYPTO’94, volume 839 ofLecture Notes in Com-
puter Science, pages 341–358, Santa Barbara, CA, USA,
Aug. 21–25, 1994. Springer-Verlag, Berlin, Germany.

[9] M. Bellare and P. Rogaway. Random oracles are prac-
tical: A paradigm for designing efficient protocols. In
V. Ashby, editor,ACM CCS 93: 1st Conference on Com-
puter and Communications Security, Lecture Notes in
Computer Science, Fairfax, Virginia, USA, Nov. 3–5,
1993. ACM Press.

[10] M. Bellare and B. Yee. Forward security in private key
cryptography. In M. Joye, editor,Topics in Cryptology –
CT-RSA 2003, volume 2612 ofLecture Notes in Com-
puter Science, pages 1–18, San Francisco, CA, USA,
Apr. 13–17, 2003. Springer-Verlag, Berlin, Germany.

[11] M. Blum and S. Micali. How to generate cryptograph-
ically strong sequences of pseudo-random bits. InPro-
ceedings of the 23rd IEEE Symposium on Foundations
of Computer Science (FOCS ’82), 1982.

[12] D. Boneh, G. Di Crescenzo, R. Ostrovsky, and G. Per-
siano. Public key encryption with keyword search. In
C. Cachin and J. Camenisch, editors,Advances in Cryp-
tology – EUROCRYPT 2004, volume 3027 ofLecture
Notes in Computer Science, pages 506–522, Interlaken,
Switzerland, May 2–6, 2004. Springer-Verlag, Berlin,
Germany.

[13] D. Boneh, C. Gentry, and B. Waters. Collusion resis-
tant broadcast encryption with short ciphertexts and pri-
vate keys. In V. Shoup, editor,Advances in Cryptology –
CRYPTO 2005, volume 3621 ofLecture Notes in Com-
puter Science, pages 258–275, Santa Barbara, CA, USA,
Aug. 14–18, 2005. Springer-Verlag, Berlin, Germany.

[14] B. Cohen. Incentives build robustness in BitTorrent. In
Proceedings of the First Workshop on the Economics of
Peer-to-Peer Systems, Berkeley, CA, June 2003.

[15] J.-S. Coron, Y. Dodis, C. Malinaud, and P. Puniya.
Merkle-Damgård revisited: How to construct a hash
function. In V. Shoup, editor,Advances in Cryptology –
CRYPTO 2005, volume 3621 ofLecture Notes in Com-
puter Science. Springer-Verlag, Berlin, Germany, 2005.

[16] W. Diffie and M. E. Hellman. New directions in cryp-
tography. IEEE Transactions on Information Theory,
22:644–654, 1978.

[17] Y. Dodis and N. Fazio. Public key broadcast encryp-
tion for stateless receivers. InDigital Rights Manage-
ment Workshop, volume 2696 ofLecture Notes in Com-
puter Science, pages 61–80. Springer-Verlag, Berlin,
Germany, 2002.

[18] Y. Dodis and N. Fazio. Public key broadcast encryp-
tion secure against adaptive chosen ciphertext attack. In
Y. Desmedt, editor,PKC 2003: 6th International Work-
shop on Theory and Practice in Public Key Cryptogra-
phy, volume 2567 ofLecture Notes in Computer Science,
pages 100–115, Miami, USA, Jan. 6–8, 2003. Springer-
Verlag, Berlin, Germany.

[19] A. Fiat and M. Naor. Broadcast encryption. In D. Boneh,
editor, Advances in Cryptology – CRYPTO’93, volume
773 ofLecture Notes in Computer Science, pages 22–26,
Santa Barbara, CA, USA, Aug. 17–21, 1993. Springer-
Verlag, Berlin, Germany.

[20] M. Freedman, E. Freudenthal, and D. Mazières. De-
mocratizing content publication with coral. In1st
USENIX/ACM Symposium on Networked Systems De-
sign and Implementation, San Francisco, CA, March
2004. Seehttp://www.coralcdn.org/.

[21] K. Fu. Group sharing and random access in cryp-
tographic storage file systems. Master’s thesis, Mas-
sachusetts Institute of Technology, May 1999.

[22] K. Fu. Integrity and access control in untrusted content
distribution networks. PhD thesis, Massachusetts Insti-
tute of Technology, September 2005.

[23] K. Fu, M. F. Kaashoek, and D. Mazières. Fast and secure
distributed read-only file system. In4th Symposium on
Operating Systems Design and Implementation, 2000.

[24] K. Fu, S. Kamara, and T. Kohno. Key regres-
sion: Enabling efficient key distribution for secure dis-
tributed storage. Cryptology ePrint Archivehttp://
eprint.iacr.org/: Report 2005/303, 2005. (Full
version of this paper.).

[25] D. K. Gifford. Cryptographic sealing for information se-
crecy and authentication.Communications of the ACM,
25(4):274–286, 1982.

[26] E.-J. Goh. Secure indexes. Cryptology ePrint Archive
http://eprint.iacr.org/: Report 2003/216,
2003.

[27] S. Goldwasser and S. Micali. Probabilistic encryption.
Journal of Computer and System Sciences, 28(2):270–
299, Apr. 1984.

