
Revocation of Unread E-mail in an UntrustedNetworkAviel D. Rubin1 Dan Boneh2 Kevin Fu3rubin@research.att.com dabo@bellcore.com fubob@mit.edu1 AT&T Research,2 Bellcore, 445 South St., Morristown, NJ, 079603 Computer Science Dept, M.I.T, Cambridge MA 02139Abstract. We present protocols for enhancing e-mail systems to allowfor secure revocation of messages. This paper identi�es the security re-quirements for e-mail revocation and then shows how our protocols ad-here to these requirements. Three di�erent levels of security and threatmodels are described. We discuss our implementation of the level 1 pro-tocol, which assumes no security infrastructure. The protocols were de-signed so that existing mailers can easily be enhanced with these newfeatures.1 IntroductionIn the early days of the Internet, the use of electronic mail (e-mail) was limitedto a small subset of highly technical people. It was a luxury that was not enjoyedby the rest of the population, and most people had never even heard of it. Inspite of the small number of users of e-mail, the protocols (namely, smtp [11] andX.400 [3]) were highly reliable. Users could assume that if a message was sent,then either it would be received, or they would be noti�ed that the transmissionfailed. In recent years, the use of e-mail spread to the general population. In spiteof the tremendous increase in the number of users, the robustness and reliabilityof e-mail is still taken for granted. This is a result of standards for how e-mailis sent, received and processed. These standards make e-mail a convenient andreliable means of communication, but they also make it di�cult to change e-mail or to add features. In this paper, we propose a feature that can be added toe-mail without requiring changes to the underlying protocols. Any user wishingto enable this feature must enhance his mail software, with minor modi�cations.It would be nice if e-mail systems enjoyed the same functionality as the USpostal system, but it turns out that they don't quite measure up. We did somedigging, and discovered a little-known post o�ce procedure [16]. It turns out thatif you mail a letter or a package to someone, and it then becomes important toyou that they not receive it, then there is a way to stop it. It can even bedone by phone. The local postmaster contacts the postmaster at the destinationand alerts him about the recall. The letter is intercepted and returned to you.The procedure will only work if you provided a return address and a proper

description of the envelope or package. It is a federal o�ense to lie during themail recall procedure.If the US post o�ce implements revocation, then it seems that such a ser-vice would be desirable in e-mail as well. However, the electronic equivalent ofthe mail recall form is non-obvious. We use several examples to illustrate whyrevocation is useful.Take the following typical scenario (which actually occurred). Alice asks hersecretary, Bob, to register her for a conference, where participation is limited.One week before the conference, Alice calls to con�rm her registration, becauseshe never received a con�rmation. The conference organizer tells Alice that she isnot registered. Alice tries to call Bob, but he is away on his lunch break. So, Alicesends a sharp e-mail message to Bob asking why he did not make the reservation.20 minutes later, the phone rings. It is the conference organizer saying that therehad been a mistake and that Alice's registration had been received on time. Alicemust send an apology to Bob. Later that day, Bob reads his e-mail. First, hesees the sharp note from Alice, and he sends a long, detailed response abouthow he took care of everything, and that Alice should not be so quick to blamehim when things go wrong. After sending that message, Bob reads the secondmessage. He then sends an apology to Alice. Relations at the o�ce are at anall-time low. The whole problem could have been avoided if Alice had a way ofcancelling the �rst message she sent before Bob returned from lunch. In mostcurrent e-mail systems, there is no way to do this without contacting a systemadministrator or breaking into someone's account.A second scenario also occurs quite often, and most readers should be fa-miliar with this type of event. Charlie is in charge of a meeting for his entiredepartment of 25 people. He sends out a broadcast message using an e-mail aliasannouncing that the meeting will be at noon on Friday. An hour later, he getsan e-mail response from a member of the department reminding him that Fridayis the company picnic, and that the department is playing another departmentin the company softball �nals. The CEO of the company is the umpire, andso Charlie must reschedule. He immediately sends out another broadcast mes-sage announcing that the meeting has moved to Monday. Over the next twodays, Charlie receives messages from people about the softball con
ict. Thesemessages are usually followed by apologies saying that the person just saw thesecond broadcast and never mind. If Charlie had a way to revoke the �rst broad-cast message for all users who hadn't seen it yet, his mailbox would have beenmuch emptier the rest of the week.These two scenarios involve people in the same organization. The problembecomes more interesting for users across the Internet. Again, we use a scenarioto illustrate. Donna is negotiating a deal to purchase the ACME toy company.Her main contact there is Ed. At 4:55 PM, Donna sends Ed an e-mail messagewith a bid for $5,000,000. At 5:30, there is no response, so she goes home.That night, she watches the news and hears that Ed is being sued for unpaidchild support and that he is extremely desperate for cash. She logs into workfrom home and checks to see if Ed has received her e-mail yet. She receives

