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Abstract

The trend toward energy-proportional computing, in
which power consumption scales closely with workload,
is making computers increasingly vulnerable to informa-
tion leakage via whole-system power analysis. Saving
energy is an unqualified boon for computer operators,
but this trend has produced an unintentional side effect:
it is becoming easier to identify computing activities in
power traces because idle-power reduction has lowered
the effective noise floor. This paper offers preliminary
evidence that the analysis of AC power traces can be both
harmful to privacy and beneficial for malware detection,
the latter of which may benefit embedded (e.g., medical)
devices.

1 Introduction

The parallel trends of greater energy efficiency and more
aggressive power management are yielding computers
that inch closer to energy-proportional computing [3],
but these improvements also escalate the risk of infor-
mation leakage via fluctuating power consumption.

In a recent paper on energy-efficiency trends, Koomey
et al. point out that energy efficiency (computations per
kilowatt-hour) doubled every 1.57 years from 1946 to
2009, with much room for improvement remaining—
seven orders of magnitude, extrapolating from an es-
timate by Feynman—until designs hit theoretical lim-
its [15]." Modern processors increasingly employ tech-
niques such as dynamic voltage and frequency scal-
ing (DVFS), clock gating, and dark silicon [6] to de-
crease their static and dynamic power consumption.
Long-term energy-efficiency campaigns such as EN-
ERGY STAR [28] and growing consumer dependence
on battery-constrained mobile devices have helped drive
this trend.

!Transistor counts have doubled at the somewhat slower pace of
once every ~ 1.8 years [15].

Figure 1: The Mac Mini’s product page [2] touts energy-
efficiency gains that also happen to reveal keystrokes in power
traces.

A major side effect of the trend toward greater energy
efficiency is that modern computers and operating sys-
tems cooperate to reduce idle power consumption. The
webpage for the Apple Mac Mini [2] claims that its op-
erating system

. never misses a power-saving opportunity,
no matter how small. It even regulates the pro-
cessor between keystrokes, reducing power be-
tween the letters you type.

Figure 1 shows the accompanying graphic. Microsoft’s
“Building Windows 8” blog also addresses OS power ef-
ficiency [25], referring to power management as

. a core OS capability that is critical on any
chip architecture and any PC form factor.

In light of these advances and manufacturers’ keen
interest in furthering them, this paper takes the posi-
tion that improvements in energy efficiency are making
whole-system power analysis more effective over time.
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Intuitively, reducing idle power consumption lowers the
effective noise floor, making activity patterns “stick out”
more by raising the signal-to-noise ratio. The increas-
ing leakage of information has both positive and nega-
tive repercussions, including an elevated risk of acciden-
tal information disclosure (§3) and an enhanced ability to
identify certain indicators of malware infection (§4).

2 Background on Power Analysis

Power analysis is the process of making inferences from
changes in power consumption over time. Given a power
trace, one would like to know what information it con-
tains, and how to extract that information. Both laptop
and desktop computers use switched-mode power sup-
plies (SMPSes) to convert AC from the power grid to
the DC that their components use. Past research has
revealed three primary sources of information leakage
from SMPSes that manifest themselves in a computing
device’s power consumption: current fluctuations, reac-
tive power, and changes in switching speed.

Current fluctuations. If any particular component
conveys information via its power consumption, then that
information may appear in a power trace, where its power
consumption is reflected as part of a single sum—or it
may be lost to destructive interference from other signals.
Past work on DC power analysis [11, 14] thoroughly ex-
plores the phenomenon of information leakage via power
consumption, particularly for its value in discovering key
material. These studies have employed a variety of mea-
surement techniques that involve varying degrees of con-
tact with the device under test. In the simplest cases, an
observer can measure current by placing an inexpensive
sense resistor in series with the power supply or a less in-
trusive Hall effect sensor near the power line; both tech-
niques are equally applicable to AC power measurement.

Reactive power. Unlike simple resistive loads (e.g.,
incandescent lights), the capacitive and inductive compo-
nents inside SMPSes distort the shape of the sinusoidal
AC waveform, drawing the current and voltage wave-
forms out of phase and returning power to the source
in the form of reactive power. The amount of reactive
power varies with the load, leaking information about
whole-system power consumption onto the power line.

