Revocation of Unread E-mail in an Untrusted

Network
Aviel D. Rubin! Dan Boneh? Kevin Fu?
rubin@research.att.com dabo@bellcore.com fubob@mit.edu

1 AT&T Research,
2 Bellcore, 445 South St., Morristown, NJ, 07960
Computer Science Dept, M.1.T, Cambridge MA 02139

Abstract. We present protocols for enhancing e-mail systems to allow
for secure revocation of messages. This paper identifies the security re-
quirements for e-mail revocation and then shows how our protocols ad-
here to these requirements. Three different levels of security and threat
models are described. We discuss our implementation of the level 1 pro-
tocol, which assumes no security infrastructure. The protocols were de-
signed so that existing mailers can easily be enhanced with these new
features.

1 Introduction

In the early days of the Internet, the use of electronic mail (e-mail) was limited
to a small subset of highly technical people. It was a luxury that was not enjoyed
by the rest of the population, and most people had never even heard of it. In
spite of the small number of users of e-mail, the protocols (namely, smtp [11] and
X.400 [3]) were highly reliable. Users could assume that if a message was sent,
then either it would be received, or they would be notified that the transmission
failed. In recent years, the use of e-mail spread to the general population. In spite
of the tremendous increase in the number of users, the robustness and reliability
of e-mail 1s still taken for granted. This is a result of standards for how e-mail
1s sent, received and processed. These standards make e-mail a convenient and
reliable means of communication, but they also make i1t difficult to change e-
mail or to add features. In this paper, we propose a feature that can be added to
e-mail without requiring changes to the underlying protocols. Any user wishing
to enable this feature must enhance his mail software, with minor modifications.

It would be nice if e-mail systems enjoyed the same functionality as the US
postal system, but it turns out that they don’t quite measure up. We did some
digging, and discovered a little-known post office procedure [16]. It turns out that
if you mail a letter or a package to someone, and it then becomes important to
you that they not receive it, then there is a way to stop it. It can even be
done by phone. The local postmaster contacts the postmaster at the destination
and alerts him about the recall. The letter is intercepted and returned to you.
The procedure will only work if you provided a return address and a proper

description of the envelope or package. It is a federal offense to lie during the
mail recall procedure.

If the US post office implements revocation, then it seems that such a ser-
vice would be desirable in e-mail as well. However, the electronic equivalent of
the mail recall form 1s non-obvious. We use several examples to illustrate why
revocation is useful.

Take the following typical scenario (which actually occurred). Alice asks her
secretary, Bob, to register her for a conference, where participation is limited.
One week before the conference, Alice calls to confirm her registration, because
she never received a confirmation. The conference organizer tells Alice that she is
not registered. Alice tries to call Bob, but he is away on his lunch break. So, Alice
sends a sharp e-mail message to Bob asking why he did not make the reservation.
20 minutes later, the phone rings. It is the conference organizer saying that there
had been a mistake and that Alice’s registration had been received on time. Alice
must send an apology to Bob. Later that day, Bob reads his e-mail. First, he
sees the sharp note from Alice, and he sends a long, detailed response about
how he took care of everything, and that Alice should not be so quick to blame
him when things go wrong. After sending that message, Bob reads the second
message. He then sends an apology to Alice. Relations at the office are at an
all-time low. The whole problem could have been avoided if Alice had a way of
cancelling the first message she sent before Bob returned from lunch. In most
current e-mail systems, there is no way to do this without contacting a system
administrator or breaking into someone’s account.

A second scenario also occurs quite often, and most readers should be fa-
miliar with this type of event. Charlie is in charge of a meeting for his entire
department of 25 people. He sends out a broadcast message using an e-mail alias
announcing that the meeting will be at noon on Friday. An hour later, he gets
an e-mail response from a member of the department reminding him that Friday
is the company picnic, and that the department is playing another department
in the company softball finals. The CEO of the company is the umpire, and
so Charlie must reschedule. He immediately sends out another broadcast mes-
sage announcing that the meeting has moved to Monday. Over the next two
days, Charlie receives messages from people about the softball conflict. These
messages are usually followed by apologies saying that the person just saw the
second broadcast and never mind. If Charlie had a way to revoke the first broad-
cast message for all users who hadn’t seen it yet, his mailbox would have been
much emptier the rest of the week.

These two scenarios involve people in the same organization. The problem
becomes more interesting for users across the Internet. Again, we use a scenario
to 1llustrate. Donna is negotiating a deal to purchase the ACME toy company.
Her main contact there is Ed. At 4:55 PM, Donna sends Ed an e-mail message
with a bid for $5,000,000. At 5:30, there is no response, so she goes home.
That night, she watches the news and hears that Ed is being sued for unpaid
child support and that he is extremely desperate for cash. She logs into work
from home and checks to see if Ed has received her e-mail yet. She receives

confirmation that he hasn’t. She revokes the e-mail that she sent earlier and
sends a new message with a bid for $3,500,000. The next morning, Ed gets to
work at 9:00 and sees the bid from Donna. He immediately accepts it.

The latest scenario is not possible in today’s Internet for two reasons. There
is no way to find out if a message has been received, and there is no mechanism
for revoking a message. In this paper we present a way to receive a correct noti-
fication on the status of a message (received or not received), and a mechanism
for revoking a message without leaving any evidence that it was ever sent. The
sender will also be able to revoke a message and receive correct notification that
either the message was revoked without leaving any trace, or that it was received
before the revocation completed.

While there are mail systems, such as the Michigan Terminal System (MTS)
[8] and Novell GroupWise™version 4.1 that enable this functionality within
a local site, there is no general-purpose system that allows a user to revoke
a message to an Internet user with a different mail system. Furthermore, these
systems do not protect users from eavesdroppers on their networks. For example,
in MTS, if a user is able to listen in on another user’s communication, say, by
listening to ethernet traffic, then he can cause a message sent by that user to be
revoked. It is obviously desirable that only the user who sends a message should
be able to revoke it.

