
Protecting the Security of Sensor Systems

by

Connor Bolton

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2022

Doctoral Committee:

Associate Professor Kevin Fu, Chair
Professor Mingyan Liu
Professor Morley Mao
Assistant Professor Sara Rampazzi



Connor Bolton

mcbolto@umich.edu

ORCID iD: 0000-0003-4079-7846

© Connor Bolton 2022



TABLE OF CONTENTS

LIST OF FIGURES vi

LIST OF TABLES xi

ABSTRACT xiii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . 2
1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . 4

II. Background and Related Work . . . . . . . . . . . . . . . . . . . 6

2.1 Sensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 Sensor Construction . . . . . . . . . . . . . . . . . . 8
2.1.2 Common Properties and Concepts for Sensor Exploits 9

2.2 Signal Processing Concepts and Terms . . . . . . . . . . . . . 10
2.2.1 Basic Signal Definitions . . . . . . . . . . . . . . . . 10
2.2.2 Signal and Physical Phenomenon . . . . . . . . . . 11

2.3 Transduction Vulnerabilities . . . . . . . . . . . . . . . . . . . 12
2.3.1 Attacks . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Systematization and Mitigation Strategies . . . . . . 14
2.3.3 Acoustic Attacks on Hard Drives . . . . . . . . . . . 15
2.3.4 Acoustic Waves Affecting MEMS Motion Sensors . . 16

2.4 Oversensing Vulnerabilities . . . . . . . . . . . . . . . . . . . 16
2.4.1 Touchtone Eavesdropping Attacks . . . . . . . . . . 17
2.4.2 Other Vulnerabilities and Attacks . . . . . . . . . . 18
2.4.3 Categorization and Mitigation Strategies . . . . . . 19

III. Transduction Attack Model . . . . . . . . . . . . . . . . . . . . . 20

ii



3.1 Model Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.1.1 Model Goal . . . . . . . . . . . . . . . . . . . . . . 21
3.1.2 Threat Model . . . . . . . . . . . . . . . . . . . . . 22

3.2 Model Design and Attack Systematization . . . . . . . . . . . 23
3.2.1 Model Overview . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Transfer Function Representation . . . . . . . . . . 24
3.2.3 Signal Injection Steps . . . . . . . . . . . . . . . . . 29
3.2.4 Measurement Shaping Steps . . . . . . . . . . . . . 32
3.2.5 Constructing a Transduction Attack . . . . . . . . . 36

3.3 Defense Systematization and Patterns . . . . . . . . . . . . . 36
3.3.1 Detection Methods . . . . . . . . . . . . . . . . . . 36
3.3.2 Prevention Methods . . . . . . . . . . . . . . . . . . 40

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3.4.1 Improving Transduction Attack Model . . . . . . . 46
3.4.2 Improving Research Methodology . . . . . . . . . . 47
3.4.3 Predictive Defense Schemes . . . . . . . . . . . . . . 47

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

IV. Blue Note: A Transduction Attack Case Study on Hard Disk
Drives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
4.1.1 Hard Disk Mechanics and Acoustics . . . . . . . . . 51
4.1.2 Threat Model . . . . . . . . . . . . . . . . . . . . . 52

4.2 Experimental Method . . . . . . . . . . . . . . . . . . . . . . 53
4.2.1 Isolating the Experiment . . . . . . . . . . . . . . . 54
4.2.2 Generating Sound . . . . . . . . . . . . . . . . . . . 54
4.2.3 Measuring the Effects of Vibration . . . . . . . . . . 55

4.3 Transduction Vulnerabilities . . . . . . . . . . . . . . . . . . . 55
4.3.1 Head and Disk Displacement . . . . . . . . . . . . . 55
4.3.2 Motion Sensor Spoofing . . . . . . . . . . . . . . . . 58
4.3.3 Other Pathologies or Observations During Testing . 61

4.4 System Level Errors: HDD Non-responsiveness . . . . . . . . 63
4.4.1 Causes of Non-Responsiveness Errors . . . . . . . . 63
4.4.2 Observations . . . . . . . . . . . . . . . . . . . . . . 65
4.4.3 Measuring Non-Responsiveness Errors . . . . . . . . 66

4.5 Attack Case Studies . . . . . . . . . . . . . . . . . . . . . . . 67
4.5.1 Attack Frequency Selection . . . . . . . . . . . . . . 67
4.5.2 Case Study 1: Blue Note . . . . . . . . . . . . . . . 68
4.5.3 Case Study 2: Video Surveillance . . . . . . . . . . 70

