
IACR Transactions on Cryptographic Hardware and Embedded Systems
ISSN 2569-2925, Vol. 2022, No. 4, pp. 463–489. DOI:10.46586/tches.v2022.i4.463-489

Redshift: Manipulating Signal Propagation Delay
via Continuous-Wave Lasers

Kohei Yamashita1, Benjamin Cyr2, Kevin Fu2,
Wayne Burleson3 and Takeshi Sugawara1

1 The University of Electro-Communications, Tokyo, Japan, {yamashita,sugawara}@uec.ac.jp
2 University of Michigan, Ann Arbor, MI, USA, {bencyr,kevinfu}@umich.edu

3 University of Massachusetts, Amherst, MA, USA, burleson@umass.edu

Abstract. We propose a new laser injection attack Redshift that manipulates signal
propagation delay, allowing for precise control of oscillator frequencies and other
behaviors in delay-sensitive circuits. The target circuits have a significant sensitivity
to light, and a low-power continuous-wave laser, similar to a laser pointer, is sufficient
for the attack. This is in contrast to previous fault injection attacks that use high-
powered laser pulses to flip digital bits. This significantly reduces the cost of the
attack and extends the range of possible attackers. Moreover, the attack potentially
evades sensor-based countermeasures configured for conventional pulse lasers. To
demonstrate Redshift, we target ring-oscillator and arbiter PUFs that are used in
cryptographic applications. By precisely controlling signal propagation delays within
these circuits, an attacker can control the output of a PUF to perform a state-recovery
attack and reveal a secret key. We finally discuss the physical causality of the attack
and potential countermeasures.
Keywords: Laser Fault Injection · Physically Unclonable Function · Delay-Sensitive
Circuits · Oscillator

1 Introduction
There is a continuous demand for network-enabled embedded devices to extend ever-
growing information technologies further into the physical world. Unfortunately, any new
technology always comes with new attack surfaces; such embedded devices are exposed to
local attackers with physical access. Ensuring security against local attackers is a challenging
task because they can use physical attacks including side-channel attacks [MOP07] and
fault-injection attacks [DFM+11, JT12, KSV13]. The attacks pose realistic threats to
otherwise secure embedded devices, such as smartcards, and researchers have been studying
new attacks and countermeasures for more than two decades.

Laser fault injection (LFI) induces faults on a target chip by applying laser stimula-
tion [SA02]. Among many ways to inject faults [DFM+11, JT12, KSV13], LFI is considered
particularly effective because of its high spatial selectivity. By illuminating a particular
coordinate with a tiny laser spot, an attacker can induce precise faults such as a single
bit flip in a particular address in memory. This is in contrast to the other fault-injection
methods, such as clock glitching, that globally affect a target chip. The industry considers
LFI a realistic threat and certification schemes (e.g., EAL5+ in Common Criteria [Joi20])
require penetration testing against LFI. To support this ecosystem, several vendors sell
LFI instruments for security assessment [Risb, Alpa].

The conventional LFI focuses on digital circuits that implement cryptographic algo-
rithms [DBC+18]. The state-of-the-art LFI setup is optimized for the peak laser power

Licensed under Creative Commons License CC-BY 4.0.
Received: 2022-04-15 Accepted: 2022-06-15 Published: 2022-08-31

https://doi.org/10.46586/tches.v2022.i4.463-489
mailto:yamashita@uec.ac.jp, sugawara@uec.ac.jp
mailto:bencyr@umich.edu, kevinfu@umich.edu
mailto:burleson@umass.edu
http://creativecommons.org/licenses/by/4.0/

464 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

needed for a successful bitflip in digital circuits. Such a modern LFI setup is extremely
expensive, typically costing more than $100,000, and is only available to well-funded
attackers.

Besides LFI, there are several light-induced interferences in the wild. Xenon Death
Flash [Upt15] is an issue found in Raspberry Pi 2, wherein illuminating the circuit board
with a camera flash causes the system to reboot. The light interfered with a voltage
regulator in a bare-silicon package and caused the problem. Another example is Light
Commands [SCR+20] that silently injects voice commands to MEMS microphones with a
low-power, modulated laser. The researchers identified that an ASIC inside the microphone
package is one of the causes. The laser light reached the ASIC through the microphone’s
acoustic port and induced an electrical signal representing false audio accepted by the
computer system as authentic audio.

The interesting gap between the above two attacks motivated our study. On the one
hand, a conventional LFI needs an optimized high-power and short-pulse laser. On the
other hand, ordinary camera flashes and laser pointers were sufficient to cause interference.
The gap led us to the hypothesis that certain analog and timing circuits are more sensitive
to light because they handle more variation in voltage and delay than digital circuits. If
this hypothesis is correct, more light-sensitive targets opens another direction of low-cost
laser injection attacks [SA02, SH07, GGS17] that extend the potential attackers from
well-funded organizations to individuals with low-cost equipment.

Among many analog circuits, we focus on the ones using signal propagation delay,
namely delay-sensitive circuits. They are common in cryptographic modules for real-
izing non-digital features using logic gates only, e.g., physically unclonable functions
(PUFs) [Mae13], random-number generators [MM09], and on-chip sensors [HBB+16]. In
particular, we set the ring-oscillator PUF (RO-PUF) and the arbiter PUF (A-PUF) as
our targets, suspecting that laser injection would circumvent implicit assumptions of some
PUF threat models.

1.1 Contributions
Manipulating Propagation Delay via Continuous-Wave Lasers (Sections 3 and 4) We
propose Redshift, an attack that manipulates the behaviors of delay-sensitive circuits
through laser stimulation. The targeted delay-sensitive circuits are highly sensitive to light,
and Redshift works with a continuous-wave laser similar to a laser pointer, which is too
weak to attack digital components. Because of this, a simple laser module in conjunction
with a simple microscope is enough to perform Redshift.

Oscillator Frequency Shift (Section 5) Because of its affects on propagation delay,
Redshift almost linearly controls the frequency of oscillators with increasing laser power.
By applying the same laser stimulation to ring oscillators used in the RO-PUF, an attacker
can almost monotonically decrease the Hamming weights in PUF states. This phenomenon
is verified in a controlled manner with custom RO-PUF circuits fabricated with 180-nm
and 45-nm technologies. To further indicate the feasibility of Redshift on real devices, we
replicate the the light-induced oscillator manipulation on three off-the-shelf microcontrollers
from different vendors: Microchip SAM L11, STMicroelectronics STM32F4, and NXP
LPC55S69 [Sem21].

Arbiter PUF Manipulation (Section 6) The A-PUF, another delay-based PUF with
different measurement principle, has a similar light sensitivity, too. By applying laser
stimulation, an attacker can increase the propagation delay within the electrical paths
of A-PUF and monotonically decrease the Hamming weights of the A-PUF states. This

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 465

manipulation is also verified with custom A-PUF circuits fabricated with 180-nm and
45-nm technologies.

State-Recovery Attack (Section 7) By exploiting the PUF states after light-injection
manipulation, an attacker can recover a secret PUF state with a practical level of compu-
tational complexity. Using a combination of Redshift and an extension of Zeitouni et al.’s
algorithm [ZOW+16], we successfully recover the secret PUF states in all four custom
targets (180-nm RO-PUF, 40-nm RO-PUF, 180-nm A-PUF, and 40-nm A-PUF).

Causality and Countermeasures (Section 8) The conventional photoelectric model,
which abstracts LFI to a current source, can explain the behaviors of the RO-PUFs and
A-PUFs under laser stimulation. Finally, we suggest several countermeasures against
Redshift including an improved on-chip sensor that integrates incident optical power over
time.

2 Preliminary
We briefly summarize the conventional works on LFI, PUF, and its attack.

2.1 Laser Fault Injection
Semiconductor circuits are inherently sensitive to incident light energy, which can cause soft
errors similar to those generated by ionizing radiation [Hab65]. Skorobogatov and Anderson
first exploited such light-induced errors to attack smartcards and microcontrollers [SA02].
The attack using a laser, i.e., LFI, has several advantages over other fault-injection
methods such as clock and voltage glitching. In particular, LFI enables a more precise and
stealthy attack by selectively illuminating a particular coordinate. Consequently, many
research works began to thoroughly investigate LFI and its applications to many different
circuits [KSV13, DFM+11]. In the meantime, the industry has established the ecosystem
for evaluating and certifying the resistance against LFI [Risb, Alpa, Joi20].

A parasitic photodiode explains the physical causality behind LFI [MFS+18]. Without
an electrical field on the gate terminal, a MOS transistor prevents a current flowing
between the source and drain terminals. A reverse PN junction between the substrate
and the highly doped regions contributes to this electrical isolation, and this PN junction
acts as a parasitic photodiode under laser stimulation. When laser light reaches the
junction, it generates electron-hole pairs by the photoelectric effect. The generation of
these carriers in the presence of the built-in electric field causes a current flow between
otherwise non-conducting transistor terminals. If this photocurrent disturbs a voltage
signal to an intermediate level, it can result in a bitflip. Further details about the causality
are discussed in Section 8.1.

Since digital circuits periodically refresh their electrical states at clock edges, the
attacker needs to inject enough optical energy within a clock cycle to cause a bitflip. But if
too much energy is injected, it can cause heat buildup and permanent damage to the device.
Therefore short, high-power laser pulses are necessary for a successful attack against these
digital circuits. For example, a 1064-nm single-mode laser in Riscure’s Laser Station 2
emits a pulse as narrow as 2 nanoseconds, with its peak power reaching 4.6 watts [Risb].

Short-pulse lasers are on the cutting edge of optical engineering, requiring special
techniques such as Q-switching [Risa] and optical amplification [Alpb], which signif-
icantly increases the instruments’ cost. Breier et al. reported the cost of around
€150,000 [BJ15]. Meanwhile, van Woudenberg et al. estimated the cost ranging from
$50,000 to $150,000 [vWWM11]. Similarly, the Joint Interpretation Library (JIL), a

466 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

working group organized for certifying cryptographic modules, categorizes the high-end
laser station as specialized, rated between €10,000–200,000 [Joi20].