Finally we note that the ideas and protocols developed in this paper also
apply to the domain of news groups. It is desirable to enable a user to revoke
a message he posted. Currently there is no mechanism which securely enables
users to revoke their postings. As in the E-mail case it i1s desirable that only the
user who posted the message should be allowed to revoke 1t. Our techniques can
be directly applied to securely revoking news postings.

2 E-mail

To familiarize the reader with our terminology we give a high level overview of
electronic mail protocols. A user known as the sender may at any time send mail
to another user known as the receiver. When a mail message is sent it is received
on the receiver side by a mail user agent or MUA for short. At any point in time
the receiver may ask his MUA to deliver all of the new incoming messages. Usu-
ally the MUA is implemented as a daemon running on some server. When new
mail is sent to one of the server’s clients the MUA stores the incoming message
in a spool file. The receiver can read his incoming messages by instructing the
MUA to send him the contents of the spool file.

The MUA is composed of two components. The first handles the reception
and storage of incoming mail messages. The second delivers messages to the re-
ceiver on demand. There are two categories of mail systems. In the first type of
system, users can receive their e-mail only by interacting with a limited inter-
face provided by the MUA. Internet service providers such as America Online,

® GroupWise is a trademark of Novell.

Prodigy, Compuserve, etc. fall into this category. In the second type of system,
users can bypass the MUA and have direct access to their e-mail. This is often
the case in Unix, where users can use the mail program, or they can access their
mail directly by reading a spool file. We will call the first type of system the
Limited Interface Model (LIM) and the second type the Direct Access Model
(DAM). Figure 1 demonstrates a typical LIM e-mail system.

1 MUA
e
|)

User
Seﬁder 3 (bob)
(Alice) Receiver

Fig.1. A typical LIM e-mail system In step 1, Alice sends a message, M, to Bob’s
Mail User Agent, MUA, where it is stored in a spool file. When Bob is ready to read
his mail, he requests his messages from MUA (step 2), and in step 3, MUA sends Bob
his message. Most systems do not implement step 4, where MUA notifies Alice that
Bob read the message.

For the LIM model, we view the MUA as one unit. It receives and stores
messages and then delivers them to the user on demand. In the DAM model,
these two processes are quite different. A process with higher privilege than most
users, called the mail daemon, handles the receipt of incoming messages. These
are stored in a spool file according to the permissions of each user so that users
can access their own mail, but not the mail of others. At this point, users can
access their mail through a mail reading program or directly through the spool
file. In Unix, the mail daemon runs with root privileges so that it can store
messages such that they are owned by different users. Thus, the mail daemon is
a “trusted” program. We will make use of this fact in our protocols.

Our enhancements to the mail system require some changes to the MUA.
Since the MUA is totally out of the user’s control in the LIM model, it is easy to
prevent the user from bypassing our enhancements. Furthermore, in this model
our enhancements can be made transparent to the user. In the DAM model,
only the daemon can be secured. Access to the mail messages must be controlled
through encryption once the messages are stored.

3 Goals and Requirements

In our system, we would like to provide some new capabilities to e-mail systems.
Besides the ability to send and read messages, we would like the sender to be able
to check the status of messages (read or not read), to revoke unread messages,
and to receive notification (a receipt) when a particular message is read.

The following are requirements for the new e-mail system. In the following
list, we assume that Alice has sent message M to Bob, Charlie is a malicious
eavesdropper who can forge message from Alice or Bob, and Donna is a sophis-
ticated attacker who can modify messages in transit and has complete control
of all traffic. We also assume that there 1s a delay, «, for a query to travel from
Alice to Bob, a delay J, for a response to travel from Bob to Alice, and a neg-
ligible processing time for queries. We say that Bob read M if Bob requests M
from his MUA. Obviously, there is no way to determine if Bob actually scanned
the message with his eyes.

It should be noted that a way for Bob to avoid revocation is for him (or a
program written by him) to requests his mail so frequently from his MUA that
there is never a chance for Alice to revoke a message. We say that Bob can avoid
revocation, but that he cannot defeat revocation. That is, Bob cannot prevent
Alice from revoking a message that he has not read. The second protocol in this
paper provides a mechanism for Alice to detect attempts by Bob to avoid revo-
cation. She can then take proper action, such as ceasing further communication
with Bob.

The following are desirable requirements for an e-mail revocation system:

1. Alice can check to see if Bob read M. If she receives an answer of ‘no’ at
time ¢, then Alice knows that at time ¢t — §, Bob had not read M.

2. Alice can revoke M at time t. If at time ¢ 4+ «, Bob has not read M, then
Bob will not ever read M.

3. If Bob reads M at time ¢, then if Alice tries to revoke M, after time ¢ — «,
she will be notified that the revocation failed.

4. If Bob has not read M at time ¢ 4+ «, then if Alice checked at time ¢, the
notification says that M has not been read. This is the converse of Goal 1.

5. If Alice successfully revokes M, then Bob does not find out that Alice sent
him a message.

6. If Alice successfully revokes M, then Bob does not find out that any message
was sent from anyone.

7. Charlie cannot cause M to be revoked.
8. Donna cannot cause M to be revoked.

9. Charlie or Donna can never check to see if Bob has read M, without access

to the link between Bob and his MUA.
10. Charlie cannot cause Alice to receive the wrong notification.

11. Donna cannot cause Alice to receive the wrong notification.

Some of these requirements are easier to meet than others. We define three
levels of e-mail revocation. In the rest of the paper, we provide solutions to
the problem at each of these levels. As expected, solutions at the levels with
the higher number or requirements come at a greater cost. In each section, we
describe which requirements are met.

4 Infrastructure

The infrastructure assumptions are the most important in designing protocols
for e-mail revocation. It is obvious that these protocols would be very easy to
design if we had a full-blown public key infrastructure, where every party had
valid copies of every other party’s public keys. In fact, authentication protocols
in the literature could be used to meet all of our goals.