4.6 Defense Design . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.6.1 Augmented Feed-Back Controller . . . . . . . . . . 73
4.6.2 Detecting Spoofing Attacks with Filtering or Sensor

Fusion . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.6.3 Acoustic Signal Reduction . . . . . . . . . . . . . . 76

iii



4.6.4 Other Simple Defenses . . . . . . . . . . . . . . . . 78
4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
4.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

V. Oversensing Anti-system: a Smartphone Permission System
to Mitigate Oversensing . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Oversensing Vulnerabilities . . . . . . . . . . . . . . . . . . . 84
5.1.1 Origins of Sensitive Information in Sensor Data . . . 84
5.1.2 Why Oversensing Mitigations are Difficult to Build:

Touchtone Keylogger Example . . . . . . . . . . . . 87
5.2 OA-Sys: Designing Anti-Oversensing Permission Models . . . 90

5.2.1 Defining the Goal: Principle of Least Privilege . . . 91
5.2.2 Augmenting Permissioning Systems . . . . . . . . . 92
5.2.3 OA-Sys Specific Permission Designs . . . . . . . . . 95
5.2.4 OA-Sys Signal Processing Permission Design . . . . 99

5.3 OA-Sys Implementation . . . . . . . . . . . . . . . . . . . . . 104
5.3.1 Permission System . . . . . . . . . . . . . . . . . . . 105
5.3.2 Demonstrative Applications and Permissions . . . . 109

5.4 OA-Sys and OA-Permissions Overhead . . . . . . . . . . . . . 112
5.4.1 Power Overhead . . . . . . . . . . . . . . . . . . . . 112
5.4.2 Application and Permission File Sizes . . . . . . . . 113

5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.5.1 Security of QR and Hotword OA-Permissions . . . . 114
5.5.2 Enabling Future Applications . . . . . . . . . . . . 114
5.5.3 Security Analog Filtering . . . . . . . . . . . . . . . 115
5.5.4 Operating Systems Support and Compatibility . . . 115

5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

VI. Touchtone Eavesdropping: An Oversensing Example on Smart-
phone Motion Sensors . . . . . . . . . . . . . . . . . . . . . . . . 117

6.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.1 Touchtones . . . . . . . . . . . . . . . . . . . . . . . 120
6.1.2 Threat Model . . . . . . . . . . . . . . . . . . . . . 120

6.2 Touchtone eavesdropping assessment . . . . . . . . . . . . . . 121
6.2.1 Touchtone information in motion sensor data . . . . 122
6.2.2 Adversarial touchtone recovery . . . . . . . . . . . . 124

6.3 Functionality-aware software mitigation design . . . . . . . . 125
6.3.1 Designing for both privacy and functionality . . . . 125
6.3.2 Apparent mitigations that sacrifice functionality . . 126
6.3.3 Designing functionality-aware signal processing mit-

igations . . . . . . . . . . . . . . . . . . . . . . . . . 128
6.4 Experimental Method . . . . . . . . . . . . . . . . . . . . . . 130

6.4.1 Data Collection . . . . . . . . . . . . . . . . . . . . 131

iv



6.4.2 Touchtone classifier . . . . . . . . . . . . . . . . . . 133
6.4.3 Signal Processing Mitigations . . . . . . . . . . . . . 136

6.5 Evaluation Results and Analysis . . . . . . . . . . . . . . . . 138
6.5.1 Baseline evaluation metrics: attack effectiveness . . 139
6.5.2 Mitigation strategy evaluations . . . . . . . . . . . . 141

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
6.6.1 Hardware solutions . . . . . . . . . . . . . . . . . . 143
6.6.2 Application to other acoustic leakages . . . . . . . . 143

6.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

VII. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

7.1 Transduction Mitigations Applied to Oversensing . . . . . . . 145
7.2 Attacks Using Both Transduction and Oversensing Simultane-

ously . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

VIII. Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

BIBLIOGRAPHY 150

v



LIST OF FIGURES

Figure

2.1 A general signal conditioning chain of sensors. Signals flow from left
to right through each component and transform from the physical
stimulus (input) to an analog intermediate and finally to a digital
representation (output). Depending on the specific design, variations
to this schematic may include multiple amplifiers or filters, no filters,
filters before the transducer (e.g., CMOS) or amplifier, other circuits
(e.g., comparators), etc. . . . . . . . . . . . . . . . . . . . . . . . . . 8