2.2 PUFs and their Application to Secure Key Storage
Physical Unclonable Functions (PUFs) are circuits that provide device-unique identifiers
that are used in cryptographic modules [Mae13]. The key idea is to extract uniqueness
from slight differences in each transistor (e.g., threshold voltage) due to manufacturing
process variation. Researchers have been designing sophisticated circuits that efficiently
harvest device-specific uniqueness with a variety of mechanisms. Some PUFs use digital
components only and are available on FPGAs and semi-custom ASICs [GKST07]. Here,
variation in signal propagation delay is frequently used to extract device-unique features
using digital components.

Ring-Oscillator PUF (RO-PUF) [SD07] The RO-PUF uses oscillation frequencies of
ring oscillators as a source of uniqueness. Each logic gate has a different propagation delay
due to several manufacturing variations such as transistor sizes and dopant density. The
RO-PUF efficiently extracts such variation using oscillators. The RO-PUF has a set of
ring oscillators and uses their relative frequencies for generating a state.

Arbiter PUF (A-PUF) [LLG+05] The A-PUF also uses propagation delays in logic gates
but with another circuit. In an A-PUF, a step signal is sent to two distinct electrical paths
with slight differences in propagation delay due to device variation. An arbiter circuit
determines the faster path, which is used as a binary output. Using cascaded selectors, it
configures the electrical paths using challenge bits.

SRAM PUF [GKST07, HBF07] A 1-bit SRAM cell has two electrically stable states
corresponding to the stored bit value. Once a cell moves to a stable state, it will stay
there until a write operation overwrites it. When a chip is turned on, each SRAM cell
starts from an unstable state and eventually converges to one of the two stable states. The
destination is determined by manufacturing variation. Therefore, the SRAM PUF reads
the SRAM’s initial values and uses them as a PUF state [GKST07, HBF07].

2.2.1 Secure Key Storage Using PUF

A common PUF application is secure key management with the key encryption key
(KEK) [Int20]. We denote a binary string from a PUF as the PUF state s. There are
techniques for securely correcting errors in s, e.g., fuzzy extractor [GKST07]. As a result,
PUF provides an error-free and device-unique key kPUF, which stays within the chip during
its lifetime. The system encapsulates a pre-shared key k using kPUF:

ck = EnckPUF(k). (1)

The system generates ck at an enroll phase and stores it in external non-volatile memory.
In each bootup, the system (i) generates kPUF by calling a PUF, (ii) retrieves ck from the
non-volatile memory, and (iii) recovers k by decrypting ck with kPUF. The system finally
provides a cryptographic service using k. Those keys disappear when the device is powered
down, providing security against static reverse engineering attacks [TJ11, CSW16].

PUF-based key storage has several real-world applications. In particular, NXP Semi-
conductors’ LPC55Sxx devices provide a set of APIs for realizing KEK using SRAM
PUF [Sem19]. Other vendors use delay-sensitive PUFs for PUF-based key storage, e.g.,
A-PUF [DZ04] and Loop PUF [CDGB12, Sec22]1.

1Strong PUFs can be used for key storage by limiting the challenge space [Int20], and there are research
works for choosing an efficient subset of challenges [RSGD16].

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 467

s0=0

τ0 < < <

s∞=sPUFs1

τ1 τi τ∞

Not visible
from
the attacker

si

Dev[s1](q) Dev[si](q) Dev[sPUF](q)

x0 x1 xi xPUF

PUF PUF PUF PUF

< <… …Pulse widths:

Cryptographic
responses:

<

s2

τ2

Dev[s2](q)

x2

PUF

Dev[s0](q)
Search Search Search Search

Figure 1: Illustration of Zeitouni et al.’s attack that manipulates the PUF internal state
exploiting the SRAM remanence effect.

Algorithm 1 Rec(xPUF, {xi})
1: i← 0; s0 ← 0
2: repeat
3: Set i← i+ 1
4: si ← Finder(si−1, q, xi)
5: if si = ⊥ then return ⊥
6: until xi = xPUF
7: return si

Algorithm 2 Finder(s, q, x)
1: Make a set of s’s neighbors S
2: for ŝ ∈ S do
3: x̂← Dev[ŝ](q)
4: if x̂ = x then return ŝ
5: end for
6: return ⊥

2.3 Zeitouni et al’s Attack on SRAM PUF [ZOW+16]
There are several side-channel and fault-injection attacks on PUF [Taj17]. In particular,
Zeitouni et al. proposed a sophisticated attack on key storage using an SRAM PUF. The
attack exploits the remanence effect: a phenomenon that an SRAM cell preserves its data
for a short period after power is off [HBF07]. By exploiting the remanence effect, an
attacker can partially control the PUF state.

In a normal case, the SRAM PUF generates a PUF state sPUF, which is secret from
the attacker. The attacker can send a query q and obtain a response Dev[sPUF](q). Here,
Dev· abstracts a service using the PUF state; for example, the system recovers a pre-
shared key k from sPUF as described in Section 2.2.1 and returns a ciphertext obtained by
encrypting q with k for challenge-and-response authentication. Here, Dev· is assumed
to be public.

Figure 1 illustrates the attack process. First, the attacker writes zeroes to the target
SRAM cells and resets the device for τ seconds. The normal case described above
corresponds to a sufficiently long pulse, namely τ∞. In contrast, when the pulse is very
short, namely τ0, the SRAM preserves the data across the reset by the remanence effect,
and the PUF state becomes s0 = 0. The attacker obtains Dev[s0](q) accordingly. Then,
the attacker sends a slightly longer pulse t1, which results in an intermediate state s1 that
satisfies HW(s0) ≤ HW(s1) wherein HW(·) is the Hamming weight. The attacker repeats
the above process by gradually increasing the pulse widths τ0 < · · · < τi < · · · < τ∞, and
the corresponding PUF states satisfy

0 = HW(s0) ≤ · · · ≤ HW(si) ≤ · · · ≤ HW(s∞ = sPUF). (2)

In the meantime, the attacker obtains the set of responses {xi} wherein xi = Dev[si](q).
If the increment of the pulse widths is sufficiently small, the neighboring states are very

close, i.e., HW(si ⊕ si+1) becomes small. In this situation, the attacker can find si+1 by
exhaustively searching the neighbors of si. By recursively repeating the process starting

468 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

Figure 2: A ring oscillator’s sensitivity to light: the oscillation frequency decreases as we
increase the laser power. The results are similar across the same circuits implemented
with the (left) 180-nm and (right) 40-nm CMOS technologies.

from s0 = 0, the attacker eventually recovers the secret state sPUF. Algorithm 1 describe
the process. Here, Finder realizes the neighbor search as described in Algorithm 2; the
algorithm searches for a state corresponding to the output x given the previous state s.
For each neighbor ŝ, the attacker emulates Dev and obtains x̂ = Dev[ŝ](q). Here, x̂ = x
implies that ŝ is the desired one. Finder returns ⊥ when the search is unsuccessful.

3 Proposed Method
We briefly summarize Redshift and discuss its advantages, followed by the threat model
describing the attacker’s accessibility.

3.1 Principle
Redshift is a laser injection attack targeting delay-sensitive circuits, such as oscillators and
arbiter PUFs, by changing signal propagation delay with laser stimulation. This attack
is different than conventional LFIs because it changes the target’s behavior within the
analog domain rather than causing pure digital faults [DFM+11, JT12, KSV13]. Redshift
is also different than conventional optical interferences [Upt15, SCR+20] in that it exploits
spatial selectivity by using a tiny laser spot focused with a microscope.

A concrete example of Redshift is the precise control of the frequency of ring oscillators.
We measure two ASIC chips fabricated with 180-nm and 40-nm CMOS technologies
(Figure 2-(left) and -(right)). During the experiment, a cheap continuous-wave laser
diode illuminates the target ring oscillator under a microscope. Figure 2 shows the linear
relationship between the oscillation frequency (the vertical axis) and the injected laser
power (the horizontal axis). The maximum laser power of 1.75 mW is several orders of
magnitude lower than conventional LFI tools, and even less than the power of a laser
pointer.

3.2 Advantages
Laser Injection Attack on Delay-Sensitive Circuits Redshift extends the target of laser
injection attack to delay-sensitive circuits in contrast to the conventional LFIs targeting
digital components for cryptography. Since delay-sensitive circuits are an essential analog
building block, Redshift has many applications beyond PUFs. For example, Redshift

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 469

can degrade random number generators that use propagation delay as a source of en-
tropy [MM09]. Delay-sensitive circuits are commonly used for on-chip sensors, too. For
example, an EM sensor uses a shift in oscillation frequency to detect a magnetic-field
probe for the electromagnetic side-channel attack [HHM+14]; manipulating the oscillation
frequency can cause false positives and negatives in such sensors. Moreover, underclocking
a system clock with a laser can result in conventional digital faults.

Stealthiness As shown in Figure 2, a low-power continuous-wave laser, too weak for
conventional LFI, is sufficient for the attack. Redshift potentially evades the detection-
based LFI countermeasures using on-chip sensors configured for the conventional pulse
lasers. Those sensors compare the peak photocurrent with a configured detection thresh-
old [NRV+06, MFS+18]. Hardware designers are motivated to configure the sensor with a
high detection threshold [NRV+06] to avoid false positives caused by environmental lights
or cosmic particles [Hab65]. The threshold is likely set low enough to sense pulse lasers but
too high to sense continuous-wave lasers due to the significant difference in peak power:
Redshift needs several milliwatts only, which can be less than 1/1000 of the conventional
pulse lasers [Risb]. We discuss how to improve on-chip sensors to detect Redshift without
sacrificing the false-positive rate in Section 8.2.

Cheaper Setup The setup for Redshift is much cheaper than the conventional laser
stations [Risb, Alpa, vWWM11, BJ15]. This extends the potential attackers from well-
funded organizations to individuals. In particular, this will lower the attack cost from
specialized to standard in the Common Criteria certification scheme [Joi20]. Moreover,
this makes the attack more stealthy in terms of the instruments’ traceability because an
attacker can improvise its Redshift setup using off-the-shelf components.