con�rmation that he hasn't. She revokes the e-mail that she sent earlier andsends a new message with a bid for $3,500,000. The next morning, Ed gets towork at 9:00 and sees the bid from Donna. He immediately accepts it.The latest scenario is not possible in today's Internet for two reasons. Thereis no way to �nd out if a message has been received, and there is no mechanismfor revoking a message. In this paper we present a way to receive a correct noti-�cation on the status of a message (received or not received), and a mechanismfor revoking a message without leaving any evidence that it was ever sent. Thesender will also be able to revoke a message and receive correct noti�cation thateither the message was revoked without leaving any trace, or that it was receivedbefore the revocation completed.While there are mail systems, such as the Michigan Terminal System (MTS)[8] and Novell GroupWiseTMversion 4.1 that enable this functionality withina local site, there is no general-purpose system that allows a user to revokea message to an Internet user with a di�erent mail system. Furthermore, thesesystems do not protect users from eavesdroppers on their networks. For example,in MTS, if a user is able to listen in on another user's communication, say, bylistening to ethernet tra�c, then he can cause a message sent by that user to berevoked. It is obviously desirable that only the user who sends a message shouldbe able to revoke it.Finally we note that the ideas and protocols developed in this paper alsoapply to the domain of news groups. It is desirable to enable a user to revokea message he posted. Currently there is no mechanism which securely enablesusers to revoke their postings. As in the E-mail case it is desirable that only theuser who posted the message should be allowed to revoke it. Our techniques canbe directly applied to securely revoking news postings.2 E-mailTo familiarize the reader with our terminology we give a high level overview ofelectronic mail protocols. A user known as the sender may at any time send mailto another user known as the receiver. When a mail message is sent it is receivedon the receiver side by a mail user agent or MUA for short. At any point in timethe receiver may ask his MUA to deliver all of the new incoming messages. Usu-ally the MUA is implemented as a daemon running on some server. When newmail is sent to one of the server's clients the MUA stores the incoming messagein a spool �le. The receiver can read his incoming messages by instructing theMUA to send him the contents of the spool �le.The MUA is composed of two components. The �rst handles the receptionand storage of incoming mail messages. The second delivers messages to the re-ceiver on demand. There are two categories of mail systems. In the �rst type ofsystem, users can receive their e-mail only by interacting with a limited inter-face provided by the MUA. Internet service providers such as America Online,3 GroupWise is a trademark of Novell.

Prodigy, Compuserve, etc. fall into this category. In the second type of system,users can bypass the MUA and have direct access to their e-mail. This is oftenthe case in Unix, where users can use the mail program, or they can access theirmail directly by reading a spool �le. We will call the �rst type of system theLimited Interface Model (LIM) and the second type the Direct Access Model(DAM). Figure 1 demonstrates a typical LIM e-mail system.
Sender

(Alice)

User

(bob)

Receiver

1
2

34

spool

 MUAFig. 1. A typical LIM e-mail system In step 1, Alice sends a message, M , to Bob'sMail User Agent, MUA, where it is stored in a spool �le. When Bob is ready to readhis mail, he requests his messages from MUA (step 2), and in step 3, MUA sends Bobhis message. Most systems do not implement step 4, where MUA noti�es Alice thatBob read the message.For the LIM model, we view the MUA as one unit. It receives and storesmessages and then delivers them to the user on demand. In the DAM model,these two processes are quite di�erent. A process with higher privilege than mostusers, called the mail daemon, handles the receipt of incoming messages. Theseare stored in a spool �le according to the permissions of each user so that userscan access their own mail, but not the mail of others. At this point, users canaccess their mail through a mail reading program or directly through the spool�le. In Unix, the mail daemon runs with root privileges so that it can storemessages such that they are owned by di�erent users. Thus, the mail daemon isa \trusted" program. We will make use of this fact in our protocols.Our enhancements to the mail system require some changes to the MUA.Since the MUA is totally out of the user's control in the LIM model, it is easy toprevent the user from bypassing our enhancements. Furthermore, in this modelour enhancements can be made transparent to the user. In the DAM model,only the daemon can be secured. Access to the mail messages must be controlledthrough encryption once the messages are stored.3 Goals and RequirementsIn our system, we would like to provide some new capabilities to e-mail systems.Besides the ability to send and readmessages, we would like the sender to be ableto check the status of messages (read or not read), to revoke unread messages,and to receive noti�cation (a receipt) when a particular message is read.

The following are requirements for the new e-mail system. In the followinglist, we assume that Alice has sent message M to Bob, Charlie is a maliciouseavesdropper who can forge message from Alice or Bob, and Donna is a sophis-ticated attacker who can modify messages in transit and has complete controlof all tra�c. We also assume that there is a delay, �, for a query to travel fromAlice to Bob, a delay �, for a response to travel from Bob to Alice, and a neg-ligible processing time for queries. We say that Bob read M if Bob requests Mfrom his MUA. Obviously, there is no way to determine if Bob actually scannedthe message with his eyes.It should be noted that a way for Bob to avoid revocation is for him (or aprogram written by him) to requests his mail so frequently from his MUA thatthere is never a chance for Alice to revoke a message. We say that Bob can avoidrevocation, but that he cannot defeat revocation. That is, Bob cannot preventAlice from revoking a message that he has not read. The second protocol in thispaper provides a mechanism for Alice to detect attempts by Bob to avoid revo-cation. She can then take proper action, such as ceasing further communicationwith Bob.The following are desirable requirements for an e-mail revocation system:1. Alice can check to see if Bob read M . If she receives an answer of `no' attime t, then Alice knows that at time t� �, Bob had not read M .2. Alice can revoke M at time t. If at time t + �, Bob has not read M , thenBob will not ever read M .3. If Bob reads M at time t, then if Alice tries to revoke M , after time t� �,she will be noti�ed that the revocation failed.4. If Bob has not read M at time t + �, then if Alice checked at time t, thenoti�cation says that M has not been read. This is the converse of Goal 1.5. If Alice successfully revokes M , then Bob does not �nd out that Alice senthim a message.6. If Alice successfully revokes M , then Bob does not �nd out that any messagewas sent from anyone.7. Charlie cannot cause M to be revoked.8. Donna cannot cause M to be revoked.9. Charlie or Donna can never check to see if Bob has read M , without accessto the link between Bob and his MUA.10. Charlie cannot cause Alice to receive the wrong noti�cation.11. Donna cannot cause Alice to receive the wrong noti�cation.Some of these requirements are easier to meet than others. We de�ne threelevels of e-mail revocation. In the rest of the paper, we provide solutions tothe problem at each of these levels. As expected, solutions at the levels withthe higher number or requirements come at a greater cost. In each section, wedescribe which requirements are met.