3.1 A generalized sensor schematic (top), the traditional and established
way of modeling a sensor (middle), and the adaptation to model
a transduction attack (bottom). The signal processing community
models a sensor as cascading transfer functions. Each transfer func-
tion (e.g., fi) has two inputs—the legitimate signal xi and the noise
signal ni. The output signal xi+1 becomes the input to the next trans-
fer function fi+1. x1 is the stimulus to the transducer (f1), and it is
either pre-existing or transformed from a probing signal x0 generated
by the sensor if it is an active one. The noise ni may come from the
electrical circuit or the external environment. The transduction at-
tack model consists of a simple adaptation of established practices by
representing analog security exploits as a vector of intentional noise
[a1, a2, . . . , am] that leads the output y to an attacker-desired value
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ABSTRACT

Sensors are a ubiquitous part of modern life, providing crucial data about the

physical state of the world in application areas including entertainment in smart-

phones and virtual reality, transportation in aviation or (semi-)autonomous vehicles,

manufacturing, smart infrastructure, and more. Thus a crucial aspect of ensuring the

availability, integrity, and confidentiality of these applications is to ensure the same

qualities in sensor systems. However, research shows how sensors may produce unde-

sirable output that compromises security or privacy due to interaction with physical

signals. For example, research shows that microphone output, representing sound,

can instead represent light, a completely different quality. Adversaries can use this

vector to launch attacks on sensor-reliant systems.

This dissertation posits the question, “How is systemic design for mitigating

physically-based sensing vulnerabilities possible?” and sets a goal of laying the ground-

work to enable such systemic design. This work contributes:

1. Methods, models, and language to categorize and analyze the space of phys-

ical sensor security. The primary categorization is between transduction and

oversensing vulnerabilities. The Transduction Attack Model (TAM) provides

a mathematical model to describe and categorize existing transduction vul-

nerabilities. For oversensing, the Anti-Oversensing System (OA-Sys) identifies

categories of oversensing.

2. Mitigation design patterns for many physical sensor vulnerabilities to aid man-

ufacturers and operating system designers. Specifically, existing mitigations

xiii



for transduction vulnerabilities are categorized using TAM to reveal common

design patterns to mitigate most oversensing vulnerabilities. OA-Sys provides

preliminary mitigation designs for common sensor use-cases in smartphones.

3. Specific case studies of how to apply higher-level knowledge on transduction and

oversensing vulnerabilities learned in TAM and OA-Sys to specific problems.

Blue Note described two transduction vulnerabilities using acoustic waves to

interrupt hard disk drive availability. Touchtone Eavesdropping uses motion

sensor data to sense user input in smartphones via how motion sensors capture

mechanically coupled sound.

xiv



CHAPTER I

Introduction

This thesis investigates physical vulnerabilities in sensors and how to defend

against such vulnerabilities. Sensors often act as the bridge between the physical

and digital worlds, quantifying physical phenomena for computer systems. Trillions

of these sensors [29] are used to collect data for critical decisions in important in-

frastructure such as airplanes [10, 43], autonomous vehicles [140, 137], smartphones,

medical devices, and more. However, sensor use also heightens the risk of physically-

based vulnerabilities in computer systems.

This dissertation envisions systemic mitigation for threats against the integrity,

availability, and privacy of sensor data and systems to enable manufacturers to con-

sider and mitigate several physically-based vulnerabilities in the design phase. Exist-

ing approaches to defending sensor security tend to follow an endless cat and mouse

game—security researchers find a physics-based exploit, then manufacturers deploy

an exploit-specific patch rather than create an overarching and measurable security

goal to address the root causes of that specific exploit. The lack of a measurable,

goal-oriented approach to analog sensor security makes it difficult to apply science to

defensive design.

One of the great challenges derives from the great number of sensor designs and

the variety of possible threats. Origins for a vulnerability may reside in a sensor’s
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physical construction to an operating system’s handling of sensor data. The plethora

of sensor designs may all react differently to physical stimuli (e.g., light or sound).

Attacker goals can vary from disrupting sensor availability to discerning sensitive in-

formation. Thus, investigating and mitigating each of these individual vulnerabilities

in a piecemeal approach is too costly for manufacturers. Thus, this thesis focuses on

discovering common components or methods shared by classes rather than individual

vulnerabilities, then using established concepts to systemically mitigate these classes

of vulnerabilities.

1.1 Background and Motivation

Sensor Heterogeneity: Protecting sensor data is crucial because of the importance

of sensor data in a wide variety of application spaces, but it is challenging for the same

reason. There are more than 370 types of sensors on record [154] that rely on dozens

of conversion phenomena for measurement [155]. Despite the variety, these sensors do

share common components and methods to accurately convert their targeted physical

quantities. Vulnerabilities often use one of these common components or methods,

thus understanding these commonalities provides a foothold for general mitigation

design.