There are few previous works on cost-efficient optical attacks. The first LFI by
Skorobogatov and Anderson [SA02] used cheap light sources such as a flashgun and a
laser pointer and successfully attacked digital circuits. However, the target device was
fabricated with a very old 1300-nm technology, and an attack using a laser pointer has
become challenging as semiconductor chips become smaller and faster [GGS17]. As a result,
recent works mostly use short-pulse lasers, as discussed previously. We empirically verified
that our continuous-wave setup cannot flip digital bits with a preliminary experiment2.

By following the above direction, Schmidt and Hutter [SH07] proposed to deliver laser
light using an optical fiber instead of a microscope. Later, Guillen et al. used a flashgun
combined with a single-lens optics [GGS17] to even eliminate a laser. These attacks can
be even cheaper than Redshift because they do not require a microscope. These previous
works aimed at achieving a high peak power using a cheap setup. In contrast, Redshift
approaches the same problem by finding more light-sensitive targets. These two approaches
are complementary and further optimizing the Redshift’s cost using the previous techniques
is open for further research. Meanwhile, the cost reduction using the previous approaches,
cheaper optics and/or incoherent light source, comes at the cost of a larger spot size that
makes the attack less stealthy.

3.3 Threat Model
Similar to conventional LFI, Redshift assumes a local attacker who can physically access
the target chip and apply laser stimulation. Our attacks on PUFs additionally follow the
model by Zeitouni [ZOW+16]: the target chip has PUF-based key storage and provides a

2Using the setup in Section 4, we scan SRAMs in our 180 and 40 nm ASIC chips with a continuous-wave
laser using the ×20 lens and 6.3 mW laser power. We monitor the the stored values in the SRAMs during
the scan, and observe no bit flip.

470 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

Algorithm 3 LIE: Getting a device response while shining a laser
Require: Laser current j and query q
Ensure: Response x
1: Set the Laser current to j
2: Invoke PUF state generation . the PUF state becomes s
3: Get a response x← Dev[s](q)
4: return x

cryptographic service using a pre-shared key to which the attacker can send a query. The
attacker aims to recover the secret protected by the PUF.

The attacker measures the target device with the laser-injection experiment LIE in
Algorithm 3. First, the attacker keeps illuminating the target chip with laser power
specified by a diode current j (line #1) while the PUF generates a state s (line #2).
Finally, the attacker is able to send a query q to the chip’s legitimate interface and retrieve
x ← Dev[s](q) at line #3. Here, Dev[s](q) abstracts the chip’s cryptographic service as
discussed in Section 2.3. Here, the attacker is assumed to know the details about Dev·
in the same as the previous attack by Zeitouni et al.

The availability of Dev· follows Kerckhoff’s principle, and PUF-based key storage is
designed to be secure without hiding it. There are open hardware for PUF wherein the
assumption is reasonable [Tri17]. Meanwhile, Dev· can be unavailable in commercial
chips. For example, NXP LPC55S69 uses a proprietary scheme for its SRAM-based key
generation [Sem19]. In this case, the attacker should pay the cost of reverse-engineering
Dev· in advance. We note that considering an attacker with reverse-engineering
capability would be reasonable because protection against reverse engineering is a significant
benefit of PUF-based key storage [Mae13].

4 Experimental Setup
This section provides the experimental setup and measurement procedure used throughout
this paper.

Optics We use a low-cost laser module in Figure 3 composed of a laser diode, a collimation
lens, and a C-mount adapter in the optical cage system. The idea is to cheaply upgrade
a simple microscope, categorized as standard [Joi20], by attaching the laser module to
the standard C-mount camera port. The total cost of the module is less than $500. The
module uses a 520-nm green laser diode in the standard TO56 package that can emit up
to 110 mW (Osram PLT5 520B [Osr21]), available at less than $50 from a popular online
electronics retailer. We use a Wraymer RM-5400T microscope with a manual XY stage we
had in our laboratory, which was roughly $4,000 at purchase. Figure 4-(left) shows the
laser module installed in our microscope.

Managing the Laser Power The block diagram in Figure 4-(right) shows the components
and connections used to control the laser power in a programmable way. We manage
the laser power with a Thorlabs LDC202C laser driver that regulates the laser diode
current. We first characterize the relationship between the diode current and the emitted
optical power (the I-L curve) to translate an amount of current to laser power. For the
preliminary characterization, we measure the optical power with a laser power meter
(Thorlabs PM100D with the S121C sensing head) under the objective lens. The DC current
output of the laser driver is controlled by a DC voltage from a function generator (Rigol
DG1022Z). During our experiments, the laser power is controlled through the function

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 471

Thorlabs LDH56-P2/M
Collimation Mount

Thorlabs CP33/M
Cage Plate

Thorlabs SM1A10
C-Mount Adapter

Osram PLT5 520B
520-nm Green Laser Diode
in TO56 package

A screw for adjusting
collimation optics

Thorlabs C340TMD-A
Collimation Lens (f = 4.03 mm)

Figure 3: The laser module compatible with microscopes’ standard camera port composed
of a laser diode, a collimation lens, and a C-mount adapter.

Figure 4: Experimental setup: (left) the picture and (right) its block diagram

generator’s programming interface. Note that we only operate the laser diode in the linear
region, i.e., beyond the threshold current.

Focusing and Magnification In general, a higher magnification is advantageous in attack-
ing the target with smaller laser power. That is because the power density in the laser spot
increases with the magnification ratio. As a drawback, however, a higher magnification
requires more precise aiming. Moreover, increasing the current by a minimum unit can
cause too much change in the target with too much magnification. Considering the above
trade-off, we use a minimum magnification needed to cause sufficient change with the laser
power around 5 mW, the power of a laser pointer. After determining an objective lens, we
minimize the laser spot by changing the distance between the diode and the collimation
lens using the screw shown in Figure 3. We use a camera on the microscope during the
adjustment; see Figures 6 and 8 for the microscope images with laser spots. The laser spot
size is proportional to the magnification ratio: the spot diameters are 14.9, 7.7, and 3.9
micrometers with the ×5, ×10, and ×20 lenses, respectively. These spot sizes are much
larger than the top metal wires in the target chips, and all our experiments succeeded
without intentionally widening the laser spot. Doubling a magnification quadruples the
optical energy received at a light-sensitive region covered by the spot. The laser beam
does not go through an eyepiece, and its magnification does not affect the results.

Targets We evaluate Redshift on both custom ASIC chips and off-the-shelf microcon-
trollers. The first set of targets are RO-PUFs and A-PUFs on ASIC chips fabricated with
180-nm and 40-nm CMOS technologies. We use custom chips to perform a white-box
analysis, since we know the implementation details about our RO-PUFs and A-PUFs

472 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

(shown in Sections 5 and 6). We use two chips of each PUF to compare the effectiveness
of laser injection in different fabrication technologies, as they have functionally-equivalent
circuits but different feature sizes. Our setup illuminates a semiconductor die from the
top; we access the die by removing a glued top cover from a ceramic package. The light
reaches the transistors after passing through the top metal layers, as there are 4 and 6
metal layers in the 180-nm and 40-nm chips, respectively. The chips can communicate with
a PC through evaluation boards. The RO-PUF has an analog debug port that directly
outputs the oscillating waveform, where an oscilloscope (Keysight DSO3034T) monitors
the signal during the experiments.

The second set of targets are the clock oscillators on off-the-shelf microcontrollers. We
use the three microcontrollers from different vendors available on the NewAE UFO target
boards [Inc19a, Inc19b, Inc18]: NXP LPC55S69 (Cortex-M33) [Sem21], Microchip SAM
L11 (Cortex-M23), and STMicroelectronics STM32F4 (Cortex M4). These devices are
used to perform a black-box analysis and verify the feasibility of Redshift on real devices.
The laser is injected from the top of the device after decapsulating the quad flat packages;
we outsourced the decapsulation for roughly $200 per chip. The target chips are configured
to output their clock signals to a GPIO pin. We directly use the 16-MHz internal RC
oscillators with SAM L11 and STM32F4. For LPC55S69, on the other hand, we use a
12-MHz signal generated by dividing its 192-MHz free-running oscillator (FRO). Similar
to the ASICs, we monitor the GPIO pins with the oscilloscope during the experiments.

Measurement Algorithm 4 shows the experimental procedure of repeating a unit mea-
surement LIE (see Algorithm 3) while changing the laser power. We first fix an arbitrary
query q (line #1) and gets a legitimate response xPUF without laser illumination (line
#2). Then, we start applying laser stimulation with the diode current starting from
jmin to jmax at the step of jstep. As a result, we examine ji = jmin + i × jstep for
i ∈ I = {0, 1, · · · , d jmax−jmin

jstep
e}. For each current value ji, we repeat the same measure-

ment rmax times, i.e., for r ∈ R = {0, 1, · · · , rmax − 1} (line #5–7). We denote the r-th
measurement using the laser current ji by xri (line #6). The algorithm finally returns the
list of faulty PUF responses [xri] for i ∈ I and r ∈ R (line #11). We choose the following
parameters unless otherwise noted:

• jmin = 34 mA: the laser diode’s threshold current,

• jstep = 0.02 mA: the laser driver’s accuracy limit, i.e., ± 0.01 mA,

• rmax = 25: a sufficiently large number for a decimated experiment in Section 7.2.

5 Experiment: Oscillator and RO-PUFs
To show the effectiveness of Redshift, we start by controlling the delay within oscillators.
First, we manipulate the frequency of a ring oscillator with laser stimulation. Second, we
evaluate the same oscillator as an RO-PUF and show that we can manipulate the PUF
states. Third, we replicate the frequency manipulation to microcontrollers.

5.1 RO-PUF Design
The target RO-PUF comprises of many independent oscillators, two counters, and an
arithmetic comparator, as shown in Figure 5. Each ring oscillator is composed of two
inverters and one NAND gate. The current source on the top roughly specifies the
oscillation frequency [SD07], which we configure to be around 30 MHz. Figure 6 shows
the 180-nm and 40-nm RO-PUFs with laser spots. We directly measure the oscillation
using the oscilloscope during the experiment, as discussed in Section 4.