However, it is unrealistic to assume that a public key infrastructure will exist
any time soon. Qur aim was to explore what could be achieved with little or no
infrastructure. Our level 1 protocol assumes that there is absolutely no infras-
tructure. In level 2, we assume a weak form of infrastructure to achieve better
security. Rather than assume that there is a universal certifying authority that
everybody trusts to verify user’s identities and to issue certificates, we assume
that there is a party that is trusted to keep secrets and behave appropriately.
This 1s very different from trusting a CA. In particular, one of the most criti-
cized aspects of public key infrastructure is that there is no way to be sure that
CA’s are competent in verifying users’ identities. Thus, our trusted third party
assumption 1s weaker than the public key infrastructure assumption. We call our
third party an honest third party.

Thus, we present level 1 and level 2 protocols with increased security at the
cost of greater assumptions. One advantage of this is that the level 1 protocol
could be implemented right away. If, at some future date, there is more infras-
tructure available, then people could switch to level 2, and maybe even level 3.
For the latter, we assume full public key infrastructure where all parties have
each others’ public keys. In this case, secure revocation of e-mail is a simpler
problem.

5 Level 1

The level 1 system offers e-mail revocation under weak assumptions. In particu-
lar, although requirement 7 1s satisfied even if Alice or Bob cheat, requirements
1-3, 5 and 6 are only satisfied if all parties play by the rules. This type of system
is useful for users who trust each other and want to have e-mail revocation as a
convenient, useful service. It could also be effective for unsophisticated users who
would be unable to mount the attacks necessary to defeat the system. Today,
most e-mail users fall into this category. Level 1 1s especially suited for people
whose mail service is LIM (see Section 2) because in this model, users cannot
directly access their mail file, so they cannot defeat revocation by, say, reading
their spool file directly.

We note that in the description of the protocol we assume in order delivery of
mail messages. For instance, if a user sends an E-mail message and later revokes
it by sending a revocation message then we assume the two messages arrive at
the appropriate order. In practice, this 1s not necessarily the case, and future
work 1s needed to account for messages that are received in the wrong order.

5.1 Security model

In level 1, we assume that the principals involved behave according to the pre-
scribed protocol. If a party cheats, it can potentially defeat some of the security
requirements. Figure 1 depicts a typical e-mail system. In level 1, we assume
that Bob does not

- eavesdrop on message 1
- access the spool file without MUA recording it
- change the behavior of MUA

We present a protocol where requirements 1-7 and 10 hold, under these assump-
tions. Requirement 9 holds until Bob actually reads M. At that point, Charlie
and Donna will detect the notification message that is returned to Alice.

One of the features of our system is that Alice can send a query to MUA to
see if Bob read M. Alice must be able to do this, while Charlie and Donna must
not be able to generate a valid request to MUA.

Donna can trivially cause M to be revoked (requirement 8) by modifying the
original message, M, to contain nothing. Similarly, Donna can prevent Alice from
successfully revoking a message by blocking the revocation request, and she can
also tamper with notification messages (revocation successful, etc). Therefore,
we assume that Donna will not behave this way. It should be noted that with
the same behavior, Donna could cripple any existing mail system. Our system is
not resistant to such a powerful attacker (nor is any mail system that we know).

5.2 The protocol

In the following protocol, we assume that f and h are cryptographically strong
one-way functions. & is also a hash function, as it is applied to variable-length
messages. f is applied to small, fixed-length messages consisting of a random
string and a short fixed-size message. In practice, MD5 [12] and DES [9] could
be used to implement & and f, respectively. We also assume that each mail user
agent (MUA) has a data structure called a revocation table, where it stores some
useful information about messages it has received.

Step 1: send Alice sends a message to Bob’s MUA.

— Alice generates a random string, k.

— Alice computes # = f(k,h(M)) and sends M,z to MUA. She then stores M
and k for future use.

— MUA checks for « in the revocation table, to make sure that this message is
not a replay. If « is not found, then MUA stores M in a regular spool file.
Tt then computes h(M), creates a revocation table entry, and stores z, h(M)
there, with a pointer to M in the spool file. If z 1s found, then the message
is a replay and 1t is logged and ignored.

The result of Step 1 is illustrated in Figure 2.

Message 1 Message 1

« e

Bob's MUA
Alice's outbox

Fig.2. Step 1 of Level 1 This figure illustrates the information that is stored by
Alice and Bob’s MUA after step 1 of the level 1 protocol is executed.

Step 2: check Alice checks to see if Bob has read the message, M. This step
can be executed any number of times (or not at all) before Step 3.

Alice generates a new random string, k'.

Alice recomputes # = f(k, h(M)) using the stored k, computes y = f(k', h(M)),
and sends k,z,y and a keyword check to Bob’s MUA. She then replaces k
by k' in her outbox.

MUA receives k,z,y, and checks for x in the revocation table. If z is not
found, MUA replies that M has been seen.

If x is found, MUA computes f(k, h(M)), using k from the message it just
received and h(M) from the revocation table. It then verifies that f(k, h(M))
matches the z just received. If it does not match (i.e. MUA received an
invalid key k), MUA replies that M has been seen (the reason for this reply
is explained in the next section).

If f(k, h(M)) matches (i.e. the key k is valid), then MUA replaces # by y
in the revocation table and replies to Alice that the message has not been
seen.

If M has been seen, then Alice erases M and k' from her outbox.

The result of step 2 is shown in Figure 3.

Step 3: revoke Alice revokes the message, M.

Alice sends her current stored string, k (which may be different than the
original k in step 1, if step 2 was executed) and # = f(k, h(M)) to MUA
along with a keyword revoke.

Bob’s MUA looks for an entry in the revocation table containing x. If one is
found, MUA computes f(k, h(M)) using the key just received and h(M) in
the revocation table. If it matches , then MUA removes M from the spool
file. MUA also removes the entry , h(M) from the revocation table. Then,
Alice 1s notified that M was removed successfully.

If = is not found in the revocation table, then MUA notifies Alice that the
message has already been seen by Bob.

Alice then removes M and k from her outbox.