Physical Signals Affecting Sensor Output: Sensors are by definition sensitive to

at least physical quantity (i.e., what they are designed to sense), but sensor output

is often subject to other phenomena such as a microphone’s output being subject to

light. Such undefined or overlooked relationships between physical stimuli and sensor

output can introduce vulnerabilities. Mitigation design must account for all sources

of information embedded in sensor data.

A Need for Systemic Mitigation: Addressing vulnerabilities individually is an

inefficient approach that is not appropriate for these physically-based vulnerabilities.
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To provide an analogy, focusing on patching each individual vulnerability is akin to

patching individual buffer overflow vulnerabilities; the more effective strategy has

proven to be to design mitigations that the programmers did not have to consider

in design such as address space randomization and stack canaries. Sensor systems

need similar design changes that design the problem away. This need is heightened

by how many of these vulnerabilities are best addressed in hardware, meaning that

mitigations can rarely be applied retroactively via a software update.

1.2 Contributions

This dissertation divides the broad threat of physical vulnerabilities of sensors

into two large groups and introduces terms for each: (1) transduction and (2) over-

sensing vulnerabilities. Transduction vulnerabilities allow an adversary to write extra

information into sensor system output using physical signals such as light, sound, etc.

Conversely, oversensing vulnerabilities allow an adversary to read extra information,

often placed by interaction with a physical signal, in sensor system output. Contribu-

tions of this work span both transduction and oversensing vulnerabilities. Specifically,

contributions include:

1. Categorization and Analysis: a high-level overview and analysis of transduction

and oversensing vulnerabilities. This overview includes a detailed taxonomy of

transduction vulnerabilities and categorization of common oversensing vulnera-

bilities in smartphone operating systems. This categorization and systematiza-

tion provide a basis for more general mitigation design through clear dictation

of common vulnerability components. Furthermore, this contribution provides

common terms and language to unify vocabulary across the field.

2. Mitigation Design Patterns: several designs to mitigate several vulnerabilities

across sensors, attack modalities or goals, operating systems, and more. This
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dissertation includes a theoretical explanation of why each of these mitigations

can be effective by relying on established principles and a detailed evaluation

of many of these mitigations.

3. Detailed Case Studies: in-depth analysis of transduction vulnerability on hard

disk drives and an oversensing vulnerability in smartphone motion sensors.

These studies explain why each of these vulnerabilities can lead to an attack

and how to apply the mitigation design patterns to specific problems.

1.3 Thesis Outline

The contributions of this work are roughly divided between transduction and

oversensing vulnerabilities. Each has a chapter devoted to the study of the type of

vulnerability (e.g., transduction or oversensing) including attack categorization and

mitigation design patterns, then a chapter detailing a particular attack and mitigation

analysis for that attack. Specifically, the chapters of this work are:

1. Background and Related Work: Chapter 2 provides an overview of sensing,

signal processing, and transduction and oversensing vulnerabilities. Included is

a general model for component-level sensor design and common properties for

sensing that can lead to vulnerabilities. Additionally, it provides related work

to all areas discussed in this dissertation.

2. Transduction Attack Model: Chapter 3 describes a mathematically-based

model to describe transduction attacks and mitigations. It systematizes past

work according to this model and shows how many previously suggested miti-

gations map to multiple transduction attacks. These existing mitigations col-

lectively serve as general defense patterns for most vulnerabilities.

3. Blue Note: Chapter 4 provides a transduction attack case study in using
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acoustic waves to disrupt hard disk drive operation. Included is an investigation

into the physical causality and its effects on the reliant operating system as well

as physical and software mitigations.

4. OA-Sys: Chapter 5 describes oversensing and categories of oversensing, par-

ticularly pertaining to smartphones. Then it provides a preliminary permission

system for smartphone operating systems to prevent oversensing vulnerabilities

in smartphones.

5. Touchtone Eavesdropping: Chapter 6 provides a detailed oversensing case

study in using smartphone motion sensor access to eavesdrop on numerical

user input. It investigates the physical causalities and then provides signal

processing-based mitigations that could be generally applicable to oversensing

vulnerabilities.

6. Discussion: Chapter 7 discusses the conceptual similarities between the work

presented elsewhere in the thesis, such as how mitigations for oversensing could

relate to mitigations for transduction vulnerabilities and vice versa.