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 473

Algorithm 4 Measuring the target device while changing the laser power
Require: The minimum current jmin, the maximum current jmax, the current step jstep,

and the number of iteration rmax
Ensure: A query q, the true PUF response xPUF, and the list of faulty responses [xri]
1: Fix an arbitrary device query q
2: xPUF ← LIE(0, q) . A response with no laser injection
3: i← 0, j0 ← jmin
4: while ji ≤ jmax do
5: for r ← 0 to rmax − 1 do . Repeat the same measurement rmax times
6: xri ← LIE(ji, q) . A unit measurement described in Algorithm 3
7: end for
8: i← i+ 1
9: ji ← ji−1 + jstep
10: end while
11: return q, xPUF, and [xri]

Current limit

enable

reset

CounterA

CounterB C
om

pa
re

start

U
ni

t o
sc

ill
at

or

A

B

U
ni

t o
sc

ill
at

or

U
ni

t o
sc

ill
at

or

PUF
Response

Debug
Output

Figure 5: The target RO-PUF composed of several oscillators, two counters, and a
comparator.

The RO-PUF compares the frequencies of two oscillators and generates a 1-bit state
for each pair. The circuit measures the frequencies using counters that detect the number
of edges as the signal oscillates. We use one reference oscillator ROref and 256 target
oscillators ROi for i ∈ {0, 1, · · · 255}. We assume that the PUF generates the i-th bit by

bi =
{

0 if ffreq(ROref) < ffreq(ROi)
1 Otherwise , (3)

wherein ffreq(RO) represents RO’s oscillation frequency. Finally, the RO-PUF generates a
256-bit secret state by concatenating these bits, i.e., s = b0||b1|| · · · ||b255. This state s is
directly output by the target chip.

5.2 Experiment 1: Changing Oscillator Frequency with LFI
First, we examine how laser stimulation affects the oscillation frequency. We locate a
light-sensitive region by scanning the chip surface with a manual XY stage while monitoring
ROref ’s frequency. After locating a coordinate that indicates light sensitivity, we gradually
increase the laser power until the oscillator stops working, i.e., observing a flat line.

Figure 2 shows the relationship between the injected laser power (the horizontal axis)
and the oscillation frequency (the vertical axis). Figure 2-(left) and -(right) show the results
with the 180-nm and 40-nm chips, respectively. The results clearly show the linearity

474 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

Figure 6: The microscope images of the RO-PUFs on the 180-nm (left) and 40-nm (right)
chips while shining a laser. Many identical oscillators are placed in an array and the laser
is focused on to illuminate a particular one.

between the frequency and the injected optical power. In the 180-nm oscillator, a ×5
magnification is sufficient to decrease the frequency from 30.7 MHz to 4.8 MHz with only
1.7 mW. The 40-nm oscillator is less sensitive because of the smaller dimensions and more
metal layers, so the ×5 objective lens was insufficient. After increasing the magnification
to ×10, however, the frequency changes from 34.3 to 4.1 MHz with the same laser power
of 1.7 mW.

5.3 Experiment 2: Changing RO-PUF’s Secret State with LFI
The frequency shift by laser stimulation impacts the bias between 0 and 1 in RO-PUF’s
state. We denote the oscillation frequency by f and its probability distribution by Prob[f].
Then, the expected Hamming weight of the state s is 256× Prob[ffreq(ROref) ≥ f]. The
reference oscillator’s frequency is close to the median and HW(s) ≈ 128 without injection.
As ffreq(ROref) decreases, Prob[ffreq(ROref) ≥ f] also decreases, and HW(s) approaches 0.

Figure 7 summarizes the relationship between HW(s) (the vertical axis) and the power
of the laser aimed at ROref (the horizontal axis). The results clearly show that HW(s)
approaches 0 as we increase the laser power. HW(s) became zero using 0.3 mW with the
×5 lens for the 180-nm chip and 0.6 mW with the ×10 lens for the 40-nm chip. At this
point, ROref ’s frequency is lower than any of ROi. These laser powers are significantly
smaller than the power limits that cause the oscillator to fail. By using this relationship
between optical power and the Hamming weights, we can recover the PUF state sPUF as
shown in Section 7.

We note that the attacker can locate ROref , without the analog debug port nor the
PUF output s, by repeatedly invoking Algorithm 3 while scanning the chip with a laser.
If we observe several different outputs x = Dev[s](q) affected by the laser power, it is
likely the coordinate for ROref . The attacker can distinguish it from a laser on any other
oscillator ROi, which causes at most 1-bit error in s.

5.4 Experiment 3: Clock Oscillators on Microcontrollers
To show how Redshift affects real devices, we evaluate the on-chip clock oscillators on
the three microcontrollers discussed in Section 4. Like the ring-oscillator experiment, we
evaluate the light-frequency characteristics by monitoring the clock signals on a GPIO pin
while changing the laser power. Figure 8 (a)–(c) shows the target chips’ top views with

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 475

Figure 7: RO-PUF’s sensitivity to light: the Hamming weight in a 256-bit PUF state
HW(s) decreases as the injected laser power increases. The results from the 180-nm and
40-nm chips.

laser spots. Then, we obtain the light-frequency characteristics with the same procedure
in Section 5.2. The ×5 objective lens was sufficient for the SAM L11 and STM32F4.
Meanwhile, the LPC55S69 was significantly less sensitive, and the ×20 lens was necessary.

Figure 8 (d)–(f) are the light-frequency characteristics, which show the frequency
decrease similar to the results on the custom ring oscillators. These results verify that
the light-induced frequency shift is a common phenomenon that can affect many different
devices. The results also show that Redshift still works with modern chips, e.g., LPC55S69
released in 2019.

The SAM L11 and STM32 are more sensitive than our 180-nm RO-PUF; less than 0.12
mW is sufficient to shift 16 to 5 MHz with the ×5 lens. The light-frequency graphs of these
chips are relatively non-linear, but they are still monotonic. In contrast, LPC55S69 is much
less sensitive, and 6.5 mW is necessary for shifting 12.0 to 9.1 MHz even with the highest
magnification (×20). Even though it is less sensitive, its light-frequency graph is highly
linear, allowing for precise oscillator control. Although explaining the exact reason for this
less sensitivity needs details about the internal design, the rectangular metal patches on
the top layer can be one reason. To evade the patches, we put a laser spot on a narrow
space between them (see Figure 8), potentially preventing us from aiming the laser at the
optimal coordinate.

6 Experiment: Arbiter PUF
We also verify Redshift on arbiter PUFs, which is another delay-based PUF with different
measurement principle.

6.1 A-PUF Design
Our A-PUF circuit in Figure 9 compares the slight difference in propagation delay between
two configurable delay paths. The paths have 128 stages and accepts a 128-bit challenge.
Each stage is composed of a pair of selectors that changes the path depending on a challenge
bit. The arbiter decides a faster path using a NAND-based SR latch; Figure 9 shows the
arbiter’s transistor-level internal structure for the later discussion in Section 8.1.

We use the A-PUF as a weak PUF generating a 256-bit state. We first determine
random 256 challenges, namely wi ∈ {0, 1}128 for i ∈ {0, 1, · · · , 255}. Then, we get 256
bits by feeding these challenges to the A-PUF. The concatenated 256-bit word is the secret
state s. Similar to our RO-PUF, the chip directly outputs s.

476 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

(d) LPC55S69: Sensitivity

(a) LPC55S69: Image

(e) SAM L11: Sensitivity

(b) SAM L11: Image

(f) STM32: Sensitivity

(c) STM32: Image

Figure 8: Light sensitivity of the clock oscillators on the microcontrollers. (a)–(c): the
target chips with laser spots highlighted with the white rectangles. (d)–(f): the relationship
between the oscillation frequency and laser power.

I7

CapT

TrB

VT

1-bit
outputON ON

CapB

VB

OFF

TrT

reset OFF

c0

c0

c1

c1

c127

c127

OFF OFF

T

B

reset reset reset

A configurable delay paths

Arbiter

Figure 9: Our A-PUF Design. The arbiter has transistor-level description with a laser-
induced photocurrent, which will be discussed in Section 8.1.

6.2 Experiment 4: Changing A-PUF’s Secret State with LFI
We repeat the experiments from the previous section, only now targeting our A-PUF.
We first explore the light-sensitive region by scanning the chip surface while monitoring
HW(s). We locate two light-sensitive regions in the arbiter: one increases and another
decreases the Hamming weight HW(s). We aim the laser beam at the former coordinate
and gradually increase the laser power while measuring the corresponding HW(s).

Figure 10 shows the relationship between the laser power and the Hamming weight
HW(s) while applying laser stimulation on the arbiter circuit. Figure 10-(left) and -(right)
show the results with the 180-nm and 40-nm chips, respectively. Similar to the previous
experiment with RO-PUF, HW(s) almost monotonically decreases as we increase the laser
power. We use the ×5 objective lens in both the 180-nm and the 40-nm A-PUFs. The
180-nm A-PUF is highly sensitive; 0.3 mW is sufficient to achieve HW(s) = 0. Similar to
the previous experiment, the 40-nm A-PUF is less sensitive. However, the 40-nm A-PUF
reaches HW(s) = 0 with 4.6 mW using the ×5 lens.

The above results show that we can manipulate the A-PUF state through laser stimu-
lation in the same way as the RO-PUF. Redshift is applicable to another delay-sensitive

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 477

Figure 10: A-PUF’s sensitivity to light: the Hamming weight in a 256-bit PUF state
HW(s) decreases as the injected laser power increases. The results from the 180-nm and
40-nm chips.

s0 s1 s2 s3 send

s0 s1

s2

s3

send

s5

s4
s6

Figure 11: (Left) conventional setting without any error wherein we can always find si+1
by searching si’s neighbors [ZOW+16]. (Right) Our setting with measurement errors. The
order is inconsistent and there are branches and deadends.

circuit that does not use an oscillator.