Changes in switching speed. Like any electrical de-
vice that switches on and off, an SMPS emits electro-
magnetic interference (EMI) that other devices can de-
tect. The switching speed varies with the components’
aggregate demand for power. To meet emissions stan-
dards (e.g., FCC Title 47 CFR Part 15 [7]), SMPSes con-
tain inductors that filter out noise at frequencies above
the voltage regulator’s switching frequency. This EMI fil-
tering does not prevent activity information from appear-
ing on the AC power line, as Enev et al. demonstrate [5].

Year Processor Idle (W) Active (W)
1997 Pentium 120 MHz 39 50
2002  Pentium 2.8 GHz 99 150
2011 Corei5 3.1 GHz 42 65/78/94/110

Table 1: The minimum and maximum power consumption ob-
served for three desktops, as measured by a P3 Kill-a-Watt
meter. For the Core i5, there are four load values because we
measured the power consumption while loading each additional
core. The load in this experiment was one infinite loop per core.

2.1 Information in Power Traces

A power trace is a sequence of (time, power) pairs,
where a related quantity such as current or voltage may
be substituted for power (if appropriate variables are held
constant). Many signal-processing approaches may be
applicable to power traces; this paper can cover only a
subset of them.

Several previous papers have used predictive mod-
els to find information in leaked signals. Extending the
approach of van Eck [29], Kuhn used precise video-
timing information to tune the parameters of an EMI de-
coder [16, 17]. Vuagnoux and Pasini developed models
of keyboards’ electromagnetic emanations and matched
recorded transmissions against them [30]. Such an ap-
proach requires detailed knowledge of the device under
test and may be sensitive to peculiarities of make and
model, but it provides more insight than untuned ap-
proaches when it is applicable.

Under the assumption that modeling a general-purpose
computer’s state space is infeasible, this paper adopts
a black-box approach to identify multiple occurrences
of the same signal. Our method performs basic feature
extraction and trains a classifier based on supervised-
learning algorithms. This approach enables recognition
of signals that are consistent but difficult to model.

2.2 Capturing Power Traces

A sense resistor, a simple circuit element that could be
confined discreetly in a standard AC power outlet or
power strip, suffices to make power signals available to
conventional measurement equipment. This section de-
scribes one of many possible setups to measure whole-
system power on the AC line. Note: We consulted with
qualified electrical technicians. Do not try this at home.

Modern AC outlets have three terminals: hot, neu-
tral, and ground. To measure a power supply’s instan-
taneous current on the hot-neutral circuit, we placed a
0.1Q sense resistor in series with the hot terminal of a
standard outlet (Figure 2). For ease of experimentation,
we extended the outlet from the wall by stripping one
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Figure 2: An instrumented AC outlet for capturing power
traces. A data-acquisition unit connects to measurement points
on either side of a 1cm sense resistor.

end of an extension cord and plugging the other end into
an uninstrumented lab outlet. We attached an Agilent
U2356A data acquisition unit (DAQ) to the terminals of
the sense resistor. The DAQ samples the voltage across
its probes and sends the data via USB to another PC (not
the computer being measured). For the experiments de-
scribed later in this paper, we recorded 16-bit samples at
a rate of 250kHz (i.e., 4 Mb/s) to capture workload arti-
facts occurring at up to 125kHz.

2.3 Previous Approaches

Prior work has demonstrated attacks against user pri-
vacy via power analysis by modeling the device un-
der attack or the parasitic modulation of a well-defined
signal [11, 14, 16-18, 29, 30]. Some recent work, for
example, reveals keystrokes via EMI when provided
with detailed knowledge of keyboard signaling proto-
cols, with different attack strategies for PS/2 and USB
keyboards [30]. Enev et al. have demonstrated privacy
attacks against HDTVs using a model-free classification
approach with recurrent neural networks [5]; they ap-
ply frequency filtering and a feature-extraction algorithm
that automatically identifies changes in SMPS switch-
ing speed that correlate with shifts in video brightness.
Past work has identified LCD or plasma-based displays,
which dominate the power consumption of HDTVs, as
power-proportional components [12,23].

In contrast to this previous work, Section 3.1 evaluates
the effectiveness of whole-system power analysis using
the tracing setup described above and a straightforward
conversion to the frequency domain without filtering.