Message 1 Message 1

< oo

Bob's MUA
Alice's outbox

Fig.3. Step 2 of Level 1 This figure illustrates the information that is stored by
Alice and Bob’s MUA after step 2 of the level 1 protocol is executed.

Step 4: read Bob reads the message, M. This step assumes that there is some
message M that has not been revoked and that Bob has not read. If there is no
such message, MUA simply replies that there is no mail.

— Bob requests his mail from MUA.

— MUA sends M to Bob, removes , h(M) from the revocation table, removes
M from the spool file, and sends h(M) as a receipt to Alice that M was read.

— Alice receives the receipt for M and searches backwards in her outbox com-

paring the hash of each message to h(M).

Alice removes M and k from her outbox.

5.3 Security considerations

We now discuss the security concerns that shaped the protocol described above.
The main concern is that a malicious eavesdropper, Charlie, should not be able
to revoke a message sent by Alice (Goal 7). Furthermore, Charlie should not be
able to check whether Alice’s mail was read by Bob. We assume that Charlie
may not alter messages in transit. However, he may read messages in transit and
send new messages if he so desires. We begin by explaining why our protocol
satisfies Goal 7. We then move on to explain other aspects of the protocol.

When Alice first sends a message to Bob she picks a random key k. She then
applies a one-way function to k& and obtains z. We assume that given z it is
intractable to determine k. This is a standard cryptographic assumption which
is believed to be satisfied by various potential one-way functions [15]. Recall that
Alice sends z along with the message M. Bob stores z in his revocation table.
Since messages cannot be corrupted in transit the link between x and M cannot
be broken by Charlie. Alice keeps the value & hidden in her private outbox.
Since Alice is the only one who knows the value k she can prove ownership of
the message M. On the other hand Charlie cannot determine the value & unless
he 1s able to invert the one-way function.

The discussion above shows that in both the check and revoke steps Alice
may prove ownership of the message M to Bob by revealing the secret key k.
This prevents Charlie from either revoking or checking on a message belonging

to Alice. Of course once the key k is revealed a new secret key must be generated.
For this reason during the check step Alice generates a new secret key, k', and
sends its hash to Bob. This is in the same spirit as one time password systems
[13] such as S/KEYT™]7].

The protocol for checking whether a message has been read contains an in-
teresting subtelty. Recall that after the message is read all information regarding
the message is erased. At this point, one can not verify that the party performing
the check is indeed the owner of the message. In other words, there is no way
to prevent Charlie from learning the fact that a message has been read. Indeed,
after the message is read, when Charlie performs a check he receives notification
saying “the message has been seen”. Before the message is read Charlie can not
perform the check protocol since he does not possess the secret key & proving
ownership of the message. However, observe that when Charlie runs through
the check protocol using an invalid key the notification sent to him is still “the
message has been seen”. Consequently, the response Charlie receives gives him
no information as to whether the message has been read or not. On the other
hand, Alice, who knows the secret key k, will receive notification “the message
has not been seen” when she performs a check before the message is read. Thus,
by setting the reply messages appropriately we avoid the difficulty in verifying
ownership of the message after it has been read.

Notice that in Step 1 when Alice applies the one-way function to k she
is actually evaluating the function © = f(k, h(M)). There are several reasons
for including the hash of the message h(M) as input to the one-way function.
Conceptually it creates a link between the message M and the secret key k.
Furthermore, recall that the sender ID and the transmission time are parts of
the message M (as SMTP headers). As a result the value # depends on those
parameters as well.

Our protocol would run into unexpected behavior if two different messages
hashed to the same value x. More precisely, we assume that two different pairs
(k, M) and (k', M) satisty f(k, h(M)) = f(k', h(M')) with negligible probabil-
ity. This can be achieved by assuming that « = f(k, h(M)) is chosen from a
large enough space; we chose 512 bits for our implementation. For this reason
if ever f(k,h(M)) = f(k',h(M')) the protocol may safely assume that k = &'
and M = M’. For instance, in Step 1, Bob’s MUA checks if the received value
z already appears in the revocation table. If it does, the MUA assumes that
the received message is a replay of an existing message. Consequently, the new
incoming message is dropped.

This concludes the security considerations in our protocol. We now discuss
some weaknesses of this level 1 protocol. The protocol only works when both
parties Alice and Bob play by the rules. On a DAM system (See section 2), Bob
can easily interfere with his MUA and prevent messages from being revoked. For
instance, a program written by Bob may periodically copy incoming messages
from his spool file. Doing so will prevent the MUA from revoking messages.
(This is not a problem in the LIM model.) In our level 2 protocol, even if Bob

® S/KEY is a trademark of Bellcore.

interferes with his MUA | he cannot prevent e-mail revocation. (We discuss this
in Section 3.)

It should also be pointed that our system does not prevent mail message
forgery. For instance, Charlie may prevent Alice from revoking a message by
applying the following strategy: when Alice first sends a message, Charlie records
it. When Charlie notices that Alice chose to revoke the message he resends the
recorded message to Bob pretending that it 1s actually sent from Alice. This way
the original message 1s stored on Bob’s machine as if it was sent from Alice. This
replay attack in effect prevents Alice from revoking the message. To prevent this
attack one needs the ability to authenticate the identity of the sender. This is
addressed in our level 3 protocol which assumes a public key infrastructure.

As a final point we note that throughout the section we assume Alice has
a secure pseudo-random number generator. That is, no third party can predict
any of the bits generated by Alice’s generator. See [5] for a discussion on how to
generate secure random bits in software.

5.4 Implementation

We implemented the level 1 protocol. The implementation applies to the DAM
model (e.g. UNIX systems), and we assume that all parties use the sendmail
daemon.

Environmental Assumptions In our implementation Bob’s MUA is sendmail,
Mailx is the local mail delivery agent, and that Alice’s MUA is a form of MH
mail. We assume a standard Unix spool file; Each message begins with “From ”
and LF is used as a delimiter.