7 State Recovery Attack
We recover the PUF’s secret state sPUF using the data collected in our experiments. For
analysis, we extend Zeitouni et al.’s attack [ZOW+16] to handle unstable bits in our PUFs.

7.1 Extension of Zeitouni et al.’s Search Algorithm
Around 5–10% of the bits in our RO-PUFs and A-PUFs are unstable (see Appendix A),
which is a problem for the previous state recovery algorithm (Algorithm 1). Figure 11-(left)
and (right) illustrate the state recovery with and without unstable bits. In the figure,
s0, · · · , send are the intermediate PUF states. The arrow between two states means that
one is reachable from another by neighbor search. Algorithm 1 successfully reconstructs
each state si+1 from previous state si when measurements are stable (Figure 11-(left)), but
Algorithm 1 fails with unstable measurements (Figure 11-(right)) for two reasons. First,
HW(si) ≥ HW(si+1) is not always true when there are measurement errors. Second, there
are unhandled branches and deadends (e.g., s2, s4, and s5) within the search space.

To address these issues, we instead use Algorithm 5, which is an extension of Algorithm 1.
Algorithm 5 takes the measured data (q, xPUF, and [xri] from Algorithm 4) and the
maximum distance dmax in neighbor search, and returns the secret PUF state sPUF
corresponding to the correct PUF response xPUF. The key idea is to compare the emulated
output x with a set of responses X (line #11), instead of a particular response xi−1 in
Algorithm 1. The algorithm initializes X with all the measured responses [xri] (line #1)

478 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

Algorithm 5 State recovery algorithm
Require: The list of the faulty PUF responses [xri], the correct PUF response xPUF, the

query q, and the maximum search distance dmax.
Ensure: The secret PUF state sPUF or a symbol indicating failure ⊥
1: X ← {xri | i ∈ I and r ∈ R} . Remove duplicates
2: C ← {0}
3: while C 6= ∅ do
4: Cmin ← arg min

s∈C
HW(s) . Cmin ⊆ C is a set of the smallest candidates

5: for s ∈ Cmin do
6: C ← C \ {s}
7: for any s′ satisfying HD(s, s′) ≤ dmax and HW(s) < HW(s′) do
8: x← Dev[s′](q) . Emulate a device response for the hypothetical state s′
9: if x = xPUF then
10: return s′ . We found the answer: s′ = sPUF
11: else if x ∈ X then
12: C ← C ∪ {s′}
13: X ← X \ {x} . The state corresponding to x is found.
14: end if
15: end for
16: end for
17: end while
18: return ⊥ . Search failed.

and removes a particular element x ∈ X if the corresponding state is found (line #13).
We use another set C to keep track of the discovered states.

In each iteration, the algorithm first fixes a base state s and exhaustively checks its
neighbors within the distance dmax (line #7). For each candidate s′, the algorithm emulates
Dev and obtains x = Dev[s′](q) (line # 8), which is then compared with the elements in X
(line #11). If x is found in X, i.e., Dev[s′](q) ∈ X, we add s′ to C and remove x from X
(lines # 12 and 13). After the neighbor search, the algorithm continues by choosing a new
base from C. We prioritize the candidate in C with the lowest Hamming weights (line #4).
If the distance between the neighboring states is closer than dmax, we will eventually reach
the final state sPUF corresponding to xPUF; otherwise, the algorithm returns a failure.

7.2 State Recovery Experiment
We apply Algorithm 5 to the PUF responses we obtained in Sections 5 and 6 for recovering
the 256-bit PUF states sPUF with the most simple Dev given by

Dev[s](q) = s. (4)

We discuss a more elaborate Dev in Section 7.3. Although Eq. 4 does not reflect reality, it
is sufficient for evaluating the computational effort, i.e., the number of Dev emulations
(line #8). Note that since the PUF output s is supposedly secret in Algorithm 5, we use it
only for checking hypothetical states.

We implemented the search program with C++ and ran it on a mid-range CPU (AMD
Ryzen5 2600). Table 1 summarizes the results:

• The number of unique states observed after the entire measurement #X,

• The number of states #States examined for the neighbor search,

• The minimum search distance needed for a successful attack d̂max, and

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 479

Table 1: State-recovery result with simple Dev in Eq. 4.

Target #X #States d̂max Execution Time [sec] jmax [mA]
180-nm RO-PUF 6,396 3,116 3 2,306.990 43.24
40-nm RO-PUF 4,019 1,674 1 0.164 49.00
180-nm A-PUF 8,285 2,652 1 0.369 43.16
40-nm A-PUF 79,779 44,129 1 12.172 140.50

jmin = 34.00 mA , jstep = 0.02 mA, and rmax=25 in all the cases.
#State is the number of base states examined in the neighbor search.

d̂max is the minimum dmax needed for a successful attack.

• The total CPU time measured using the clock function in the C standard library.

The table also shows jmax, the maximum laser current needed for observing HW(s) = 0,
which is necessary for a successful attack. The algorithm finished within a minute for the
40-nm RO-PUF, 180-nm A-PUF, and 40-nm A-PUF because the measurement was dense
enough and d̂max = 1. The 180-nm RO-PUF required a larger neighbor search distance of
d̂max = 3, but it still finished within an hour.

The experimental results show that we can fully recover a secret PUF state by running
Algorithm 5. Even with the most challenging case, i.e., 180-nm RO-PUF, the total number
of Dev emulations is

(256
3

)
× 3, 116 ≈ 233.0.

The search space
(256
d̂max

)
increases combinatorially with d̂max and quickly becomes

impractical. Therefore, a successful attack requires a smaller d̂max with a finer measurement
either by reducing jstep or increasing rmax. We evaluate the impact of these parameters
on d̂max by decimating our 40-nm RO-PUF dataset3. Table 2 summarizes the distance
d̂max for various jstep and rmax. d̂max decreases with a smaller jstep and a larger rmax as
expected. With sufficiently dense measurement, we can eventually achieve d̂max = 1 in
which running Algorithm 5 is trivial even with a larger PUF state.

7.3 Error Correction and Cryptography
We verify the state recovery attack with a more elaborate Dev· that is described by
Algorithm 6, which includes error correction and a cryptographic service. It uses a simple
error-correction scheme with a repetition code and bit selection [DGSV15], similar to the
one used by Zeitouni et al. [ZOW+16].

The algorithm receives repeated measurements of the M -bit PUF state, namely
s0, · · · , sr−1, which are used as a bitwise (r, 1, r) repetition code [BGS+08]. Algorithm 6
first decodes the repetition code with bitwise majority voting and obtains an M -bit string
s (line #1). The most stable N bits of s, extracted with the predetermined indices
l0, · · · , lN−1, is the error-corrected key kPUF (line #2 and 3). Dev then recovers the
pre-shared key k by decrypting the encrypted key ck with kPUF as discussed in Section 2.2

3We obtained the minimum distance in Table 2 as a reachability of a graph. For a target distance d, we
construct an unweighted and undirected graph Gd = (V, Ed) wherein the nodes are the measured states:
V = {sr

i | i ∈ I and r ∈ R}. We make edges if the distance between a pair of the nodes s, s′ ∈ V is shorter
than or equal to d:

Ed = {(s, s′) | HD(s, s′) ≤ d and HW(s) < HW(s′)} (5)

wherein HD represents the Hamming distance. Using a standard graph algorithm, we can check if there is
a path in Gd, starting from the initial state 0 ∈ V to the final state sPUF ∈ V . If there is a path, we can
recover sPUF by running Algorithm 5 with dmax = d. We can find the minimum distance by repeating the
above procedure by incrementing d starting from d = 1.

480 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

Table 2: The minimum distance dmax needed for a successful recovery with different
measurement parameters: the granularity to change the laser power jstep and the number
of repeated measurements rmax. We obtained the results by decimating the data measured
from the 40-nm RO-PUF.

jstep rmax

[mA] 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

0.02 1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 2 2 3 3 4
0.04 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 4 4 6
0.06 2 2 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 4 4 4 5 9
0.08 2 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 4 4 4 5 6 7
0.10 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 6 6 7 9
0.12 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 5 5 6 6 7 9
0.14 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4 4 5 6 6 7 8
0.16 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 4 4 4 5 6 7 8 8 8
0.18 4 4 4 4 4 4 4 4 4 4 4 4 4 5 6 6 7 7 7 7 7 7 9 9 10
0.20 5 7 8 10 10 12
0.22 4 4 4 4 4 5 5 5 5 5 5 5 5 5 5 5 5 5 5 6 6 7 7 8 13
0.24 4 4 4 4 4 4 5 5 5 5 6 6 6 6 6 6 7 7 7 8 8 9 10 10 11
0.26 5 5 5 5 5 5 5 5 5 5 5 5 6 6 6 6 6 6 7 7 7 7 9 9 9
0.28 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 7 8 8 8 8 8 9 9 10
0.30 5 5 5 5 5 5 5 5 6 6 6 6 6 7 7 7 7 7 7 7 7 9 9 10 12
0.32 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 9 10 10 11 11 11 11 11 15
0.34 8 8 8 8 8 8 8 8 8 8 8 8 8 8 10 10 10 11 11 11 11 11 11 12 13
0.36 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 10 10 10 10 10 10 10 10 11 12
0.38 7 7 7 7 7 7 7 7 7 7 7 7 7 7 9 9 9 9 9 9 9 9 9 12 15
0.40 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 12 12 12 12 12 13 14 17
0.42 8 8 8 8 8 9 9 9 10 11 11 11 11 11 11 11 11 11 11 11 11 12 13 14 15
0.44 8 8 8 8 9 9 9 9 9 9 10 10 10 10 10 12 12 12 12 12 12 13 13 14 17
0.46 8 8 8 8 8 11 11 11 11 11 11 11 11 12 12 12 12 12 12 12 14 14 15 16 17
0.48 10 11 11 14 14 14
0.50 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 14 15 15 15 17 17 18 19
0.52 11 11 11 11 11 11 11 11 11 11 11 12 13 13 13 13 13 13 14 14 14 14 15 16 17
0.54 11 11 11 13 13 13 13 13 13 13 13 13 14 14 15 15 15 15 16 16 16 16 16 17 18
0.56 14 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 17 17 17 18 21
0.58 13 14 14 16 16 27
0.60 12 12 12 12 12 12 12 13 13 13 13 13 14 15 15 15 15 15 15 15 15 16 17 17 20

Table 3: State-recovery result with elaborate Dev in Algorithm 6.