3 Malicious Uses of Power Monitoring

Because of the dynamic range of computers’ power con-
sumption is increasing, power signatures of computing
activities increasingly leak via the power supply. Using
webpage visits as an example of a private activity, this
section describes how an eavesdropping adversary with
access to a victim’s power line (or outlet) can use whole-
system power analysis to compromise privacy.

3.1 Case Study: Webpage Identification

Using the instrumented outlet described in Section 2.2,
we gathered traces from a 2008 MacBook while it loaded
50 popular webpages drawn from Alexa’s list of top
sites [1]. For each page, we gathered ~90 samples. We
then converted all of these samples into 500-feature vec-
tors using the Fourier transform, with each feature rep-
resenting a 250Hz swath of the frequency spectrum. We
adopted this simple frequency-domain approach to fea-
ture extraction because it allows us to compare traces of
different lengths and ignore alignment issues that could
arise in the time domain. We used half of the samples
from each page to train a set of 50 binary support vector
machine (SVM) classifiers (as implemented by the open-
source libsvm package [4]) and the other half for testing
against these classifiers.

Because our classifier uses standard machine-learning
techniques, we use standard metrics from machine learn-
ing to evaluate its performance. In the following defi-
nitions, fp and tn refer to true positives and true nega-
tives (correct labelings), and fp and fn refer to false posi-
tives and false negatives (incorrect labelings). Precision,
ip/(tp + fp), is the fraction of positively labeled exam-
ples whose labels are correct. It measures the classifier’s
ability to exclude negative examples. Recall, tp / (tp + fn),
is the fraction of all the examples that should have been
positively labeled that are correctly positively labeled. It
measures the classifier’s ability to identify positive ex-
amples (i.e., to correctly match an unlabeled webpage
sample to a webpage in the training set).

With ~45 training examples per webpage label, the
SVM classifier achieves on average 87% precision and
74% recall over all webpages, though the classifier’s per-
formance varied among the tested webpages. The classi-
fier maintained 100% precision and recall for 5 of the 50
webpages, and > 90% precision and recall for 18 of the
50 webpages. In contrast, the classifier’s precision and
recall for the worst page, godaddy . com, were only 30%
and 17% respectively. Figure 3 summarizes the results.

We also gathered single traces of 441 popular web-
pages not appearing in the training set to ensure that the
SVMs were able to reject pages outside of the training
set with high probability. This separate test was neces-
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Figure 3: Precision and recall for the 50 webpage labels. The
arithmetic mean over all webpages is plotted as a large X. The
outlying webpage label with the lowest precision and recall is
godaddy . com, a pathology we believe is due to its heavy use
of dynamic content and large download size.

sary because the negative samples appearing in the test-
ing set for the previous experiment were drawn from the
same set of pages as those appearing in the training set.
It was possible that the SVMs had actually learned to
reject only these specific pages rather than all negative
samples. We tested all 50 trained SVMs against this set
of unknown pages. The 1.6% false-positive rate over all
classifiers shows that the trained SVMs were indeed able
to reject unknown pages with high probability.

These experiments demonstrate that whole-system
power analysis can determine detailed information about
a modern computer’s workload, including which web-
page the browser is loading. Whether it is feasible to
make similar inferences about generic computation us-
ing similar techniques is an open question.

4 Constructive Uses of Power Monitoring

“Forever-day” vulnerabilities—those that the vendor
does not plan to fix—in civil and industrial control sys-
tems have recently put unpatchable software in the spot-
light. A key question for system and network admin-
istrators is whether they can detect intrusions without
compromising these machines’ operations or violating
terms of use. This section describes how whole-system
power analysis can help identify anomalous behavior.
Such analysis will be useful in concert with conventional
network intrusion-detection systems.

Most of the published work on constructive uses for
power monitoring leverages nonintrusive load monitor-
ing (NILM) techniques or smart meters to accurately re-
port load changes for the sake of personal energy-use
monitoring [9,22]. Our power-analysis approach instead
focuses on understanding the internal state of a com-
plex, standalone, integrated device. There is also pub-
lished work on power analysis for smartphone malware
detection [13,20]. Smartphones are convenient platforms
for power analysis because they tend to comprise simpler

hardware and software stacks than do traditional comput-
ers; many expose APIs for battery monitoring.