Program Overview The implementation is composed of a series of scripts.
Alice’s scripts have two functions: attaching revocation headers to outgoing mail
and sending check and revoke commands. Bob uses a mail filter script to verify
and execute check and revoke commands.

Alice must initially generate a random seed and sequence number. To send a
revocable message, Alice composes a message with a special —~-revoke argument
which causes the mailer to compute # and attach revocation headers to the
message draft. Alice’s mailer then sends the message to Bob and saves a copy
in her revoke folder. Additionally the secret key k is stored as a mail-header as
part of the message in the revoke folder.

If a receiver 1s not configured to accept revocable mail, revocation commands
are simply appended to the spool file. Bob’s spool file holds the incoming mes-
sage, but if Alice generates a check or revoke request, Bob’s local mail handler
processes the request message instead of storing it in the spool file. If the revoca-
ble mail message has already been read, Alice is told that the message “has been
read”. Otherwise, Bob’s mail filter will execute a script to perform the check or
revoke. Alice is given the results of the request (eg, request succeeded).

Alice uses the traditional MH scan +revoke command to view revocable
messages. She can scroll through the messages and look at the subject and the
text of the messages. To execute steps 2 or 3 of the protocol, she issues a new
command, either revoke_send.pl check <msgs> or revoke_send.pl revoke
<msgs>. For users of xmh, it is trivial to add a button to the graphical user
interface to ‘revoke’ or ‘check’ messages. For checks and revocations, Alice’s
mailer will send a message, “(check/revoke: k,x,y” to Bob, whose .forward
and .maildelivery files will filter the message via slocal and eventually run
the script associated with the request.

Design Rationale & Alternatives The protocol was implemented in Perl
for two reasons. First, Perl has a powerful regular expression pattern matching
mechanism. This is desirable since a significant amount of string comparisons
are made. Second, Perl is portable to all modern UNIX operating systems. This
allows the implementation to be used on multiple platforms without any tweak-
ing.

The one minor disadvantage of using Perl is that the code must be re-
interpretted each time Bob receives a revocation request and each time Alice
sends revocable mail.* Using a compiled language such as C would win speed-
wise, but the recompilation and platform dependent issues are not worth it for
this simple implementation.

Before choosing, MH, we briefly looked at BSD v.4 mailx (Mail) and pine
v3.95. Both of these mailers proved to be hard to modify and monolithic in
design. Instead of dealing with platform compatibility issues and source code
patches, we chose MH mail because of it’s modularity, popularity, and its many
GUD’s (mh-e, xmh, exmh)[10]. Our implementation is tailored to MH, but it
serves the purpose of demonstrating a working protocol and exposing possible
problems. Unlike most mailers (pine, elm, xmail, etc), each of MH’s commands
is a separate program run from the shell prompt. This modularity and the flexi-
bility of parameter files allow the revocation protocol to be implemented without
recompiling any source code and giving the revocation routines a sense of trans-
parency to the user.

The combination of MH’s modularity and Perl’s portability allow a user to
seamlessly use the protocol on most UNIX machines. Furthermore, revocable
email can be sent without needing system administrators.

Originally we considered placing a wrapper around sendmail, but this would
have required tweaking the sendmail configuration. It was much easier to place
the wrapper around MH mail, because unlike sendmail’s harry configuration files,
MH provides simple and convenient methods to add new functionality. Users can
install and use the program more easily.

We shifted to the per-user revocation tables instead of the whole system
tables. A large database of all revocable mail would require more infrastructure.
The spool files for each user are natural places to store information.

* However a Perl compiler is in its alpha stages.

Defining the actual message to hash turned out to be more difficult than ex-
pected because of many details specific to SMTP [11]. An encapsulation mech-
anism similar to PGP ASCII armour [1] was considered, but we wanted the
presence of cryptography to be less visible to the user. Instead of mandating
special message delimiters, we took the more complicated approach of specify-
ing exactly what constitutes a message body and headers. This does not entirely
solve the problem, but for the most part, messages are interpreted the same on
both the sending and receiving side.

Sendmail and other MUA’s place a “>” in front of each instance of “From”,
followed by a space, at the start of a line in the message body. This can cause
problems as the body to be hashed changes during the transfer. For example,
the message body in:

To: alice@school.Edu, bob@company.com,
cc: person@site.net
Subject: Beware of rusty U-Locks

Hi guys,
From now on, beware of evil U-Locks.
-Donna

would first be translated to:

Hi guys,
>From now on, beware of evil U-Locks.
-Donna

To thwart this, the revocation process adds the “>” before sending the mes-
sage, thereby preventing the MUA from changing anything. Another problem is
that addresses may have domain names appended by sendmail. The capitaliza-
tion and whitespace will vary from sender to receiver. Thus, we had to be very
careful to only hash fields that do not change in transit.

Spool files composition is not defined by an Internet standard. Delimiters
vary from LF’s (mailx) to several C-A’s (MDDF). Messages typically begin with
“From ” and end with a LF. But Bob’s revocation process needs to know what
delimits the message. We assume that the mailx local delivery program is used.
By default, messages are separated by LF’s.

Module Descriptions deslib.perl contains Dennis Ferguson’s implementation
of DES routines and string2key.

revokelib. pl contains many lower-level cryptographic routines used by other
scripts. It is the sole program to decide how to hash a message. The key genera-
tion routines are contained here: a new key is generated by taking the output of
a DES encryption on the sequence number with the random seed. The sequence
number is then incremented and stored with the new key in .revoke.

revoke_init. pl creates the initial random seed and sequence number for Alice.
The seed is generated by folding an input string and a function of the machine

state into a DES key by the Kerberos v4 string-to-key function. The seed and
the sequence number zero are then stored in Alice’s /Mail/.revoke file.

Alice uses revoke_header.pl to attach special headers to an MH draft file. The
required “to” header and optional “subject” header are saved in the draft, but
the “date” and the “from” headers are inserted later in the transfer process.