4 InfrastructureThe infrastructure assumptions are the most important in designing protocolsfor e-mail revocation. It is obvious that these protocols would be very easy todesign if we had a full-blown public key infrastructure, where every party hadvalid copies of every other party's public keys. In fact, authentication protocolsin the literature could be used to meet all of our goals.However, it is unrealistic to assume that a public key infrastructure will existany time soon. Our aim was to explore what could be achieved with little or noinfrastructure. Our level 1 protocol assumes that there is absolutely no infras-tructure. In level 2, we assume a weak form of infrastructure to achieve bettersecurity. Rather than assume that there is a universal certifying authority thateverybody trusts to verify user's identities and to issue certi�cates, we assumethat there is a party that is trusted to keep secrets and behave appropriately.This is very di�erent from trusting a CA. In particular, one of the most criti-cized aspects of public key infrastructure is that there is no way to be sure thatCA's are competent in verifying users' identities. Thus, our trusted third partyassumption is weaker than the public key infrastructure assumption. We call ourthird party an honest third party.Thus, we present level 1 and level 2 protocols with increased security at thecost of greater assumptions. One advantage of this is that the level 1 protocolcould be implemented right away. If, at some future date, there is more infras-tructure available, then people could switch to level 2, and maybe even level 3.For the latter, we assume full public key infrastructure where all parties haveeach others' public keys. In this case, secure revocation of e-mail is a simplerproblem.5 Level 1The level 1 system o�ers e-mail revocation under weak assumptions. In particu-lar, although requirement 7 is satis�ed even if Alice or Bob cheat, requirements1-3, 5 and 6 are only satis�ed if all parties play by the rules. This type of systemis useful for users who trust each other and want to have e-mail revocation as aconvenient, useful service. It could also be e�ective for unsophisticated users whowould be unable to mount the attacks necessary to defeat the system. Today,most e-mail users fall into this category. Level 1 is especially suited for peoplewhose mail service is LIM (see Section 2) because in this model, users cannotdirectly access their mail �le, so they cannot defeat revocation by, say, readingtheir spool �le directly.We note that in the description of the protocol we assume in order delivery ofmail messages. For instance, if a user sends an E-mail message and later revokesit by sending a revocation message then we assume the two messages arrive atthe appropriate order. In practice, this is not necessarily the case, and futurework is needed to account for messages that are received in the wrong order.

5.1 Security modelIn level 1, we assume that the principals involved behave according to the pre-scribed protocol. If a party cheats, it can potentially defeat some of the securityrequirements. Figure 1 depicts a typical e-mail system. In level 1, we assumethat Bob does not- eavesdrop on message 1- access the spool �le without MUA recording it- change the behavior of MUAWe present a protocol where requirements 1-7 and 10 hold, under these assump-tions. Requirement 9 holds until Bob actually reads M . At that point, Charlieand Donna will detect the noti�cation message that is returned to Alice.One of the features of our system is that Alice can send a query to MUA tosee if Bob read M . Alice must be able to do this, while Charlie and Donna mustnot be able to generate a valid request to MUA.Donna can trivially cause M to be revoked (requirement 8) by modifying theoriginal message,M , to contain nothing. Similarly,Donna can prevent Alice fromsuccessfully revoking a message by blocking the revocation request, and she canalso tamper with noti�cation messages (revocation successful, etc). Therefore,we assume that Donna will not behave this way. It should be noted that withthe same behavior, Donna could cripple any existing mail system. Our system isnot resistant to such a powerful attacker (nor is any mail system that we know).5.2 The protocolIn the following protocol, we assume that f and h are cryptographically strongone-way functions. h is also a hash function, as it is applied to variable-lengthmessages. f is applied to small, �xed-length messages consisting of a randomstring and a short �xed-size message. In practice, MD5 [12] and DES [9] couldbe used to implement h and f , respectively. We also assume that each mail useragent (MUA) has a data structure called a revocation table, where it stores someuseful information about messages it has received.Step 1: send Alice sends a message to Bob's MUA.{ Alice generates a random string, k.{ Alice computes x = f(k; h(M)) and sends M;x to MUA. She then stores Mand k for future use.{ MUA checks for x in the revocation table, to make sure that this message isnot a replay. If x is not found, then MUA stores M in a regular spool �le.It then computes h(M), creates a revocation table entry, and stores x; h(M)there, with a pointer to M in the spool �le. If x is found, then the messageis a replay and it is logged and ignored.The result of Step 1 is illustrated in Figure 2.

Message 1 Message 1

Alice’s outbox
Bob’s MUA

K
f(k,h(M)),h(M)Fig. 2. Step 1 of Level 1 This �gure illustrates the information that is stored byAlice and Bob's MUA after step 1 of the level 1 protocol is executed.Step 2: check Alice checks to see if Bob has read the message, M . This stepcan be executed any number of times (or not at all) before Step 3.{ Alice generates a new random string, k0.{ Alice recomputes x = f(k; h(M)) using the stored k, computes y = f(k0; h(M)),and sends k; x; y and a keyword check to Bob's MUA. She then replaces kby k0 in her outbox.{ MUA receives k; x; y, and checks for x in the revocation table. If x is notfound, MUA replies that M has been seen.{ If x is found, MUA computes f(k; h(M)), using k from the message it justreceived and h(M) from the revocation table. It then veri�es that f(k; h(M))matches the x just received. If it does not match (i.e. MUA received aninvalid key k), MUA replies that M has been seen (the reason for this replyis explained in the next section).{ If f(k; h(M)) matches x (i.e. the key k is valid), then MUA replaces x by yin the revocation table and replies to Alice that the message has not beenseen.{ If M has been seen, then Alice erases M and k0 from her outbox.The result of step 2 is shown in Figure 3.Step 3: revoke Alice revokes the message, M .{ Alice sends her current stored string, k (which may be di�erent than theoriginal k in step 1, if step 2 was executed) and x = f(k; h(M)) to MUAalong with a keyword revoke.{ Bob's MUA looks for an entry in the revocation table containing x. If one isfound, MUA computes f(k; h(M)) using the key just received and h(M) inthe revocation table. If it matches x, then MUA removes M from the spool�le. MUA also removes the entry x; h(M) from the revocation table. Then,Alice is noti�ed that M was removed successfully.{ If x is not found in the revocation table, then MUA noti�es Alice that themessage has already been seen by Bob.{ Alice then removes M and k from her outbox.