Target #X #States d̂max Execution Time [sec]
180-nm RO-PUF 161 150 2 0.931
40-nm RO-PUF 127 115 1 0.022
180-nm A-PUF 304 250 1 0.039
40-nm A-PUF 1842 1754 1 0.233

(line #5). Dev finally returns a ciphertext obtained by encrypting the query q with k,
assuming a challenge-and-response authentication.

We evaluate the new Dev in Algorithm 6 using the dataset captured in Sections 5 and 6.
We use r = 5, M = 256, and N = 128 by dividing the rmax = 25 PUF states, available for
each laser power, into 5× 5. This results in a new dataset with rmax = 5 composed of the
outputs from Algorithm 6. We use AES-128 as the encryption algorithm and implement it
using AES-NI [Gue10]4.

Following the previous work [ZOW+16], we optimize the recovery algorithm by searching
kPUF instead of the raw states s0, · · · , sr−1. In other words, we ignore the error correction
by targeting the value after error correction. We can easily extend Algorithm 5 for the
optimization by (i) setting the 128-bit kPUF as the target state s and (ii) skipping the
lines #1–4 in Algorithm 6 while emulating Dev during the attack.

4We determined the bit indices l0, · · · , l127 by choosing the most stable from 100,000 PUF states
obtained without laser stimulation. We verified that the resulting kPUF is stable; the 20,000 kPUF obtained
with the same data had no error.

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 481

Algorithm 6 Dev with an error correction and a cryptographic service
Require: The raw PUF outputs s0 · · · sr−1 ∈ {0, 1}M , encrypted key ck, and a query q,

the indices of selected bits l0, · · · , lN−1.
Ensure: A response x ∈ {0, 1}N
1: s← Vote(s0, · · · , sr−1) . Bitwise majority voting
2: for i = 0, · · · , N − 1 do
3: 〈kPUF〉i ← 〈s〉li . Bit selection: 〈t〉j represents the j the bit of a word t
4: end for
5: k ← Enc−1

kPUF
(ck)

6: x← Enck(q)
7: return x

Table 3 summarizes the experimental results for recovering kPUF, which shows smaller
#X, #States, and d̂max compared with the previous experiment. The attack is easier
because of the smaller search space reduced from 256 to 128 bits and more stables bits
by the error correction. As a result, the execution times are faster even though new Dev
involves two AES calls. All the searches finished within 1 second. The most challenging
case is the 180-nm RO-PUF with d̂max = 2 that finished in 0.931 seconds. Dev occupies
only ≈10% of the total execution time; the AES encryption and decryption with AES-NI
is faster than other utility functions for data structures.

We finally discuss how error correction impacts the state recovery attack. Error
correction introduces difficulty in two ways. First, the state size before error correction
is larger. Second, it extends the distance between the neighboring states. That is
because Dev will not generate a different output until a sufficient amount of difference
is accumulated [ZOW+16]. Searching the state after error correction, as we did in our
experiment, is a general strategy to improve the attack. However, this technique becomes
less efficient with a larger codeword. We consider generating an N -bit key using the κ-bit
codeword N/κ times in parallel. In this case, the number of adjacent states after error
correction is 2κ ·N/κ. The bitwise repetition code in our experiment is the most efficient
case with κ = 1. However, the complexity grows exponentially with κ and eventually
becomes infeasible as κ increases.

8 Discussion
This section includes the discussions on the causality and possible countermeasures, followed
by the related works.

8.1 Causality
We investigate how laser injection influences the transistors based on the conventional
parasitic-photodiode model.

Oscillators and RO-PUF Figure 12 shows an inverter within a ring oscillator; Figure 12-
(left) and -(right) show the current paths during high-to-low and low-to-high transitions,
respectively. The gray arrows are the legitimate current paths. Meanwhile, the dashed
arrows are the additional current paths caused by laser-induced photocurrent; the laser
stimulation is modeled by the addition of extra current sources.

We focus on the high-to-low transition in Figure 12-(left) for simplicity. Without a laser
injection, all the PMOS current I1 goes to the load capacitance, and thus I2 = I1. With a
laser injection, part of I1 goes to ground through the photocurrent I3 causing I2 < I1. A
smaller I2 increases the low-to-high transition delay because the inverter needs more time

482 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

OFF

ON OFF

ON

I1

I3

I2

I4

I6

I5

Figure 12: An inverter with the laser-induced photocurrent making (left) high-to-low and
(right) low-to-high transitions during an oscillation.

charging the load capacitance with a smaller I2. The high-to-low transition delay, shown
in Figure 12-(right), increases in the same way. Finally, the longer propagation delay in
each inverter results in a slower oscillation.

A-PUF Figure 9 shows the transistor-level description of the arbiter with the current
sources by laser stimulation. The arbiter’s frontend is a pull-down network composed
of the transistors (TrT and TrB) and the capacitors (CapT and CapB). The capacitors
are precharged by negating the reset before sending a step signal; the figure shows the
transistor states after the precharge. The capacitors preserve their charges because both
TrT and TrB are turned off. At the evaluation phase, a step signal propagates through
the delay paths and eventually turns TrT (resp. TrB) ON. Then, the capacitor CapT (resp.
CapB) starts to discharge through the transistors. When the capacitor voltage VT (resp.
VB) reaches a threshold, the backend cross-coupled inverters converge to a stable state
representing the faster path5.

Figure 9 shows a case a laser illuminates TrB only. The photocurrent I7 discharges
CapB, making the delay in discharging CapB shorter because a part of the charges is already
lost when the step signal finally arrives. This causes the arbiter a bias preferring the
bottom path at B, increasing the population of corresponding bit value. Laser stimulation
on TrT (cf. TrB) causes an opposite bias. This explains the two light-sensitive coordinates
observed in Section 6: one increases 0 and another increases 1.

Extension to Other Analog Circuits We discuss the potential to extend Redshift into
other analog circuits beyond the delay-sensitive circuits that were the focus of this paper.
The simple principle of the parasitic-photodiode model —laser stimulation generates a
current in an otherwise insulating transistor— is still useful for explaining Redshift, as
discussed above. Therefore, the model should be useful for predicting how Redshift affects
a target analog circuit in advance. For an experimental verification, sweeping the laser
power while monitoring an output will be generally useful. An amplitude-modulated laser
will be necessary for targets that may reject DC signals, e.g., a microphone [SCR+20].
Once a problem is experimentally verified, we can use the parasitic-photodiode model in
a SPICE simulation to make a quantitative analysis and evaluate the effectiveness of a
countermeasure.

8.2 Countermeasures
On-Chip Sensors The conventional sensor-based countermeasures should work in prin-
ciple if a detection threshold is properly configured for Redshift. However, as discussed

5The target A-PUF has an additional functionality to increase the load capacitance CapT and CapB for
calibrating a bias caused by asymmetry in the layout design. For simplicity, we conducted our experiments
by disabling this feature by disconnecting all the additional capacitors. To further eliminate the possibility
of this functionality being the cause of light sensitivity, we conducted another experiment with the
additional capacitors fully connected. The state recovery attack was still successful.

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 483

in Section 3.2, simply raising the detection threshold can prohibitively increase the false
positives caused by environmental lights or cosmic particles [Hab65, NRV+06]. Instead, we
can improve the false-positive rate by integrating (averaging) the sensors’ output over time.
The above technique is effective because Redshift is sustained for a longer period. We can
achieve this by adding an integrator circuit after a conventional LFI sensor. Alternatively,
an oscillator-based sensing scheme naturally achieves such integration. He et al. proposed
to use a ring oscillator to detect laser pulses [HBB+16]; it can be extended for efficiently
detecting Redshift.

Detecting a Wrong PUF Key. Detecting a wrong PUF key and terminating the cryp-
tographic service Dev[si](q) [ZOW+16] can prevent the state-recovery attack. We can
achieve this with recalculation. At enrollment, we encrypt a constant value, such as 0, to
get the corresponding ciphertext c0 = EnckPUF(0) and store it on a non-volatile memory
along with the encapsulated pre-shared key ck in Eq. 1. After recovering the PUF key
k′PUF on each bootup, the system recalculates c′0 = Enck′

PUF
(0) and compares it with the

stored c0. An unsuccessful comparison means kPUF 6= k′PUF, and we can terminate the
following sensitive operations.

Changing a Reference Oscillator Redshift on RO-PUFs becomes more difficult if the
RO-PUF design does not contain a fixed reference oscillator. For example, Merli et al.’s
chaining method [MSE10] generates PUF states by comparing adjacent oscillators:

bi =
{

0 if ffreq(ROi) < ffreq(ROi+1)
1 Otherwise . (6)

To attack this scheme, the attacker should change the laser coordinate for each bit, which
significantly increases the difficulty of the measurement.

Obfuscation As discussed in Section 3.3, hiding Dev with a proper hardware obfuscation
scheme [FBT17] will prevent the attacker from running the state-recovery algorithm in
Section 7.

8.3 Related Works
Laser-Assisted Device Alteration (LADA) [RE03, BHK13] LADA is an LSI reliability
analysis for isolating a failure mechanism typically in a digital circuit. LADA injects a
continuous-wave laser on a target transistor while checking the Shmoo plot, the pass/fail
test with different frequencies and voltages. If the injection changes the plot, the target
transistor has a small operational margin and is a potential failure cause [RE03]. Both
Redshift and LADA change transistor behavior with continuous-wave laser injection.
Boit et al. mentioned LADA as a modern diagnosis tool at FDTC 2013 [BHK13], but
there is no concrete attack so far, as far as the authors are aware. Also, LADA usually
targets logical pass/failure in a digital circuit, not in delay-sensitive circuits.