One particular class of devices stands to derive outsize
benefits from constructive power analysis. Many med-
ical devices used in hospitals and other sensitive do-
mains are based on commodity hardware and software
and are networked, exposing them to the same malware
threats as consumer devices; however, manufacturers ad-
vise against routine patching, ostensibly for compliance
with regulations that require re-certification for every
significant change.

According to testimony by Roger Baker, Assistant
Secretary for Information and Technology at the U.S.
Department of Veterans Affairs (VA), more than 122
medical devices at VA facilities were found to be infected
with malware in the 14 months preceding May 2010 [19].
Baker said:

The major challenge with securing medical
devices is that, because their operation must
be certified, the application of operating sys-
tem patches and malware protection updates
is tightly restricted.

While few patches require FDA clearance [27], anec-
dotal evidence suggests that such updates are a gray
area for customers and manufacturers—resulting in cus-
tomers adopting a hands-off attitude toward devices os-
tensibly under their control.

A tempting solution to the malware-propagation prob-
lem is to mandate that medical equipment never come
in contact with the Internet, but some devices require
network connectivity. USB drives used by employees or
field technicians are also a threat. The VA report from
which Baker drew malware statistics includes data on in-
fection sources: while 65% of the incidents had an un-
known infection vector, 10% were traceable to local net-
works via repair technicians, USB drives, or LAN shar-
ing [24]. With respect to malware infections more gen-
erally, Symantec reports that 72% of the malware they
analyzed in 2009 could propagate via USB drives or
other “sneakernet” mechanisms [8] against which net-
work intrusion-detection systems are ineffective.

4.1 Case Study: Detecting Embedded Mal-
ware

Concerning embedded devices such as medical equip-
ment, oscilloscopes, and industrial control systems, we
make a key observation about the suitability of power
analysis for malware detection: while these devices use
commodity hardware and software, they are not intended
to be used as general-purpose devices. This fact sim-
plifies the task of identifying aberrant behavior because
there is little variety in expected workloads. Just as an
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Figure 4: Side-by-side traces of current consumed by an oscil-
loscope running Windows XP. The left half of the plot shows
idle consumption before infection. The right half shows idle
consumption after infection—with distinctive spikes every sec-
ond caused by resident malware.

oscilloscope should be used only to measure signals,
rather than to browse the Internet, medical-imaging sys-
tems or industrial control systems have a small number
of intended uses. Each intended use should correspond to
one, or few, power consumption profiles, suggesting that
whitelisting approaches have promise in this domain.

To test whether power analysis can be applied to mal-
ware detection for embedded devices, we performed a
simple experiment using an embedded device that runs
standard software and the measurement technique de-
scribed in Section 3. We took power traces of an Ag-
ilent Infiniium 54832D MSO oscilloscope, which runs
Windows XP on an Intel Pentium 3 platform with addi-
tional custom hardware and software. After establishing
baseline power consumption by recording traces while
the scope was both idle and taking measurements, we in-
tentionally infected it with malware by visiting the top
two URLs from a honeypot site [21] and allowing each
site to run an executable. Finally, we gathered a second
set of idle traces after infection.

Inspection of the before and after power traces re-
vealed obvious differences in power consumption pat-
terns. The malware running on the scope, later identified
as Kolab and PWS-Zbot by McAfee Enterprise Security,
created a transient power spike once per second while
the scope was idle. The power spikes were brief and in-
frequent enough that they did not have a significant effect
on the mean or variance of the power consumption, but
they stood out clearly in a time-series plot (Figure 4).

Other types of malware may cause similar power
anomalies. First, it is typical for worms designed to cre-
ate a botnet to regularly search for or communicate with
command and control servers. Some types of malware
also poll for the presence of antivirus software or for
certain conditions, such as password entry, that will trig-
ger a response. Finally, some malware has the explicit
goal of hijacking an infected computer’s computational

resources. As an example, researchers last year identi-
fied a trojan that mined Bitcoins on infected hosts—even
including GPU support for faster mining [26].