[28] P. Golle, J. Staddon, and B. R. Waters. Secure conjunc-
tive keyword search over encrypted data. In M. Jakobs-
son, M. Yung, and J. Zhou, editors,ACNS 04: 2nd Inter-
national Conference on Applied Cryptography and Net-
work Security, volume 3089 ofLecture Notes in Com-
puter Science, pages 31–45, Yellow Mountain, China,
June 8–11, 2004. Springer-Verlag, Berlin, Germany.

[29] N. M. Haller. The S/KEY one-time password system.
In ISOC Symposium on Network and Distributed System
Security, February 1994.

[30] A. Harrington and C. Jensen. Cryptographic access con-
trol in a distributed file system. InProceedings of 8th
ACM Symposium on Access Control Models and Tech-
nologies (SACMAT 2003), Villa Gallia, Como, Italy,
June 2003.

[31] A. Joux. Multicollisions in iterated hash functions. Ap-
plication to cascaded constructions. In M. Franklin, ed-
itor, Advances in Cryptology – CRYPTO 2004, volume
3152 ofLecture Notes in Computer Science, pages 306–
316. Springer-Verlag, Berlin, Germany, 2004.

[32] M. Kallahalla, E. Riedel, R. Swaminathan, Q. Wang, and
K. Fu. Plutus: Scalable secure file sharing on untrusted
storage. In2nd USENIX Conference on File and Storage
Technologies, 2003.

[33] J. Kelsey and T. Kohno. Herding hash functions and
the Nostradamus attack. Cryptology ePrint Archive
http://eprint.iacr.org/: Report 2005/281,
2005.

[34] L. Lamport. Password authentication with insecure com-
munication.Communications of the ACM, 24(11):770–
771, November 1981.

[35] M. Luby and C. Rackoff. How to construct pseudoran-
dom permutations from pseudorandom functions.SIAM
Journal on Computing, 17(2), 1988.

[36] S. MacKinnon and S. G. Akl. New key generation algo-
rithms for multilevel security. InSP ’83: Proceedings
of the 1983 IEEE Symposium on Security and Privacy,

page 72, Washington, DC, USA, 1983. IEEE Computer
Society.

[37] Mandriva Linux. http://www.mandriva.com/
en/community/users/club.

[38] S. Micali. Fair public-key cryptosystems. In E. F. Brick-
ell, editor,Advances in Cryptology – CRYPTO, volume
740 of Lecture Notes in Computer Science, pages 113–
138, Aug. 16–20, 1992.

[39] G. Miklau and D. Suciu. Controlling access to published
data using cryptography. InInternational Conference
on Very Large Data Bases, pages 898–909, September
2003.

[40] D. Naor, M. Naor, and J. Lotspiech. Revocation and
tracing schemes for stateless receivers. In J. Kilian, edi-
tor,Advances in Cryptology – CRYPTO, volume 2139 of
Lecture Notes in Computer Science, pages 41–62, Santa
Barbara, CA, USA, Aug. 19–23, 2001.

[41] D. Naor, A. Shenhav, and A. Wool. Toward securing un-
trusted storage without public-key operations. InFirst
International Workshop on Storage Security and Surviv-
ability, november 2005.

[42] D. Reed and L. Svobodova. Swallow: A distributed
data storage system for a local network. In A. West and
P. Janson, editors,Local Networks for Computer Com-
munications, pages 355–373. North-Holland Publ., Am-
sterdam, 1981.

[43] R. L. Rivest, A. Shamir, and L. M. Adleman. A method
for obtaining digital signatures and public-key cryp-
tosystems. Communications of the ACM, 21(2):120–
126, 1978.

[44] L. Rizzo. Dummynet: a simple approach to the evalu-
ation of network protocols.SIGCOMM Comput. Com-
mun. Rev., 27(1):31–41, 1997.

[45] Salon.com. http://www.salon.com/press/
release/.

[46] Q. Snell, A. Mikler, and J. Gustafson. Netpipe: A net-
work protocol independent performace evaluator. In
IASTED International Conference on Intelligent Infor-
mation Management and Systems, 1996.

[47] D. X. Song, D. Wagner, and A. Perrig. Practical tech-
niques for searches on encrypted data. InIEEE Sympo-
sium on Security and Privacy, pages 44–55, 2000.

[48] J. Staddon, S. Miner, M. Franklin, D. Balfanz,
M. Malkin, and D. Dean. Self-healing key distribution
with revocation. InProceedings of IEEE Symposium on
Security and Privacy, 2002.

[49] X. Wang, Y. L. Yin, and H. Yu. Finding collisions in
the full SHA-1. In V. Shoup, editor,Advances in Cryp-
tology – CRYPTO 2005, volume 3621 ofLecture Notes
in Computer Science. Springer-Verlag, Berlin, Germany,
2005.

[50] B. R. Waters, D. Balfanz, G. Durfee, and D. K. Smet-
ters. Building an encrypted and searchable audit log. In
ISOC Network and Distributed System Security Sympo-
sium (NDSS 2004), 2004.

[51] A. Yao. Theory and applications of trapdoor functions.
In Proceedings of the 23rd IEEE Symposium on Founda-
tions of Computer Science (FOCS ’82), 1982.