We store the information contained in the revocation table (see Figure 2) as
mail-headers embedded in the message. For instance, when Alice sends a message
to Bob she embeds the header X-Revoke-Hash: z in the message.

To send a revocable/checkable message, the headers:

X-Revoke-Date: <DATE-AND-TIME>
X-Revoke-Hash: <ENCRYPTED-HASH>

must be in the mail header. This will instruct the receiving end that this message
can be checked for delivery and revoked from the spool file. A copy of the message
with the additional X-Revoke-Key: <key> header is placed in Alice’s revoke
folder.

The string to be hashed is defined as the concatenation of the X~-Revoke-From
field body, X-Revoke-Date field body, subject field body, and the message body.

revoke_send.pl and mysend.sh are connected with MH to send revocation
requests: check and revoke:

Check request:

X-Revoke-Command: check
X-Revoke-Key: <DES-KEY>
X-Revoke-Hash: <ENCRYPTED-HASH>
X-Revoke-New-Hash <NEW-DES-KEY>

Revoke request:

X-Revoke-Command: revoke
X-Revoke-Key: <DES-KEY>
X-Revoke-Hash: <ENCRYPTED-HASH>
X-Revoke-New-Hash: <NEW-DES-KEY>

revoke_receive. pl verifies and executes revocation commands. It is responsible
for sending reply messages to Alice and removing messages from Bob’s spool.

Known Problems In our current implementation, messages with multiple
recipients cannot be revoked. Some modifications to check/revoke script are
needed. We plan to implement this soon.

This implementation does not work with the MH drafts folder. The program
deals only with single draft files (eg, Mail/draft). Finally, we do not use file
locking. A robust implementation would require this for multiple revocations to
take place concurrently.

Notification programs such as biff and xbiff display information to the user
that he has a message, sometimes including the first few lines of the message.
Implementations of revocation should take these into account. In our current
implementation, we do nothing to prevent notification programs from displaying
this information.

6 Level 2

This section presents a more secure protocol for revoking electronic mail.

6.1 Security model

In level 2, we assume the existence of an honest third party, T, and that senders
and receivers do not necessarily trust each other. Our security requirement is
that as long as T follows the protocol, then requirements 1-5,7,9-10 of Section 3
are met. We do not protect against Donna, an active attacker who can modify
messages in transit. However, requirement 8 holds as long as Donna does not
modify the message at the time it is sent. Also, in the DAM model, requirement
6 cannot be met.

We do not assume that there is an existing relationship between the sender,
the receiver or T. Therefore, we cannot defend against somebody impersonating
T by, say, spoofing DNS. The level 3 protocol defends against these attacks (see
Section 7). The main difference between level 2 and level 1 is that even if Bob
tries to cheat, he will not be able to defeat the security requirements. Level 2 is
especially well suited for the DAM model.

6.2 The honest third party

We specify an honest third party, T, as opposed to a trusted third party because
this party is only trusted to behave honestly, follow a protocol and not reveal
its secrets. The term trusted therd party is generally used to refer to a party that
is trusted to verify identities and issue statements binding entities to keys. Our
assumptions about T are weaker.

T consists of two services that could be offered by separate entities (if nec-
essary). The first service is a miz that is used to protect messages from traffic
analysis. This concept was first proposed by Chaum [4], and an example of such
a system is BABEL [6], which also allows users to send anonymous mail with
anonymous return addresses. The purpose of the mix is to prevent Bob from
using traffic analysis to subvert requirement 5.

The second role of T is to provide a server, S, that can be trusted to store se-
cret keys that are only released under the right conditions. For greater reliability
and availability, this service could be distributed to several machines using secret
sharing and threshold schemes [14]. Both the mix and the server may consist of
any number of geographically dispersed machines.

6.3 Infrastructure assumption

In level 2, we assume that there is no existing relationship between Alice and
Bob (i.e. no shared secrets or public keys). In addition, whenever Alice sends
a message to Bob, Charlie sees everything that was sent. Therefore, there is
nothing that can differentiate Charlie from Bob from the point of view of the
secure server. Qur protocol requires Bob to request a decryption key from the
honest server in order to read messages. Since there is nothing that Bob can do
that Charlie cannot do, Charlie can make the same request to the honest server.
Thus, Charlie can cause the honest server to mistakenly believe that Bob has
read a message.

The only way to prevent Charlie from impersonating Bob to the honest server
is to assume that Bob can somehow authenticate himself to the honest server.
To do this, we assume a small amount of infrastructure. In particular, we require
that each site register a secret key, w, with the honest server S (the second service
provided by T). This is not such a great burden considering that an administrator
will have to upgrade the mail software anyway to use our protocol. Users need
not be aware that there is a site-specific secret key shared with S.

As mentioned in Section 2, the MUA in the LIM model and the mail daemon
in the DAM model are trusted. Therefore, we assume that the mail daemon in
either case can be trusted with secrets, such as w, that it can keep from the
users.

6.4 The protocol

In the following protocol, f, h, and MUA are defined as in section 5.2; Miz and
S are the two components of the honest third party as defined in Section 6.2.
And w 1s the secret key shared by the trusted component of Bob’s MUA and
S. k, k', and k" are random strings generated by Alice, and {M }; represents
the message, M, encrypted under key k& with a symmetric cipher. When M is
encrypted, the entire message, including the headers that direct the message to
Bob, 1s encrypted. Then, new headers are added that direct the message to a
special address at Bob’s MUA, where it 1s processed appropriately. This ensures
that each message will be unique because 1t will have information such as the
date, time, sender and receiver.
The following protocol is explained in detail in the subsequent section:

Step 1: send Alice sends a message to Bob’s MUA.

— Alice generates k, k', and &’ and stores them, along with M, in her outbox.

— Alice encrypts M under k and computes ¢ = f(k',h({M};)) and 2’ =
P, A).

— Alice sends #,{M }; to Miz, which forwards it to Bob’s MUA.

— Alice then sends k, h({M}x), 2" to S.