Message 1 Message 1

Alice’s outbox

K’
f(k’,h(M)),h(M)

Bob’s MUAFig. 3. Step 2 of Level 1 This �gure illustrates the information that is stored byAlice and Bob's MUA after step 2 of the level 1 protocol is executed.Step 4: read Bob reads the message, M . This step assumes that there is somemessage M that has not been revoked and that Bob has not read. If there is nosuch message, MUA simply replies that there is no mail.{ Bob requests his mail from MUA.{ MUA sends M to Bob, removes x; h(M) from the revocation table, removesM from the spool �le, and sends h(M) as a receipt to Alice thatM was read.{ Alice receives the receipt for M and searches backwards in her outbox com-paring the hash of each message to h(M).{ Alice removes M and k from her outbox.5.3 Security considerationsWe now discuss the security concerns that shaped the protocol described above.The main concern is that a malicious eavesdropper, Charlie, should not be ableto revoke a message sent by Alice (Goal 7). Furthermore, Charlie should not beable to check whether Alice's mail was read by Bob. We assume that Charliemay not alter messages in transit. However, he may read messages in transit andsend new messages if he so desires. We begin by explaining why our protocolsatis�es Goal 7. We then move on to explain other aspects of the protocol.When Alice �rst sends a message to Bob she picks a random key k. She thenapplies a one-way function to k and obtains x. We assume that given x it isintractable to determine k. This is a standard cryptographic assumption whichis believed to be satis�ed by various potential one-way functions [15]. Recall thatAlice sends x along with the message M . Bob stores x in his revocation table.Since messages cannot be corrupted in transit the link between x and M cannotbe broken by Charlie. Alice keeps the value k hidden in her private outbox.Since Alice is the only one who knows the value k she can prove ownership ofthe message M . On the other hand Charlie cannot determine the value k unlesshe is able to invert the one-way function.The discussion above shows that in both the check and revoke steps Alicemay prove ownership of the message M to Bob by revealing the secret key k.This prevents Charlie from either revoking or checking on a message belonging

to Alice. Of course once the key k is revealed a new secret key must be generated.For this reason during the check step Alice generates a new secret key, k0, andsends its hash to Bob. This is in the same spirit as one time password systems[13] such as S/KEYTM[7].The protocol for checking whether a message has been read contains an in-teresting subtelty. Recall that after the message is read all information regardingthe message is erased. At this point, one can not verify that the party performingthe check is indeed the owner of the message. In other words, there is no wayto prevent Charlie from learning the fact that a message has been read. Indeed,after the message is read, when Charlie performs a check he receives noti�cationsaying \the message has been seen". Before the message is read Charlie can notperform the check protocol since he does not possess the secret key k provingownership of the message. However, observe that when Charlie runs throughthe check protocol using an invalid key the noti�cation sent to him is still \themessage has been seen". Consequently, the response Charlie receives gives himno information as to whether the message has been read or not. On the otherhand, Alice, who knows the secret key k, will receive noti�cation \the messagehas not been seen" when she performs a check before the message is read. Thus,by setting the reply messages appropriately we avoid the di�culty in verifyingownership of the message after it has been read.Notice that in Step 1 when Alice applies the one-way function to k sheis actually evaluating the function x = f(k; h(M)). There are several reasonsfor including the hash of the message h(M) as input to the one-way function.Conceptually it creates a link between the message M and the secret key k.Furthermore, recall that the sender ID and the transmission time are parts ofthe message M (as SMTP headers). As a result the value x depends on thoseparameters as well.Our protocol would run into unexpected behavior if two di�erent messageshashed to the same value x. More precisely, we assume that two di�erent pairs(k;M) and (k0;M 0) satisfy f(k; h(M)) = f(k0; h(M 0)) with negligible probabil-ity. This can be achieved by assuming that x = f(k; h(M)) is chosen from alarge enough space; we chose 512 bits for our implementation. For this reasonif ever f(k; h(M)) = f(k0; h(M 0)) the protocol may safely assume that k = k0and M = M 0. For instance, in Step 1, Bob's MUA checks if the received valuex already appears in the revocation table. If it does, the MUA assumes thatthe received message is a replay of an existing message. Consequently, the newincoming message is dropped.This concludes the security considerations in our protocol. We now discusssome weaknesses of this level 1 protocol. The protocol only works when bothparties Alice and Bob play by the rules. On a DAM system (See section 2), Bobcan easily interfere with his MUA and prevent messages from being revoked. Forinstance, a program written by Bob may periodically copy incoming messagesfrom his spool �le. Doing so will prevent the MUA from revoking messages.(This is not a problem in the LIM model.) In our level 2 protocol, even if Bob3 S/KEY is a trademark of Bellcore.

interferes with his MUA, he cannot prevent e-mail revocation. (We discuss thisin Section 3.)It should also be pointed that our system does not prevent mail messageforgery. For instance, Charlie may prevent Alice from revoking a message byapplying the following strategy: when Alice �rst sends a message, Charlie recordsit. When Charlie notices that Alice chose to revoke the message he resends therecorded message to Bob pretending that it is actually sent from Alice. This waythe original message is stored on Bob's machine as if it was sent from Alice. Thisreplay attack in e�ect prevents Alice from revoking the message. To prevent thisattack one needs the ability to authenticate the identity of the sender. This isaddressed in our level 3 protocol which assumes a public key infrastructure.As a �nal point we note that throughout the section we assume Alice hasa secure pseudo-random number generator. That is, no third party can predictany of the bits generated by Alice's generator. See [5] for a discussion on how togenerate secure random bits in software.5.4 ImplementationWe implemented the level 1 protocol. The implementation applies to the DAMmodel (e.g. UNIX systems), and we assume that all parties use the sendmaildaemon.EnvironmentalAssumptions In our implementationBob's MUA is sendmail,Mailx is the local mail delivery agent, and that Alice's MUA is a form of MHmail. We assume a standard Unix spool �le; Each message begins with \From "and LF is used as a delimiter.Program Overview The implementation is composed of a series of scripts.Alice's scripts have two functions: attaching revocation headers to outgoing mailand sending check and revoke commands. Bob uses a mail �lter script to verifyand execute check and revoke commands.Alice must initially generate a random seed and sequence number. To send arevocable message, Alice composes a message with a special -revoke argumentwhich causes the mailer to compute x and attach revocation headers to themessage draft. Alice's mailer then sends the message to Bob and saves a copyin her revoke folder. Additionally the secret key k is stored as a mail-header aspart of the message in the revoke folder.If a receiver is not con�gured to accept revocable mail, revocation commandsare simply appended to the spool �le. Bob's spool �le holds the incoming mes-sage, but if Alice generates a check or revoke request, Bob's local mail handlerprocesses the request message instead of storing it in the spool �le. If the revoca-ble mail message has already been read, Alice is told that the message \has beenread". Otherwise, Bob's mail �lter will execute a script to perform the check orrevoke. Alice is given the results of the request (eg, request succeeded).