Ring Oscillator as an On-Chip Sensor for LFI [HBB+16] He et al. proposed an
oscillator-based sensor for detecting laser injection on FPGA [HBB+16]. The authors
discovered a laser pulse disturbed oscillation and proposed a circuit to detect them using a
phase-locked loop. This sensor uses the ring oscillator’s sensitivity to light. Meanwhile,
this method focused on detecting laser pulses and did not cover the frequency manipulation
through laser power. In the meantime, He et al.’s method can be an efficient countermeasure
for detecting Redshift, as discussed in Section 8.2.

484 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

LFI of PUFs on FPGA [TLG+15] Tajik et al. studied LFI on several PUFs realized on
FPGAs. The authors used a pulse laser to overwrite volatile memory storing FPGA’s
configuration. This causes a critical degeneration in the target PUF, such as suspended
oscillation. Attacking such a degraded PUF is easy. Although the attack targets PUFs,
it is still a conventional LFI attacking a digital component using a pulse laser. Also, the
attack is limited to FPGAs (cf. ASIC).

Fault Sensitivity Analysis [LSG+10] Li et al. proposed fault sensitivity analysis (FSA)
[LSG+10] that induces faults with various intensities, e.g., various pulse widths in clock
glitching. The attacker then exploits the correlation between the fault intensity and the
faulty ciphertexts. Redshift uses the same strategy; it applies laser stimulation with various
laser power. Meanwhile, FSA focuses on the conventional digital faults.

Helper Data Manipulation Attack There are attacks targeting error correction schemes
in PUF-based key storage by manipulating public helper data. In particular, several
attacks observe if a manipulation causes a decoding failure or not [DGSV15, Bec19].
Compared with the helper data manipulation attack, Redshift directly manipulates a raw
PUF output instead of helper data. As a result, Redshift bypasses several countermeasures
against helper-data manipulation attacks that prevent/detect modifications in helper
data [DGSV15].

Electromagnetic Fault Injection (EMFI) EMFI is a fault-injection technique that applies
electromagnetic disturbance [SH07, AH20, TCG+21]. By using a tiny injection probe
near the target chip, EMFI can cause localized faults. EMFI’s setup can be even cheaper
than Redshift and can work without chip decapsulation [AH20]. Meanwhile, EMFI and
LFI have different principles and properties. In particular, EMFI’s spatial resolution is
generally worse [AH20, TCG+21]. Moreover, the conventional EMFI attack digital circuits
only.

9 Conclusion
We proposed a new laser injection attack on delay-sensitive circuits that are highly sensitive
to light. The attack is feasible by using a low-power, continuous-wave laser that significantly
reduces the attack cost and is more stealthy against sensor-based countermeasures. We
experimentally verified that we could manipulate the frequency of oscillators by changing
the injected laser power on our custom ASIC and the off-the-shelf microcontrollers. An
attacker can leverage the above phenomenon to manipulate the PUF states from our ring-
oscillator PUFs. A similar state manipulation is possible on arbiter PUFs, showing that
the proposed attack can be extended beyond oscillators. Our recovery algorithm, extended
from Zeitouni et al.’s attack, successfully recovered secret information by exploiting the
manipulated PUF states.

There are several interesting problems to explore in the future. Extending Redshift to
other applications and analog circuits can be an interesting challenge. Also, the causality
discussed in Section 8.1 needs further verification through circuit simulation and controlled
experiments.

Acknowledgment
This work is sponsored in part by the SECOM Science and Technology Foundation and
the Archimedes Center for Healthcare and Device Security.

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 485

References
[AH20] Karim M. Abdellatif and Olivier Hériveaux. Silicontoaster: A cheap and

programmable EM injector for extracting secrets. In 17th Workshop on Fault
Detection and Tolerance in Cryptography, FDTC 2020, pages 35–40, 2020.

[Alpa] AlphaNov. Double laser microscope station for IC security evaluation - fault
injection. https://www.alphanov.com.

[Alpb] AlphaNov. Pulse-on-demand modules PDM series. https://www.alphanov.
com.

[Bec19] Georg T. Becker. Robust fuzzy extractors and helper data manipulation
attacks revisited: Theory versus practice. IEEE Trans. Dependable and
Secure Computing, 16(5):783–795, 2019.

[BGS+08] Christoph Bösch, Jorge Guajardo, Ahmad-Reza Sadeghi, Jamshid Shokrollahi,
and Pim Tuyls. Efficient helper data key extractor on FPGAs. In Cryptographic
Hardware and Embedded Systems, CHES 2008, volume 5154, pages 181–197,
2008.

[BHK13] Christian Boit, Clemens Helfmeier, and Uwe Kerst. Security risks posed by
modern IC debug and diagnosis tools. In 2013 Workshop on Fault Diagnosis
and Tolerance in Cryptography (FDTC 2013), pages 3–11. IEEE Computer
Society, 2013.

[BJ15] Jakub Breier and Dirmanto Jap. Testing feasibility of back-side laser fault
injection on a microcontroller. In 10th Workshop on Embedded Systems
Security, WESS 2015, page 5, 2015.

[CDGB12] Zouha Cherif, Jean-Luc Danger, Sylvain Guilley, and Lilian Bossuet. An
easy-to-design PUF based on a single oscillator: The Loop PUF. In 2012
15th Euromicro Conference on Digital System Design, pages 156–162, 2012.

[CSW16] Franck Courbon, Sergei Skorobogatov, and Christopher Woods. Reverse
engineering flash EEPROM memories using scanning electron microscopy. In
15th Smart Card Research and Advanced Applications - CARDIS 2016, pages
57–72, 2016.

[DBC+18] Jean-Max Dutertre, Vincent Beroulle, Philippe Candelier, Stephan De Castro,
Louis-Barthelemy Faber, Marie-Lise Flottes, Philippe Gendrier, David Hely,
Regis Leveugle, Paolo Maistri, Giorgio Di Natale, Athanasios Papadimitriou,
and Bruno Rouzeyre. Laser fault injection at the CMOS 28 nm technology
node: an analysis of the fault model. In 2018 Workshop on Fault Diagnosis
and Tolerance in Cryptography, FDTC 2018, pages 1–6, 2018.

[DFM+11] Jean-Max Dutertre, Jacques JA Fournier, Amir-Pasha Mirbaha, David Nac-
cache, Jean-Baptiste Rigaud, Bruno Robisson, and Assia Tria. Review of fault
injection mechanisms and consequences on countermeasures design. In 2011
6th International Conference on Design & Technology of Integrated Systems
in Nanoscale Era (DTIS), pages 1–6. IEEE, 2011.

[DGSV15] Jeroen Delvaux, Dawu Gu, Dries Schellekens, and Ingrid Verbauwhede. Helper
data algorithms for PUF-based key generation: Overview and analysis. IEEE
Trans. Computer-Aided Design of Integrated Circuits and Systems, 34(6):889–
902, 2015.

https://www.alphanov.com
https://www.alphanov.com
https://www.alphanov.com

486 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

[DZ04] Srinivas Devadas and Thomas Ziola. Volatile device keys and applications
thereof, 2004. US7839278B2.

[FBT17] Domenic Forte, Swarup Bhunia, and Mark M. Tehranipoor. Hardware Pro-
tection through Obfuscation. Springer Publishing, 2017.

[GGS17] Oscar M. Guillen, Michael Gruber, and Fabrizio De Santis. Low-cost setup
for localized semi-invasive optical fault injection attacks - how low can we go?
In 8th Constructive Side-Channel Analysis and Secure Design - COSADE
2017, pages 207–222, 2017.

[GKST07] Jorge Guajardo, Sandeep S. Kumar, Geert Jan Schrijen, and Pim Tuyls.
FPGA intrinsic PUFs and their use for IP protection. In 9th Cryptographic
Hardware and Embedded Systems, CHES 2007, pages 63–80, 2007.

[Gue10] Shay Gueron. White paper: Intel advanced encryption stan-
dard (AES) new instructions set revision 3.0. Available
at https://www.intel.com/content/dam/doc/white-paper/
advanced-encryption-standard-new-instructions-set-paper.pdf,
2010.

[Hab65] D. H. Habing. The use of lasers to simulate radiation-induced transients in
semiconductor devices and circuits. IEEE Tran. Nuclear Science, 12(5):91–100,
1965.

[HBB+16] Wei He, Jakub Breier, Shivam Bhasin, Noriyuki Miura, and Makoto Nagata.
Ring oscillator under laser: Potential of PLL-based countermeasure against
laser fault injection. In 2016 Workshop on Fault Diagnosis and Tolerance in
Cryptography, FDTC 2016, pages 102–113, 2016.

[HBF07] Daniel E. Holcomb, Wayne P. Burleson, and Kevin Fu. Initial SRAM state
as a fingerprint and source of true random numbers for RFID tags. In The
Conference on RFID Security, 2007.

[HHM+14] Naofumi Homma, Yu-ichi Hayashi, Noriyuki Miura, Daisuke Fujimoto, Daichi
Tanaka, Makoto Nagata, and Takafumi Aoki. EM attack is non-invasive? -
design methodology and validity verification of EM attack sensor. In Crypto-
graphic Hardware and Embedded Systems, CHES 2014, volume 8731, pages
1–16. Springer, 2014.

[Inc18] NewAE Technology Inc. STM32Fx UFO target, 2018.

[Inc19a] NewAE Technology Inc. LPC55S69 UFO target product datasheet, 2019.

[Inc19b] NewAE Technology Inc. SAML11 UFO target, 2019.

[Int20] International Organization for Standardization (ISO). Iso/iec 20897-1: Infor-
mation security, cybersecurity and privacy protection — physically unclonable
functions — part 1: Security requirements, 2020.

[Joi20] Joint Interpretation Library. Application of attack potential to smartcards
version 3.1. https://www.sogis.org/, 2020.

[JT12] Marc Joye and Michael Tunstall, editors. Fault Analysis in Cryptography.
Information Security and Cryptography. Springer, 2012.