— MUA checks for # in the revocation table, to make sure that this message
is not a replay. If # is not found, then MUA stores {M }; in a special spool
file. Next, MUA computes y = f(w, h({M }x)). It then creates a revocation
table entry and stores x, h({M};), y there, with a pointer to {M }; in the
spool file.

— S stores the triple k, h({M }1), 2’ in a revocation table.

The result of Step 1 is illustrated in Figure 4.

™)
by

M: k, k' k'’
—

— |
} Special Regular
} Revocation table Spool Spool
; File File
|

Alice's outbox T
MUA
kK, h({M}), X’

S: Trusted server

Fig. 4. Step 1 of Level 1 Step 1 of Level 2 This figure illustrates the information
that is stored in Alice’s outbox, at Bob’s MUA, and at the honest server, S after Step
1 is completed. The thick lines represent message flows. The MUA has a regular spool
file which it uses to process e-mail that is not sent using our system and a special spool
file that is used for e-mail that can potentially be revoked.

Step 2: check Alice checks to see if Bob has read the message, M.

— Alice generates a new random string, .

— Alice replaces her stored value of £” with [and sends &, f(I, R({M }1)), h({M }x)
and the keyword check to S.

— S computes z = f(k", h({M };)) and searches for a triple (x, h({M }x), z) in
its revocation table (here * means “don’t care”). If no such triple exists in
S’s revocation table, S replies “message has been seen.”

— If the triple is found, S replaces z with the value f({, h({M }1)) and replies
“message has not been seen.”

— If the answer 1s “message has been seen,” then Alice removes M and its keys
from her outbox.

Step 3: revoke Alice revokes the message, M.

— Alice sends k' and » = f(k', h({M}r) to MUA (via miz), along with the
keyword “revoke”. Alice also sends k', h({M };) to S, along with the keyword
“revoke”.

— MUA looks for an entry in the revocation table containing . If one is found,
MUA computes f(k', A({ M }) using the key just received and A({M }j in the
revocation table. If it matches z, then MUA removes { M} from the spool
file. MUA also removes the entry, z, h({M }; from the revocation table.

— S computes z = f(k", h({M };)) and searches for a triple (x, A({M }1), z) in
its revocation table (here # means “don’t care”). If a match is found, then
the entire entry, k, h({M }1), z is removed. S then notifies Alice that k has
been successfully revoked. If no matching entry is found then Alice is notified
that the revocation attempt was unsuccessful (presumable, the message has
been either read or already revoked).

— Alice then removes M and the associated keys from her outbox.

Step 4: read Bob reads the message, M.

— Bob requests his mail from MUA.

— MUA sends y, h({ M }) to S.

— S looks up A({M }1) in the revocation table. It then computes f(w, h({M }x)
and compares it to y. If they are equal, S sends k& to MUA. S then sends
a notification to Alice that the message encrypted under & has been read
and removes the entry from the revocation table. If the check for y does not
compute correctly, it is logged and ignored.

— MUA decrypts {M };; using & and sends M to Bob. MUA then removes the
entries from 1ts revocation and spool files.

— Alice searches her outbox for an entry containing the k received from S and
removes the message and its associated keys from her outbox.

6.5 Security considerations

The advantage of our level 2 protocol over level 1 1s that Goals 1-5 are satisfied
even when the receiving party, Bob, does not play by the rules. More precisely,
we show that even if Bob has full control over his MUA he cannot defeat goals
1-5. Note that in the DAM model, Bob has full control over his MUA since he
can browse through his mailbox using any mail reader of his choice. For instance,
Bob may use a mail reader which does not inform Alice that the mail was read.
As a result Alice may successfully revoke a message even though the message
has already been read by Bob. This is a security concern which was purposely
ignored in our level 1 protocol and is addressed in level 2. Notice that these
problems do not exist in the LIM model, since Bob’s MUA is part of the LIM
system and hence Bob has no control over it. Consequently, in the LIM model
level 1 may be sufficient.

Our level 2 protocol involves several authentication keys. We first explain
the purpose of each of these keys and then describe the considerations used in
designing the protocol.

— The key k is used to encrypt the message M. Bob cannot read the message
until he receives the decryption key.

— The key k&’ is used by Alice to prove ownership of the message to Bob’s MUA.
This key 1s used to notify Bob that the message has been revoked and that
he may delete all data associated with it.

— The key k" is used by Alice to prove ownership of the message to the honest

server S. Alice uses this key when she either requests the server S to revoke

the message or when she checks if the message has already been read.

The key w is a secret key shared by Bob’s site and S. It is used to enable

Bob to prove to S that he is the recipient of the message. We emphasize the

fact that we do not require a shared secret per user, but rather per site. We

refer to this as a weak infrastructure assumption.

Throughout the section we consider the message as read by Bob as soon as
S sends the decryption key, &, to Bob. This is a reasonable assumption since if
all parties follow the protocol then Bob requests the key & when he is ready to
read the message.

When Alice sends a message to Bob she first encrypts the message using
a random key k and sends the encrypted message to Bob using a MIX. The
purpose of the MIX is to mask the identity of Alice. As a result Bob can infer
that some message was received; however Bob cannot infer the identity of the
sender as required by Goal 5. Clearly at this point Bob cannot understand the
message since he does not know the encryption key k.

When Alice wishes to check if the message has been read by Bob she queries
the server S to see if Bob has requested the decryption key k. The protocol
used at this point is identical to the one used in the corresponding step of the
level 1 protocol and the same design considerations of Section 5.3 apply to it. If
Bob read the message then the server S will correctly inform Alice of this fact,
as required by Goals 1 and 3. The converse, Goal 4, requires a more involved
argument. The difficulty is that an adversary, Charlie, may ask .S to send him the
key k. In doing so Charlie fools S into thinking the message has been read (by
Bob). To prevent this we must provide Bob with means to authenticate himself
to 5.