Alice uses the traditional MH scan +revoke command to view revocablemessages. She can scroll through the messages and look at the subject and thetext of the messages. To execute steps 2 or 3 of the protocol, she issues a newcommand, either revoke send.pl check <msgs> or revoke send.pl revoke<msgs>. For users of xmh, it is trivial to add a button to the graphical userinterface to `revoke' or `check' messages. For checks and revocations, Alice'smailer will send a message, \(check/revoke: k,x,y" to Bob, whose .forwardand .maildelivery �les will �lter the message via slocal and eventually runthe script associated with the request.Design Rationale & Alternatives The protocol was implemented in Perlfor two reasons. First, Perl has a powerful regular expression pattern matchingmechanism. This is desirable since a signi�cant amount of string comparisonsare made. Second, Perl is portable to all modern UNIX operating systems. Thisallows the implementation to be used on multiple platforms without any tweak-ing.The one minor disadvantage of using Perl is that the code must be re-interpretted each time Bob receives a revocation request and each time Alicesends revocable mail.4 Using a compiled language such as C would win speed-wise, but the recompilation and platform dependent issues are not worth it forthis simple implementation.Before choosing, MH, we brie
y looked at BSD v.4 mailx (Mail) and pinev3.95. Both of these mailers proved to be hard to modify and monolithic indesign. Instead of dealing with platform compatibility issues and source codepatches, we chose MH mail because of it's modularity, popularity, and its manyGUI's (mh-e, xmh, exmh)[10]. Our implementation is tailored to MH, but itserves the purpose of demonstrating a working protocol and exposing possibleproblems. Unlike most mailers (pine, elm, xmail, etc), each of MH's commandsis a separate program run from the shell prompt. This modularity and the
exi-bility of parameter �les allow the revocation protocol to be implemented withoutrecompiling any source code and giving the revocation routines a sense of trans-parency to the user.The combination of MH's modularity and Perl's portability allow a user toseamlessly use the protocol on most UNIX machines. Furthermore, revocableemail can be sent without needing system administrators.Originally we considered placing a wrapper around sendmail, but this wouldhave required tweaking the sendmail con�guration. It was much easier to placethe wrapper around MH mail, because unlike sendmail's harry con�guration �les,MH provides simple and convenient methods to add new functionality. Users caninstall and use the program more easily.We shifted to the per-user revocation tables instead of the whole systemtables. A large database of all revocable mail would require more infrastructure.The spool �les for each user are natural places to store information.4 However a Perl compiler is in its alpha stages.

De�ning the actual message to hash turned out to be more di�cult than ex-pected because of many details speci�c to SMTP [11]. An encapsulation mech-anism similar to PGP ASCII armour [1] was considered, but we wanted thepresence of cryptography to be less visible to the user. Instead of mandatingspecial message delimiters, we took the more complicated approach of specify-ing exactly what constitutes a message body and headers. This does not entirelysolve the problem, but for the most part, messages are interpreted the same onboth the sending and receiving side.Sendmail and other MUA's place a \>" in front of each instance of \From",followed by a space, at the start of a line in the message body. This can causeproblems as the body to be hashed changes during the transfer. For example,the message body in:To: alice@school.Edu, bob@company.com,cc: person@site.netSubject: Beware of rusty U-LocksHi guys,From now on, beware of evil U-Locks.-Donnawould �rst be translated to:Hi guys,>From now on, beware of evil U-Locks.-DonnaTo thwart this, the revocation process adds the \>" before sending the mes-sage, thereby preventing the MUA from changing anything. Another problem isthat addresses may have domain names appended by sendmail. The capitaliza-tion and whitespace will vary from sender to receiver. Thus, we had to be verycareful to only hash �elds that do not change in transit.Spool �les composition is not de�ned by an Internet standard. Delimitersvary from LF's (mailx) to several C-A's (MDDF). Messages typically begin with\From " and end with a LF. But Bob's revocation process needs to know whatdelimits the message. We assume that the mailx local delivery program is used.By default, messages are separated by LF's.Module Descriptions deslib.perl contains Dennis Ferguson's implementationof DES routines and string2key.revokelib.pl contains many lower-level cryptographic routines used by otherscripts. It is the sole program to decide how to hash a message. The key genera-tion routines are contained here: a new key is generated by taking the output ofa DES encryption on the sequence number with the random seed. The sequencenumber is then incremented and stored with the new key in .revoke.revoke init.pl creates the initial random seed and sequence number for Alice.The seed is generated by folding an input string and a function of the machine