7. Conclusion: Chapter 8 summarizes the contributions and impact of this work.
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CHAPTER II

Background and Related Work

This dissertation analyzes physics-based attacks on sensor systems with the ulti-

mate goal of enabling mitigation strategies that prevent or detect different attacks

across multiple sensor types. While of concern since at least the 1960s, in the past

ten years there has been an increase in research focused on these attacks that exploit

how physical signals (i.e., acoustic waves, radio waves, light) interact with sensor

systems. Applications have ranged from safety-critical systems (i.e., airplanes) to

Internet-of-Things (IoT) devices in the home. Designing mitigations for such attacks

is difficult due to the high variation in targeted sensor systems, attacker goals, and

attack methods. This variation often leads to attack-specific and sensor-specific miti-

gation design. However, deploying specific mitigations is often impractical as software

updates cannot address hardware changes or interact with many deployed devices.

This dissertation groups these physics-based sensor vulnerabilities into two non-

exclusive categories.

Transduction attacks manipulate sensor system output using a physical signal

to write extra information into the data. Transduction attack research is related

to the established field of electromagnetic injection on devices like smart cards and

cryptographic hardware, applying similar concepts to different signal modalities and

sensors. The work in this dissertation extends foundational transduction attacks,
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such as Rocking Drones [135] in 2015, by providing a description and categorization

methodology in the Transduction Attack Model.

Oversensing attacks read sensitive information in sensor system output, often an

(unwanted) byproduct of physical signals with the sensor. Oversensing attacks fall

under the established field of side-channel attacks, including work such as Differential

Power Analysis [71], focusing on sensors and sensor data. This dissertation extends

previous research that would fall into this Oversensing attack categorization, such as

those that use accelerometer or gyroscope readings in smartphones to infer sensitive

data, by providing preliminary defense patterns that could apply to many of these

attacks.

Understanding these vulnerabilities requires an understanding of sensor construc-

tion, signal processing, and other related principles. This section provides a brief

background into (1) sensor construction and (2) signal processing followed by related

work for (3) transduction and (4) oversensing research.

2.1 Sensors

A sensor is defined as a device that outputs usable measurement in response to a

specific measurand [49]. An ideal sensor would provide perfect data on the measured

phenomenon but in reality sensors approximate reality. This approximation provides

a gap for vulnerability. Despite a great variety in sensor design, sensors often share

components and properties that facilitate general vulnerabilities. This promotes the

idea that sensors share commonalities. These commonalities can be used as a basis

for general mitigation strategies for both oversensing and transduction vulnerabilities.
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Figure 2.1: A general signal conditioning chain of sensors. Signals flow from left to
right through each component and transform from the physical stimulus (input) to
an analog intermediate and finally to a digital representation (output). Depending
on the specific design, variations to this schematic may include multiple amplifiers or
filters, no filters, filters before the transducer (e.g., CMOS) or amplifier, other circuits
(e.g., comparators), etc.

2.1.1 Sensor Construction

Figure 2.1 shows a general component level model for sensor construction. In this

model a sensor is represented as an interconnection of essential electronic components.

Sensors transform a physical stimulus (input) to an analog intermediate and finally

to a digital representation (output). Components include:

Stimulus and Measurand: The measurand is a quantity that a sensor intends to

measure, and a stimulus is a physical signal involved in measuring the measurand.

For example, an accelerometer’s measurand and stimulus are acceleration and force,

respectively. A thermocouple’s measurand and stimulus are temperature and heat.

Despite the wide variety of stimuli, sensors generally fall into one of two patterns to

capture input:

1. Passive sensors passively accept physical stimuli and do not emit external stim-

uli. For example, microphones are passive sensors that capture sound from the

environment. The stimuli of passive sensors, e.g., light, sound, force, and chem-

icals, are generated by other objects in the environment or already exist.

2. Active sensors emit physical stimuli to an environment and actively measure

the response after the stimuli’s interaction with the environment. For exam-
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ple, ultrasonic sensors/lidars measure the distance to objects by emitting ul-

trasound/lasers and receiving the reflection. Active sensors are often used to

measure quantities of tangible objects, such as obstacle distance, rotation speed,

and liquid drop. For simplicity, we do not show the emitter in Figure 2.1.

Transducer: Commonly a sensor’s first component, a transducer produces an analog

electrical representation of the measurand by measuring a physical stimulus. Trans-

ducer heterogeneity, even for the same measurand or physical stimuli, is the primary

source for sensor diversity. For example, dynamic, condenser, and piezoelectric mi-

crophones all can capture sound, but they rely on entirely different conversion phe-

nomena [36].