5 Open Problems

Research challenges remain in the area of whole-system
power analysis. The effectiveness of the simple black-
box power-analysis method described in Sections 3 and
4 suggests that more sophisticated methods might yield
more information. Candidates include:

e Statistical analysis to automatically identify salient
features for classification;

e An adaptation of behavior-based malware detectors
such as Panorama [31] to accept power traces as in-
put signals;

e Correlating AC power traces gathered at the plug
with DC power traces gathered between the power
supply and components, to identify which compo-
nents’ power consumptions scale most closely with
workload and thus leak the most information;

e Modeling-based approaches in which models map-
ping activity to power consumption would inform
trace classification.

Threat modeling. The threat model implicit in this
paper posits an eavesdropper who can place a resistor
in series with a victim’s power supply. However, even
covertly modifying an electrical outlet may be infeasi-
ble in many scenarios. A more realistic adversary might
instead have access to the same AC power circuit (the
NILM scenario [10]) or be stationed nearby. Future work
could investigate the degree to which these alternative
eavesdropping modalities are useful for activity recog-
nition, and whether the effective classifier described in
Section 3 remains effective.

Future work may need to consider adversaries who
are aware that their activities may be detected via power
analysis. Such adversaries may attempt to conceal their
activities by, for example, waiting for power-hungry ac-
tivities to begin or activating at random times. Other than
defense-in-depth approaches, how to respond to this risk
is an open question.

6 Conclusion

As an inevitable consequence of energy-proportional
computing, modern computer components leak increas-
ing amounts of information about their internal states
onto the power line. Paradoxically, this information can
harm privacy but may help at detecting malicious soft-
ware. Like a thermometer for a human patient, construc-
tive power analysis can reveal indicators of malicious ac-
tivity or “sneakernet” infections of embedded devices.

Published in Proceedings of USENIX Workshop on Hot Topics in Security, 2012



Acknowledgments

We thank Dan Holcomb for feedback on early drafts and
Quinn Stewart for feedback on late drafts. This material
is based upon work supported by the National Science
Foundation under grants CNS-0923313, CNS-0845874,
and two Graduate Research Fellowships. Any opinions,
findings, and conclusions or recommendations expressed
in this material are those of the authors and do not nec-
essarily reflect the views of the National Science Foun-
dation. This publication was made possible by Cooper-
ative Agreement no. 90TR0003/01 from the Department
of Health and Human Services. Its contents are solely
the responsibility of the authors and do not necessarily
represent the official views of the HHS. This work was
funded by a Sloan Research Fellowship.

References

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

(10]

(11]

[12]

[13]

Alexa Internet, Inc. Alexa top 500 global sites. http://alexa.
com/topsites/global. Loaded Sept. 2011.

Apple Inc. Mac mini — The most energy-efficient desktop com-
puter. http://www.apple.com/macmini/environment.
html. Loaded May 1, 2012.

L. A. Barroso and U. Holzle. The case for energy-proportional
computing. Computer, 40:33-37, Dec. 2007.

C.-C. Chang and C.-J. Lin. LIBSVM: A library for support vector
machines. ACM Transactions on Intelligent Systems and Technol-
ogy, 2(3), Apr. 2011.

M. Enev, S. Gupta, T. Kohno, and S. Patel. Televisions, Video
Privacy, and Powerline Electromagnetic Interference. In Proc.
ACM Conference on Computer and Communications Security,
CCS 11, Oct. 2011.

H. Esmaeilzadeh, E. Blem, R. St. Amant, K. Sankaralingam, and
D. Burger. Dark silicon and the end of multicore scaling. In Proc.
ACM International Symposium on Computer Architecture, ISCA
11, June 2011.

Federal Communications Commission. Code of Federal Regula-
tions, Title 47, Part 15, Sections 101-103, Oct. 2010.

K. Haley. Sneakernet revisited. http://www.symantec.
com/connect/blogs/sneakernet-revisited, Aug. 2010.
Loaded June 2012.

G. W. Hart. Residential energy monitoring and computerized
surveillance via utility power flows. [EEE Technology and So-
ciety Magazine, June 1989.

G. W. Hart. Nonintrusive appliance load monitoring. Proc. IEEE,
80(12):1870-1891, Dec. 1992.

T. Kasper, D. Oswald, and C. Paar. EM Side-Channel Attacks
on Commercial Contactless Smartcards Using Low-Cost Equip-
ment. In Workshop on Information Security Applications, WISA
’09. Aug. 20009.