state into a DES key by the Kerberos v4 string-to-key function. The seed andthe sequence number zero are then stored in Alice's /Mail/.revoke �le.Alice uses revoke header.pl to attach special headers to an MH draft �le. Therequired \to" header and optional \subject" header are saved in the draft, butthe \date" and the \from" headers are inserted later in the transfer process.We store the information contained in the revocation table (see Figure 2) asmail-headers embedded in the message. For instance, when Alice sends a messageto Bob she embeds the header X-Revoke-Hash: x in the message.To send a revocable/checkable message, the headers:X-Revoke-Date: <DATE-AND-TIME>X-Revoke-Hash: <ENCRYPTED-HASH>must be in the mail header. This will instruct the receiving end that this messagecan be checked for delivery and revoked from the spool �le. A copy of the messagewith the additional X-Revoke-Key: <key> header is placed in Alice's revokefolder.The string to be hashed is de�ned as the concatenation of the X-Revoke-From�eld body, X-Revoke-Date �eld body, subject �eld body, and the message body.revoke send.pl and mysend.sh are connected with MH to send revocationrequests: check and revoke:Check request:X-Revoke-Command: checkX-Revoke-Key: <DES-KEY>X-Revoke-Hash: <ENCRYPTED-HASH>X-Revoke-New-Hash <NEW-DES-KEY>Revoke request:X-Revoke-Command: revokeX-Revoke-Key: <DES-KEY>X-Revoke-Hash: <ENCRYPTED-HASH>X-Revoke-New-Hash: <NEW-DES-KEY>revoke receive.pl veri�es and executes revocation commands. It is responsiblefor sending reply messages to Alice and removing messages from Bob's spool.Known Problems In our current implementation, messages with multiplerecipients cannot be revoked. Some modi�cations to check/revoke script areneeded. We plan to implement this soon.This implementation does not work with the MH drafts folder. The programdeals only with single draft �les (eg, Mail/draft). Finally, we do not use �lelocking. A robust implementation would require this for multiple revocations totake place concurrently.

Noti�cation programs such as bi� and xbi� display information to the userthat he has a message, sometimes including the �rst few lines of the message.Implementations of revocation should take these into account. In our currentimplementation, we do nothing to prevent noti�cation programs from displayingthis information.6 Level 2This section presents a more secure protocol for revoking electronic mail.6.1 Security modelIn level 2, we assume the existence of an honest third party, T, and that sendersand receivers do not necessarily trust each other. Our security requirement isthat as long as T follows the protocol, then requirements 1-5,7,9-10 of Section 3are met. We do not protect against Donna, an active attacker who can modifymessages in transit. However, requirement 8 holds as long as Donna does notmodify the message at the time it is sent. Also, in the DAM model, requirement6 cannot be met.We do not assume that there is an existing relationship between the sender,the receiver or T. Therefore, we cannot defend against somebody impersonatingT by, say, spoo�ng DNS. The level 3 protocol defends against these attacks (seeSection 7). The main di�erence between level 2 and level 1 is that even if Bobtries to cheat, he will not be able to defeat the security requirements. Level 2 isespecially well suited for the DAM model.6.2 The honest third partyWe specify an honest third party, T, as opposed to a trusted third party becausethis party is only trusted to behave honestly, follow a protocol and not revealits secrets. The term trusted third party is generally used to refer to a party thatis trusted to verify identities and issue statements binding entities to keys. Ourassumptions about T are weaker.T consists of two services that could be o�ered by separate entities (if nec-essary). The �rst service is a mix that is used to protect messages from tra�canalysis. This concept was �rst proposed by Chaum [4], and an example of sucha system is BABEL [6], which also allows users to send anonymous mail withanonymous return addresses. The purpose of the mix is to prevent Bob fromusing tra�c analysis to subvert requirement 5.The second role of T is to provide a server, S, that can be trusted to store se-cret keys that are only released under the right conditions. For greater reliabilityand availability, this service could be distributed to several machines using secretsharing and threshold schemes [14]. Both the mix and the server may consist ofany number of geographically dispersed machines.

6.3 Infrastructure assumptionIn level 2, we assume that there is no existing relationship between Alice andBob (i.e. no shared secrets or public keys). In addition, whenever Alice sendsa message to Bob, Charlie sees everything that was sent. Therefore, there isnothing that can di�erentiate Charlie from Bob from the point of view of thesecure server. Our protocol requires Bob to request a decryption key from thehonest server in order to read messages. Since there is nothing that Bob can dothat Charlie cannot do, Charlie can make the same request to the honest server.Thus, Charlie can cause the honest server to mistakenly believe that Bob hasread a message.The only way to prevent Charlie from impersonating Bob to the honest serveris to assume that Bob can somehow authenticate himself to the honest server.To do this, we assume a small amount of infrastructure. In particular, we requirethat each site register a secret key,w, with the honest server S (the second serviceprovided by T). This is not such a great burden considering that an administratorwill have to upgrade the mail software anyway to use our protocol. Users neednot be aware that there is a site-speci�c secret key shared with S.As mentioned in Section 2, the MUA in the LIM model and the mail daemonin the DAM model are trusted. Therefore, we assume that the mail daemon ineither case can be trusted with secrets, such as w, that it can keep from theusers.6.4 The protocolIn the following protocol, f; h, and MUA are de�ned as in section 5.2;Mix andS are the two components of the honest third party as de�ned in Section 6.2.And w is the secret key shared by the trusted component of Bob's MUA andS. k; k0; and k00 are random strings generated by Alice, and fMgk representsthe message, M , encrypted under key k with a symmetric cipher. When M isencrypted, the entire message, including the headers that direct the message toBob, is encrypted. Then, new headers are added that direct the message to aspecial address at Bob's MUA, where it is processed appropriately. This ensuresthat each message will be unique because it will have information such as thedate, time, sender and receiver.The following protocol is explained in detail in the subsequent section:Step 1: send Alice sends a message to Bob's MUA.{ Alice generates k; k0, and k00 and stores them, along with M , in her outbox.{ Alice encrypts M under k and computes x = f(k0; h(fMgk)) and x0 =f(k00; h(fMgk)).{ Alice sends x,fMgk to Mix, which forwards it to Bob's MUA.{ Alice then sends k; h(fMgk); x0 to S.