Providing Bob with means of authenticating himself to S seems impossible
at first without S and Bob sharing a common secret; if all information is public,
Charlie can impersonate Bob by simulating Bob’s actions. However, we wish to
avoid giving secret keys to every user. Fortunately the authentication problem
can be solved using one shared secret key, w, per site. The key w is known only to
Bob’s MUA (e.g. the mail daemon running on Bob’s machine) and is inaccessible
to anyone else. Recall that in step 1 of the protocol, when Bob’s MUA receives
a message {M };; it first computes y = f(w, h({M})) and stores it in Bob’s
revocation table along with {M}g. Notice that no one other than Bob or his

MUA has access to this revocation table. Clearly the server S is also capable of
computing y. When Bob requests the decryption key & from S he authenticates
himself by sending S the value y.

We claim that Charlie cannot determine the value y and consequently he
cannot fool S into sending him the key k. This will prove the validity of S’s
reply in Step 2 of the protocol and the correctness of the receipt sent back to
Alice in Step 4. Observe that during previous invocations of the protocol Charlie
observes the values y1 = f(w, h({M1}k)), ..., yn = flw, A({ My }1)) for messages
My, ..., M,.Since his collision secure we may assume that h({ M1 }), ..., h({Mn}i), R({M }1)
are distinct. Charlie then has to compute the value y = f(w, h({M }x)) where M
is the current message. Since f is a symmetric block cipher this is equivalent to
decrypting the cipher-text A({M }) given the set of plain-text/cipher-text pairs
(y1, R({Mn}r)), By definition, this cannot be done if f is a secure block ci-
pher. Consequently, Charlie cannot fool S into thinking he is Bob. This proves
that Goals 4 and 10 are fully satisfied.

When Alice chooses to revoke a message, she sends a notification to the server
S asking it to erase the encryption key. By doing so the encrypted message sent
earlier to Bob is now useless. In other words, Bob will never be able to read
Alice’s message. It follows that if Alice revokes her message, Bob will not be
able to read the message. Hence, Goal 2 is satisfied

Our level 2 protocol requires the use of an honest server S to store encryption
keys k. The storage requirements of the honest server are quite low. One may
avoid using an honest server by making Alice the honest server. That is, when
Bob wishes to read his mail he contacts Alice and asks for the decryption key.
We avoid this design for several reasons, primarily for availability. It is quite
likely that Bob may wish to read his mail when Alice’s server is down. Without
a trusted server, Bob would have to wait for Alice to come back on-line.

7 Level 3

In level 3, we assume that there is a public key infrastructure. Minimally, that
means that the public key of some trusted authority is shared by all, and that the
trusted authority has issued public key certificates for all parties. In practice, the
only important thing is that each party has a valid copy of every other party’s
public key. To date, systems requiring a public key infrastructure do not scale
well. The problem is that neither the PEM model [2] nor the PGP model [17] are
acceptable as global solutions. In the PEM model, there is a strict certification
hierarchy. There are two problems with this model. One is that there are many
people who are unwilling to trust a single root of the certification tree. The
other problem is that some certification authorities may be more competent
than others at certifying their users.

In the PGP model, people are responsible for maintaining their own set of
others that they trust. Trust can propagate based on transitive trust. The PGP
model does not scale because different people have different ideas of when the
transitive relationship should hold.

The level 3 system has advantages over levels 1 and 2 because all messages
can be signed as authentic and encrypted for confidentiality. Revocation is easier
because every message can be authenticated. However, level 3 solutions can only
be adopted on an Intranet or Communities of Interest (COIT) scale. The protocols
for this level could be easily built using existing technology.

8 Conclusions

This paper describes the security requirements for adding several new features
to electronic mail. These features allow users to revoke message that they have
previously sent, receive notification when messages are read, and check to see if
messages have been seen yet. Careful analysis shows why the security properties
of our protocols hold.

In the level 1 system, we assume that all parties comply with the rules of the
protocol. This is natural and enforceable in the LIM model. Level 2 protocols are
designed to withstand users who try to cheat, at the cost of requiring an honest
third party and a weak infrastructure assumption. This protocol is designed for
DAM systems. The level 3 protocol is described at a very high level as it is not
applicable in the Internet until the public key infrastructure problem is solved.

We implemented the level 1 protocol.

References

1. D. Atkins, W. Stallings, and P. Zimmermann. Pgp message exchange formats.
RFC 1991, August 1996.
2. D. Balenson. Privacy enhancement for Internet electronic mail: part iii—
algorithms, modes, and identifiers. RFC 1423, February 1993.
3. CCITT. Message handling systems: System model-service elements. CCITT Rec-
ommendations X.400, 1984.
4. David Chaum. Untraceable electronic mail, return adresses, and digital
pseudonyms. Communications of the ACM, 24(2):84-88, February 1981.
5. D. Eastlake, S. Crocker, and J. Schiller. Randomness recommendations for secu-
rity. REC 1750, December 1994.
6. Ceki Gulcu and Gene Tsudik. Mixing E-mail with BABEL. Symposium on Net-
work and Distributed System Security, pages 2—16, February 1996.
7. Neil Haller. The s/key(tm) one-time password system. Symposium on Network
and Distributed System Security, pages 151-157, February 1994.
8. MTS volume 23: Messaging and conferencing in MTS, February 1991.
9. National Bureau of Standards. Data encryption standard. Federal Information
Processing Standards Publication, 1(46), 1977.
10. J. Peek. MH and xmh: Email for users and programmers, 1996.
11. Jonathan B. Postel. Simple mail transfer protocol. RFC 821, August 1982.
12. R. Rivest. The md5 message digest algorithm. RFC 1321, April 1992.
13. Aviel D. Rubin. Independent one-time passwords. USENIX Journal of Computing
Systems, 9(1), 1996.
14. A. Shamir. How to share a secret. Communications of the ACM, 22:612-613,
November 1979.

15. Douglas Stinson. Cryptography: Theory and Practice. CRC Press, Inc, 1995.
16. Domestic mail manual, September 1995.
17. P. Zimmerman. Pgp user’s guide. December 4, 1992.

This article was processed using the ¥TEX macro package with LLNCS style