M. Kazandjieva, B. Heller, P. Levis, and C. Kozyrakis. Energy
dumpster diving. In Workshop on Power Aware Computing and
Systems, HotPower *09, Oct. 2009.

H. Kim, J. Smith, and K. G. Shin. Detecting energy-greedy
anomalies and mobile malware variants. In Proc. International
Conference on Mobile Systems, Applications, and Services, Mo-
biSys 08, June 2008.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

P. Kocher, J. Jaffe, and B. Jun. Differential power analysis. In
Advances in Cryptology, CRYPTO ’99, Aug. 1999.

J. G. Koomey, S. Berard, M. Sanchez, and H. Wong. Implications
of historical trends in the electrical efficiency of computing. /IEEE
Annals of the History of Computing, 33:46-54, Mar. 2011.

M. G. Kuhn. Electromagnetic Eavesdropping Risks of Flat-Panel
Displays. In Workshop on Privacy Enhancing Technologies, PET
’04, May 2004.

M. G. Kuhn and R. J. Anderson. Soft Tempest: Hidden Data
Transmission Using Electromagnetic Emanations. In Information
Hiding, Apr. 1998.

C. Laughman, K. Lee, R. Cox, S. Shaw, S. Leeb, L. Norford,
and P. Armstrong. Power Signature Analysis. IEEE Power and
Energy Magazine, 1(2):56-63, Mar. 2003.

N. Lewis. VA security compromised by medical devices.
https://www.informationweek.com/news/healthcare/
security-privacy/225200097, May 2010. Loaded June
2012.

L. Liu, G. Yan, X. Zhang, and S. Chen. Virusmeter: Prevent-
ing your cellphone from spies. In Recent Advances in Intrusion
Detection, volume 5758 of Lecture Notes in Computer Science,
Sept. 2009.

NovCon Solutions LLC. Novcon minotaur analysis system.
http://minotauranalysis.com/exetweet/, Loaded Apr.
2011.

S. N. Patel, T. Robertson, J. A. Kientz, M. S. Reynolds, and G. D.
Abowd. At the flick of a switch: Detecting and classifying unique
electrical events on the residential power line. In Ubicomp 2007 :
Ubiquitous Computing, volume 4717 of Lecture Notes in Com-
puter Science, Sept. 2007.

PCSTATS. Blackle vs. Google Monitor Power Consump-
tion Tested. http://www.pcstats.com/articleview.cfm?
articleID=2649, Loaded Apr. 20, 2012.

L. Sherrill. Medical device infection data. Personal communica-
tion, Jan. 2012.

P. Stemen. Building a power-smart general-purpose Windows.
http://blogs.msdn.com/b/b8/archive/2011/11/08/
building-a-power-smart-general-purpose-windows.
aspx, Nov. 2011. Loaded June 2012.

Symantec Corporation.  Trojan.Badminer technical details.
http://www.symantec.com/security_response/
writeup.jsp?docid=2011-081115-5847-99&tabid=2,
Aug. 2011. Loaded June 2012.

A. Taylor. Virtual patient safety: Worms, viruses, and other
threats to computer-based medical technology (presentation).
ECRI Audio Conference, Nov. 2003.

United States Environmental Protection Agency. EN-
ERGY STAR program requirements for computers.
http://www.energystar.gov/ia/partners/prod_
development/revisions/downloads/computer/
Version5.0_Computer_Spec.pdf, July 2009.

June 2012.

W. van Eck. Electromagnetic radiation from video display units:
An eavesdropping risk? Computers & Security, 4:269-286, Dec.
1985.

M. Vuagnoux and S. Pasini. Compromising Electromagnetic Em-
anations of Wired and Wireless Keyboards. In Proc. USENIX
Security Symposium, Security 09, Aug. 2009.

H. Yin, D. Song, E. Manuel, C. Kruegel, and E. Kirda. Panorama:
Capturing system-wide information flow for malware detection
and analysis. In Proc. ACM Conference on Computer and Com-
munications Security, CCS *07, Oct. 2007.

Loaded

Published in Proceedings of USENIX Workshop on Hot Topics in Security, 2012