{ MUA checks for x in the revocation table, to make sure that this messageis not a replay. If x is not found, then MUA stores fMgk in a special spool�le. Next, MUA computes y = f(w; h(fMgk)). It then creates a revocationtable entry and stores x; h(fMgk); y there, with a pointer to fMgk in thespool �le.{ S stores the triple k; h(fMgk); x0 in a revocation table.The result of Step 1 is illustrated in Figure 4.
MIX

Alice’s outbox

Revocation table
Special

Spool

File

Regular

Spool

File

{M}

k

k

MUA

M: k, k’,k’’

x, h({M}), y

kk, h({M}), x’

S: Trusted serverFig. 4. Step 1 of Level 1 Step 1 of Level 2 This �gure illustrates the informationthat is stored in Alice's outbox, at Bob's MUA, and at the honest server, S after Step1 is completed. The thick lines represent message
ows. The MUA has a regular spool�le which it uses to process e-mail that is not sent using our system and a special spool�le that is used for e-mail that can potentially be revoked.Step 2: check Alice checks to see if Bob has read the message, M .{ Alice generates a new random string, l.{ Alice replaces her stored value of k00 with l and sends k00; f(l; h(fMgk)); h(fMgk)and the keyword check to S.{ S computes z = f(k00; h(fMgk)) and searches for a triple (�; h(fMgk); z) inits revocation table (here � means \don't care"). If no such triple exists inS's revocation table, S replies \message has been seen."{ If the triple is found, S replaces z with the value f(l; h(fMgk)) and replies\message has not been seen."{ If the answer is \message has been seen," then Alice removesM and its keysfrom her outbox.

Step 3: revoke Alice revokes the message, M .{ Alice sends k0 and x = f(k0; h(fMgk) to MUA (via mix), along with thekeyword \revoke". Alice also sends k00; h(fMgk) to S, along with the keyword\revoke".{ MUA looks for an entry in the revocation table containing x. If one is found,MUA computes f(k0; h(fMgk) using the key just received and h(fMgk in therevocation table. If it matches x, then MUA removes fMgk from the spool�le. MUA also removes the entry, x; h(fMgk from the revocation table.{ S computes z = f(k00; h(fMgk)) and searches for a triple (�; h(fMgk); z) inits revocation table (here � means \don't care"). If a match is found, thenthe entire entry, k; h(fMgk); z is removed. S then noti�es Alice that k hasbeen successfully revoked. If no matching entry is found then Alice is noti�edthat the revocation attempt was unsuccessful (presumable, the message hasbeen either read or already revoked).{ Alice then removes M and the associated keys from her outbox.Step 4: read Bob reads the message, M .{ Bob requests his mail from MUA.{ MUA sends y; h(fMgk) to S.{ S looks up h(fMgk) in the revocation table. It then computes f(w; h(fMgk)and compares it to y. If they are equal, S sends k to MUA. S then sendsa noti�cation to Alice that the message encrypted under k has been readand removes the entry from the revocation table. If the check for y does notcompute correctly, it is logged and ignored.{ MUA decrypts fMgk using k and sends M to Bob. MUA then removes theentries from its revocation and spool �les.{ Alice searches her outbox for an entry containing the k received from S andremoves the message and its associated keys from her outbox.6.5 Security considerationsThe advantage of our level 2 protocol over level 1 is that Goals 1-5 are satis�edeven when the receiving party, Bob, does not play by the rules. More precisely,we show that even if Bob has full control over his MUA he cannot defeat goals1-5. Note that in the DAM model, Bob has full control over his MUA since hecan browse through his mailbox using any mail reader of his choice. For instance,Bob may use a mail reader which does not inform Alice that the mail was read.As a result Alice may successfully revoke a message even though the messagehas already been read by Bob. This is a security concern which was purposelyignored in our level 1 protocol and is addressed in level 2. Notice that theseproblems do not exist in the LIM model, since Bob's MUA is part of the LIMsystem and hence Bob has no control over it. Consequently, in the LIM modellevel 1 may be su�cient.

Our level 2 protocol involves several authentication keys. We �rst explainthe purpose of each of these keys and then describe the considerations used indesigning the protocol.{ The key k is used to encrypt the message M . Bob cannot read the messageuntil he receives the decryption key.{ The key k0 is used by Alice to prove ownership of the message to Bob's MUA.This key is used to notify Bob that the message has been revoked and thathe may delete all data associated with it.{ The key k00 is used by Alice to prove ownership of the message to the honestserver S. Alice uses this key when she either requests the server S to revokethe message or when she checks if the message has already been read.{ The key w is a secret key shared by Bob's site and S. It is used to enableBob to prove to S that he is the recipient of the message. We emphasize thefact that we do not require a shared secret per user, but rather per site. Werefer to this as a weak infrastructure assumption.Throughout the section we consider the message as read by Bob as soon asS sends the decryption key, k, to Bob. This is a reasonable assumption since ifall parties follow the protocol then Bob requests the key k when he is ready toread the message.When Alice sends a message to Bob she �rst encrypts the message usinga random key k and sends the encrypted message to Bob using a MIX. Thepurpose of the MIX is to mask the identity of Alice. As a result Bob can inferthat some message was received; however Bob cannot infer the identity of thesender as required by Goal 5. Clearly at this point Bob cannot understand themessage since he does not know the encryption key k.When Alice wishes to check if the message has been read by Bob she queriesthe server S to see if Bob has requested the decryption key k. The protocolused at this point is identical to the one used in the corresponding step of thelevel 1 protocol and the same design considerations of Section 5.3 apply to it. IfBob read the message then the server S will correctly inform Alice of this fact,as required by Goals 1 and 3. The converse, Goal 4, requires a more involvedargument. The di�culty is that an adversary, Charlie, may ask S to send him thekey k. In doing so Charlie fools S into thinking the message has been read (byBob). To prevent this we must provide Bob with means to authenticate himselfto S.Providing Bob with means of authenticating himself to S seems impossibleat �rst without S and Bob sharing a common secret; if all information is public,Charlie can impersonate Bob by simulating Bob's actions. However, we wish toavoid giving secret keys to every user. Fortunately the authentication problemcan be solved using one shared secret key, w, per site. The key w is known only toBob's MUA (e.g. the mail daemon running on Bob's machine) and is inaccessibleto anyone else. Recall that in step 1 of the protocol, when Bob's MUA receivesa message fMgk it �rst computes y = f(w; h(fMgk)) and stores it in Bob'srevocation table along with fMgk. Notice that no one other than Bob or his