[KSV13] Dusko Karaklajic, Jörn-Marc Schmidt, and Ingrid Verbauwhede. Hardware
designer’s guide to fault attacks. IEEE Trans. Very Large Scale Integration
(VLSI) Systems, 21(12):2295–2306, 2013.

https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.intel.com/content/dam/doc/white-paper/advanced-encryption-standard-new-instructions-set-paper.pdf
https://www.sogis.org/

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 487

[LLG+05] Daihyun Lim, Jae W. Lee, Blaise Gassend, G. Edward Suh, Marten van Dijk,
and Srinivas Devadas. Extracting secret keys from integrated circuits. IEEE
Trans. Very Large Scale Integration (VLSI) Systems, 13(10):1200–1205, 2005.

[LSG+10] Yang Li, Kazuo Sakiyama, Shigeto Gomisawa, Toshinori Fukunaga, Junko
Takahashi, and Kazuo Ohta. Fault sensitivity analysis. In Cryptographic
Hardware and Embedded Systems, CHES 2010, volume 6225, pages 320–334,
2010.

[Mae13] Roel Maes. Physically Unclonable Functions - Constructions, Properties and
Applications. Springer, 2013.

[MFS+18] Kohei Matsuda, Tatsuya Fujii, Natsu Shoji, Takeshi Sugawara, Kazuo
Sakiyama, Yu-ichi Hayashi, Makoto Nagata, and Noriyuki Miura. A 286
F 2/cell distributed bulk-current sensor and secure flush code eraser against
laser fault injection attack on cryptographic processor. IEEE J. Solid State
Circuits, 53(11):3174–3182, 2018.

[MM09] A. Theodore Markettos and Simon W. Moore. The frequency injection attack
on ring-oscillator-based true random number generators. In Cryptographic
Hardware and Embedded Systems, CHES 2009, pages 317–331, 2009.

[MOP07] Stefan Mangard, Elisabeth Oswald, and Thomas Popp. Power Analysis
Attacks - Revealing the Secrets of Smart Cards. Springer, 2007.

[MSE10] Dominik Merli, Frederic Stumpf, and Claudia Eckert. Improving the quality of
ring oscillator pufs on fpgas. In 5th Workshop on Embedded Systems Security,
WESS 2010, page 9, 2010.

[NRV+06] Egas Henes Neto, Ivandro Ribeiro, Michele G. Vieira, Gilson I. Wirth, and
Fernanda Lima Kastensmidt. Using bulk built-in current sensors to detect
soft errors. IEEE Micro, 26(5):10–18, 2006.

[Osr21] Osram Opto Semiconductors GmbH. PLT5 520B green laser diode in
TO56 package. https://dammedia.osram.info/media/resource/hires/
osram-dam-6652476/PLT5%20520B_EN.pdf, 2021.

[RE03] J.A. Rowlette and T.M. Eiles. Critical timing analysis in microprocessors
using near-IR laser assisted device alteration (LADA). In International Test
Conference, 2003. Proceedings. ITC 2003., volume 1, pages 264–273, 2003.

[Risa] Riscure. DPSS laser: Stable high intensity laser for green and NIR
datasheet v1.1. https://getquote.riscure.com/picdb/filedb/3792/
DPSS%20laser%20datasheet_1.1.pdf.

[Risb] Riscure. Laser station 2. https://www.riscure.com/product/
laser-station-2/.

[RSGD16] Olivier Rioul, Patrick Solé, Sylvain Guilley, and Jean-Luc Danger. On the
entropy of physically unclonable functions. In IEEE International Symposium
on Information Theory, ISIT 2016, pages 2928–2932. IEEE, 2016.

[SA02] Sergei P. Skorobogatov and Ross J. Anderson. Optical fault induction attacks.
In Cryptographic Hardware and Embedded Systems, CHES 2002, pages 2–12,
2002.

https://dammedia.osram.info/media/resource/hires/osram-dam-6652476/PLT5%20520B_EN.pdf
https://dammedia.osram.info/media/resource/hires/osram-dam-6652476/PLT5%20520B_EN.pdf
https://getquote.riscure.com/picdb/filedb/3792/DPSS%20laser%20datasheet_1.1.pdf
https://getquote.riscure.com/picdb/filedb/3792/DPSS%20laser%20datasheet_1.1.pdf
https://www.riscure.com/product/laser-station-2/
https://www.riscure.com/product/laser-station-2/

488 Redshift: Manipulating Signal Propagation Delay via Continuous-Wave Lasers

[SCR+20] Takeshi Sugawara, Benjamin Cyr, Sara Rampazzi, Daniel Genkin, and Kevin
Fu. Light Commands: Laser-based audio injection attacks on voice-controllable
systems. In 29th USENIX Security Symposium, 2020.

[SD07] G. Edward Suh and Srinivas Devadas. Physical unclonable functions for
device authentication and secret key generation. In 2007 44th ACM/IEEE
Design Automation Conference, pages 9–14, 2007.

[Sec22] Secure-IC. Physically unclonable function (puf) ip. Available at https://www.
secure-ic.com/products/issp/security-ip/key-management/puf-ip/,
2022. Accessed: 2022-07-04.

[Sem19] NXP Semiconductors. AN12324: LPC55Sxx usage of the PUF and Hash Crypt
to AES coding rev. 0. https://www.nxp.com/docs/en/application-note/
AN12324.pdf, 2019.

[Sem21] NXP Semiconductors. LPC55S6x product data sheet, 2021.

[SH07] Jörn-Marc Schmidt and Michael Hutter. Optical and EM fault-attacks on CRT-
based RSA: Concrete results. In 15th Austrian Workhop on Microelectronics,
Austrochip 2007, pages 61–67, 2007.

[Taj17] Shahin Tajik. On the physical security of physically unclonable functions.
PhD thesis, Technical University of Berlin, Germany, 2017.

[TCG+21] J. Toulemont, G. Chancel, Jean Marc Gallière, Frédérick Mailly, Pascal Nouet,
and Philippe Maurine. On the scaling of EMFI probes. In 18th Workshop
on Fault Detection and Tolerance in Cryptography, FDTC 2021, pages 67–73,
2021.

[TJ11] Randy Torrance and Dick James. The state-of-the-art in semiconductor reverse
engineering. In Proceedings of the 48th Design Automation Conference, DAC
2011, pages 333–338. ACM, 2011.

[TLG+15] Shahin Tajik, Heiko Lohrke, Fatemeh Ganji, Jean-Pierre Seifert, and Christian
Boit. Laser fault attack on physically unclonable functions. In 2015 Workshop
on Fault Diagnosis and Tolerance in Cryptography, FDTC 2015, pages 85–96,
2015.

[Tri17] Tribler. Open hardware-based and patent-free physical unclonable function
(PUF). Available at https://github.com/Tribler/tribler/issues/3064,
2017.

[Upt15] Liz Upton. Xenon Death Flash: a free physics lesson. https://www.
raspberrypi.org/blog/xenon-death-flash-a-free-physics-lesson/,
2015. Accessed: 2021-11-20.

[vWWM11] Jasper G. J. van Woudenberg, Marc F. Witteman, and Federico Menarini.
Practical optical fault injection on secure microcontrollers. In 2011 Workshop
on Fault Diagnosis and Tolerance in Cryptography, FDTC 2011, pages 91–99,
2011.

[ZOW+16] Shaza Zeitouni, Yossef Oren, Christian Wachsmann, Patrick Koeberl, and
Ahmad-Reza Sadeghi. Remanence decay side-channel: The PUF case. IEEE
Transactions on Information Forensics and Security, 11(6):1106–1116, 2016.

https://www.secure-ic.com/products/issp/security-ip/key-management/puf-ip/
https://www.secure-ic.com/products/issp/security-ip/key-management/puf-ip/
https://www.nxp.com/docs/en/application-note/AN12324.pdf
https://www.nxp.com/docs/en/application-note/AN12324.pdf
https://github.com/Tribler/tribler/issues/3064
https://www.raspberrypi.org/blog/xenon-death-flash-a-free-physics-lesson/
https://www.raspberrypi.org/blog/xenon-death-flash-a-free-physics-lesson/

Kohei Yamashita, Benjamin Cyr, Kevin Fu, Wayne Burleson and Takeshi Sugawara 489

A Evaluation of Unstable Bits
This section describes how we evaluated the unstable bits in the PUF outputs. For the
target bit, we consider it stable if we get the same bit value for any r ∈ R; otherwise, we
consider it unstable. We counted the number of unstable bits as follows. For each index i
that represents the laser current, we count the number of unstable bits as

h(i) = HW
(

OR
r,r′∈R,r 6=r′

(
XOR(sri , sr

′

i)
))

(7)

wherein OR and XOR represent bitwise operations over 256-bit words. Table 4 summarizes
the average and standard deviation of h(i) regarding i. Table 4 summarizes the number of
unstable bits in our measurements; roughly 5–10% are unstable in 256 bits.

Table 4: The average and standard deviation of the unstable bits within a 256-bit PUF
state

Target Average [bit] Standard deviation [bit]
180-nm RO-PUF 17.02 9.85
40-nm RO-PUF 14.19 8.26
180-nm A-PUF 19.10 5.15
40-nm A-PUF 21.11 5.78

	Introduction
	Contributions

	Preliminary
	Laser Fault Injection
	PUFs and their Application to Secure Key Storage
	Zeitouni et al's Attack on SRAM PUF remanence

	Proposed Method
	Principle
	Advantages
	Threat Model

	Experimental Setup
	Experiment: Oscillator and RO-PUFs
	RO-PUF Design
	Experiment 1: Changing Oscillator Frequency with LFI
	Experiment 2: Changing RO-PUF's Secret State with LFI
	Experiment 3: Clock Oscillators on Microcontrollers

	Experiment: Arbiter PUF
	A-PUF Design
	Experiment 4: Changing A-PUF's Secret State with LFI

	State Recovery Attack
	Extension of Zeitouni et al.'s Search Algorithm
	State Recovery Experiment
	Error Correction and Cryptography

	Discussion
	Causality
	Countermeasures
	Related Works

	Conclusion
	Evaluation of Unstable Bits