Analog Signal Processing Circuits: Typically, a sensor must process a trans-

ducer’s analog signals to reduce noise while amplifying useful information. Standard

components include amplifiers to increase the signal amplitude, filters to remove noise,

envelop detectors, comparators, etc.

ADC: An analog-to-digital converter (ADC) digitizes analog signals for digital pro-

cessing, storage, etc.

Note that a sensor may not contain all components shown in Figure 2.1. For in-

stance, some sensors do not have filters by design. Nevertheless, Figure 2.1 represents

a simplified yet functionally comprehensive structure of a modern sensor.

2.1.2 Common Properties and Concepts for Sensor Exploits

Sensitive to Physical Signals: By design, sensors are sensitive to the target phys-

ical stimulus, even if the stimulus is unintended for measurement. This effect guar-

antees that at least one type of physical signal will affect the sensor.

Similar Analog Signal Processing: Analog signal processing circuits often remain

similar despite transducer heterogeneity. For example, sensors commonly use ampli-
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fiers and filters, even if designed to measure different phenomena. Thus, exploits on

similar signal processing circuits may remain similar even on different sensors, e.g.,

microphones and thermocouples.

Same Signal Modalities: There are three signal modalities for the signal condi-

tioning chain: physical, analog, and digital, as shown in Figure 2.1. The shared signal

modalities show that the same signal properties in each modality may be exploited

for attacks across various sensors.

Chain of Blind Trust: Sensors are essentially proxies of reality. Most sensor de-

signs use a series of electric components to approximate the measurand. Typically,

each component blindly assumes its input is valid. However, this blind trust can al-

low malicious signals to exploit components in the signal conditioning chain without

detection.

2.2 Signal Processing Concepts and Terms

2.2.1 Basic Signal Definitions

Amplitude: the magnitude of a given signal at a given point in time.

Frequency: a measure of oscillation of a given signal.

Bandwidth: in a communication channel or sensor output, bandwidth is the range

between the upper and lower frequency bounds the signal can contain.

In-band vs Out-of-band: A signal is in-band for a given sensor or application if it

is within the intended range of frequencies for a signal.

Digital vs Analog: A signal may be digital or analog. An analog signal is continu-

ous. Digital signals are discrete.

Distortion: refers to when a signal is altered unintentionally, often undesirably.
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2.2.2 Signal and Physical Phenomenon

2.2.2.1 Resonance

Resonant or natural frequencies widely exist for many mechanical and electrical

components, e.g., MEMS transducers [23] and wires (antennas) [46]. A signal with

a given amplitude will have a greater impact on a given component if it is near

that component’s resonant or natural frequency. This can be used as a method of

maximally affecting a component given limited transmission capabilities. Mechanical,

acoustic, and electromagnetic resonances are used in existing attacks.

2.2.2.2 Aliasing

According to the Nyquist-Shannon sampling theorem [123], if the frequency of a

sampled signal is higher than half of the sampling rate, the signal will be indistin-

guishable from signals of other frequencies [97]. For example, if the sample rate of

an ADC is Fs, then a signal at frequency f will have the same sampling result as a

signal at frequency Fs − f . Each of these indistinguishable signals is an alias, and

this improper sampling of a signal [77, 145] is called aliasing.

2.2.2.3 Filtering

Filtering is the process of reducing the bandwidth of a signal path by attenu-

ating unwanted signals at certain frequencies (stopband) and only allowing desired

frequencies (passband) to reach the destination. Basic filters include:

• Low-pass filters: attenuates frequencies greater than the filter’s cutoff fc.

• High-pass filters: attenuates frequencies lower than the filter’s cutoff fc.

• Band-pass filters: passes frequencies within a given range, attenuating all other

frequencies.
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• Band-stop or Notch filter: attenuates frequencies within a given range, passes

all other frequencies.

A perfect filter would have a flat frequency response in the passband (e.g., no distor-

tion), and maximally attenuate the stopband. However, this is impossible to achieve

in practice and so designs often have trade-off characteristics such as distortion in

the passband versus attenuation in the stopband. There are many different analog or

digital filter designs for various applications in software and hardware. A filter’s order

is another important quality. Higher-order filters attenuate the stopband frequencies

more quickly. More advanced filters can change their parameters during operation to

better adjust to an application, and this is called adaptive filtering.