MUA has access to this revocation table. Clearly the server S is also capable ofcomputing y. When Bob requests the decryption key k from S he authenticateshimself by sending S the value y.We claim that Charlie cannot determine the value y and consequently hecannot fool S into sending him the key k. This will prove the validity of S'sreply in Step 2 of the protocol and the correctness of the receipt sent back toAlice in Step 4. Observe that during previous invocations of the protocol Charlieobserves the values y1 = f(w; h(fM1gk)); : : : ; yn = f(w; h(fMngk)) for messagesM1; : : : ;Mn. Since h is collision secure we may assume that h(fM1gk); : : : ; h(fMngk); h(fMgk)are distinct. Charlie then has to compute the value y = f(w; h(fMgk)) where Mis the current message. Since f is a symmetric block cipher this is equivalent todecrypting the cipher-text h(fMgk) given the set of plain-text/cipher-text pairs(y1; h(fMngk)); : : :. By de�nition, this cannot be done if f is a secure block ci-pher. Consequently, Charlie cannot fool S into thinking he is Bob. This provesthat Goals 4 and 10 are fully satis�ed.When Alice chooses to revoke a message, she sends a noti�cation to the serverS asking it to erase the encryption key. By doing so the encrypted message sentearlier to Bob is now useless. In other words, Bob will never be able to readAlice's message. It follows that if Alice revokes her message, Bob will not beable to read the message. Hence, Goal 2 is satis�edOur level 2 protocol requires the use of an honest server S to store encryptionkeys k. The storage requirements of the honest server are quite low. One mayavoid using an honest server by making Alice the honest server. That is, whenBob wishes to read his mail he contacts Alice and asks for the decryption key.We avoid this design for several reasons, primarily for availability. It is quitelikely that Bob may wish to read his mail when Alice's server is down. Withouta trusted server, Bob would have to wait for Alice to come back on-line.7 Level 3In level 3, we assume that there is a public key infrastructure. Minimally, thatmeans that the public key of some trusted authority is shared by all, and that thetrusted authority has issued public key certi�cates for all parties. In practice, theonly important thing is that each party has a valid copy of every other party'spublic key. To date, systems requiring a public key infrastructure do not scalewell. The problem is that neither the PEM model [2] nor the PGP model [17] areacceptable as global solutions. In the PEM model, there is a strict certi�cationhierarchy. There are two problems with this model. One is that there are manypeople who are unwilling to trust a single root of the certi�cation tree. Theother problem is that some certi�cation authorities may be more competentthan others at certifying their users.In the PGP model, people are responsible for maintaining their own set ofothers that they trust. Trust can propagate based on transitive trust. The PGPmodel does not scale because di�erent people have di�erent ideas of when thetransitive relationship should hold.

The level 3 system has advantages over levels 1 and 2 because all messagescan be signed as authentic and encrypted for con�dentiality. Revocation is easierbecause every message can be authenticated. However, level 3 solutions can onlybe adopted on an Intranet or Communities of Interest (COI) scale. The protocolsfor this level could be easily built using existing technology.8 ConclusionsThis paper describes the security requirements for adding several new featuresto electronic mail. These features allow users to revoke message that they havepreviously sent, receive noti�cation when messages are read, and check to see ifmessages have been seen yet. Careful analysis shows why the security propertiesof our protocols hold.In the level 1 system, we assume that all parties comply with the rules of theprotocol. This is natural and enforceable in the LIM model. Level 2 protocols aredesigned to withstand users who try to cheat, at the cost of requiring an honestthird party and a weak infrastructure assumption. This protocol is designed forDAM systems. The level 3 protocol is described at a very high level as it is notapplicable in the Internet until the public key infrastructure problem is solved.We implemented the level 1 protocol.References1. D. Atkins, W. Stallings, and P. Zimmermann. Pgp message exchange formats.RFC 1991, August 1996.2. D. Balenson. Privacy enhancement for Internet electronic mail: part iii|algorithms, modes, and identi�ers. RFC 1423, February 1993.3. CCITT. Message handling systems: System model{service elements. CCITT Rec-ommendations X.400, 1984.4. David Chaum. Untraceable electronic mail, return adresses, and digitalpseudonyms. Communications of the ACM, 24(2):84{88, February 1981.5. D. Eastlake, S. Crocker, and J. Schiller. Randomness recommendations for secu-rity. RFC 1750, December 1994.6. Ceki Gulcu and Gene Tsudik. Mixing E-mail with BABEL. Symposium on Net-work and Distributed System Security, pages 2{16, February 1996.7. Neil Haller. The s/key(tm) one-time password system. Symposium on Networkand Distributed System Security, pages 151{157, February 1994.8. MTS volume 23: Messaging and conferencing in MTS, February 1991.9. National Bureau of Standards. Data encryption standard. Federal InformationProcessing Standards Publication, 1(46), 1977.10. J. Peek. MH and xmh: Email for users and programmers, 1996.11. Jonathan B. Postel. Simple mail transfer protocol. RFC 821, August 1982.12. R. Rivest. The md5 message digest algorithm. RFC 1321, April 1992.13. Aviel D. Rubin. Independent one-time passwords. USENIX Journal of ComputingSystems, 9(1), 1996.14. A. Shamir. How to share a secret. Communications of the ACM, 22:612{613,November 1979.

15. Douglas Stinson. Cryptography: Theory and Practice. CRC Press, Inc, 1995.16. Domestic mail manual, September 1995.17. P. Zimmerman. Pgp user's guide. December 4, 1992.

This article was processed using the LATEX macro package with LLNCS style