2.3 Transduction Vulnerabilities

The term “transduction vulnerability” refers to when an adversary can alter a

sensor system’s output [44] using a malicious physical signal and the term “transaction

attack” refers to when an adversary designs a physical signal to take advantage of such

a vulnerability. In particular, an attacker generates malicious physical signals that are

transduced to malicious analog signals in the sensor circuitry, either explicitly through

transducers or implicitly through other components in the sensor system. An attacker

may generate malicious physical signals of any modality for transduction attacks,

regardless of whether the signal is of the same type as the intended stimulus by

design. For example, attackers can use infrared (IR) to attack lidar (which measures

obstacles with IR) or RF signals to attack microphones (which measures sound).

These terms are based on the word “transducer” (Section 2.1) in a transduction

attack the adversary’s physical signal is transformed into a physical signal in the

sensor system. As such, these attacks can be thought of as an adversary “writing”

information into sensor output using physical signals.
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Application Sensor Attack Modalities Papers

A
u
to

m
ob

il
e Lidar K [127, 104]

Camera K [104, 162]
Radar O [162, 24]

Ultrasonic Sensor n [162, 158]
Magnetic Encoder » [129, 117]

D
ro

n
es

or
S
m

ar
t

D
ev

ic
es Optical Flow Sensor K [31]

MEMS Gyroscope n
[135, 146, 151, 91,
146]

MEMS Accelerometer n [143, 146, 91]

Microphone On
[40, 66, 114, 126,
26, 165, 163, 136,
115]

Touchscreen � [80]

Hard Disk MEMS Shock Sensor n [19]

Energy Infrared Sensor O [121, 120]

Medical
Devices

Pacemaker Lead O [40]
Defibrillator Lead O [40]

Drop Counter K [101]

K Visible light or infrared O RF waves n Audible sound or ultrasound
» Magnetic field � Electric field

Table 2.1: Systematization of transduction attacks with the simple sensor security
model.

2.3.1 Attacks

There is significant related work that focuses on specific transduction attacks,

but less work focusing on the common properties shared by transduction attacks as

described later in this dissertation in Chapter III. Shown in Table 2.1 is an overview

of transduction vulnerabilities. The types of malicious physical signals that have

demonstrated use in transduction attacks include but are not limited to the following

items.

• Electromagnetic radiation refers to the waves of an electromagnetic (EM)

field that propagate through space. It includes radio frequency (RF) waves,

infrared, (visible) light, ultraviolet, X-rays, and gamma rays. Prior work has

demonstrated how to manipulate radar [162, 24], microphones [41, 66], infrared
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sensors [121, 120] and pacemakers [41] with RF waves. Light has been used to

manipulate LIDAR [127, 104], cameras [104, 162], microphones [138], optical

flow sensors [31] and medical drop counters [101].

• Sound is a vibration that propagates as a wave of pressure through mediums,

including gas, liquid, and solid. It includes audible sound (20 Hz to 20 kHz),

ultrasound (>20 kHz), and infrasound (<20 Hz). Sound has been shown to

manipulate ultrasonic distance sensors [158, 162] microelectromechanical sys-

tems (MEMS) gyroscopes and accelerometers [135, 146, 151, 91, 143], micro-

phones [114, 126, 26, 159, 165, 115, 136] and MEMS shock sensors [19].

• A magnetic field is created by magnetized materials and by moving electric

charges (currents) such as those used in electromagnets. Research shows how

magnetic fields can manipulate magnetic encoders [129, 117].

• An electric field is generated by particles that bear electric charges in any

form. Previous work has shown how electric fields can manipulate touch-

screens [80]

2.3.2 Systematization and Mitigation Strategies

Many of the papers listed in Section 2.3.1 give a specific mitigation idea for

whichever attack they propose; however, there have been few mitigation strategies

that focus on thwarting classes of attacks (i.e., attacks using different physical signal

types against different kinds of sensors), as presented in Chapter III.

The most well-known work investigating a mitigation strategy that spans multiple

types of attacks and sensors is shown by Shoukry et al. [130], which focuses on active

sensors. In the scheme, the sensor randomly ceases all stimulus transmission. Then,

any received stimulus during this pause indicates the presence of an attack. While at-

tackers with higher capabilities may still overcome this scheme [128], it would greatly
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increase attack difficulty. Zhang et al. [168] extend this idea by modulating sensor

output with a random pattern to detect attack output.

There has been little previous work looking at the whole of transduction attacks

through systematization or modeling. The work provided by this dissertation instead

presents a new mathematical representation of the analog signal through the sensor,

then systematizes in part based on this math to show more conceptual similarities and

differences between attacks and defenses. This method of systematization is aimed

to make designing systemic mitigation easier.

2.3.3 Acoustic Attacks on Hard Drives

The detailed transduction attack case study presented in Chapter IV investigates

how acoustic waves can alter and even disable hard disk drive operation. Sandahl et

al. [119], Siemens [131], and Rawson and Green [111] have investigated HDD through-

put loss due to acoustic interference; however, they did not consider malicious actors

and did not test ultrasonic signals as seen in Chapter IV. An engineer demonstrated

how yelling at HDD arrays can lead to perceptible drops in I/O throughput1. Or-

tega [98] demonstrated how hard disk drives can be interfered with by finding their

resonant frequency, but focused on lower frequencies than those investigated in Chap-

ter IV; the high-frequency ultrasonic tones presented in this work are importantly

inaudible to human hearing and so is more covert. Additionally, this work discovers

the root causes of why these phenomena happen as well as what parameters are most

important in conducting such an attack and investigates mitigation strategies.

Other work has made use of HDD components’ other analog features to establish

covert channels. Guri et al. [52] utilized the HDD’s built-in thermal sensors to receive

data transmitted over the machine’s heat emissions. Guri et al. [53] used the move-

ments of a hard drive’s actuator arm to generate audible emissions that were used to

1https://www.youtube.com/watch?v=tDacjrSCeq4
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exfiltrate data from air-gapped machines. Since the head of a hard drive is made up of

magnetic materials, the movement of the head can produce a sufficiently strong mag-

netic field that can be detected by a smartphone’s magnetic field sensors. Matyunin

et al. [82] utilized this phenomenon to build a covert channel by manipulating the

movement of the head.

Much less attention has been devoted to side-channel information-leakage attacks

on HDDs. Biedermann et al. [16] showed how an attacker could use a smartphone’s

magnetic field sensors to deduce information about a machine’s operations. Previous

research has demonstrated how to establish a covert channel, this work explores the

effects induced by injecting acoustic waves into HDDs.

2.3.4 Acoustic Waves Affecting MEMS Motion Sensors

Acoustic waves alter the output of microelectricalmechanical systems (MEMS)

accelerometers and gyroscopes due to how these sensors approximate motion (Fig-

ure 5.4). MEMS accelerometers and gyroscopes approximate the motion of a body

via the motion of a small sensing mass(es) attached to capacitive springs. When the

mass(es) moves, the springs create a representative voltage which is then amplified,

filtered, digitized, and sent to the processor. However, while the linear or angular ac-

celeration of the sensing mass(es) are usually accurate representations of the body’s

acceleration, they are not exact. The smaller mass may become affected by small

acoustic vibrations via the air or through contacted surfaces [83, 143, 12]. The sensor

captures this acoustic information and reports it as the acceleration of the body itself,

which is unlikely the intent of the motion sensor.

2.4 Oversensing Vulnerabilities

An oversensing vulnerability is when authorized access to sensor data can provide

an application with superfluous and potentially sensitive information; an oversensing

16



attack is when a malicious adversary obtains sensitive information using authorized

sensor data. Oversensing vulnerabilities are common in smartphones and the growing

Internet-of-Things [58]. To prevent blatant data misuse, researchers design and com-

panies employ permissioning systems intending to limit each application’s sensor data

access [122, 48, 54, 75]. Unfortunately, granting ostensibly benign sensor access to

applications may allow adversaries to acquire sensitive information hidden in sensor

data. For example, attackers can use a smart-phone’s power consumption to infer a

victim’s location [85], motion sensor data to infer keystrokes [99, 57, 21] or nearby

human speech [83, 56, 166, 12], and microphones to infer keystrokes [116] or physical

keys [108].

Often, traces of this sensitive information are subtly written into the sensor data

by some untended or unaccounted for phenomena, i.e., nearby speech affecting ac-

celerometer output to place traces of nearby speech in the accelerometer data. Thus,

many oversensing vulnerabilities are “reading” the extra information in a sensor sig-

nal given by physical interaction. I provide a brief overview of oversensing attacks

and defenses, particularly those relevant to our case study on eavesdropping via ac-

celerometers.

2.4.1 Touchtone Eavesdropping Attacks

Previous work has gone into detail on oversensing vulnerabilities that infer hu-

man speech utilizing motion sensors, but do not specifically investigate touchtones as

shown in Chapter VI or categorize these attacks as part of a larger set of vulnerabil-

ities (oversensing) as discussed in Chapter V. Further, these works do not present a

comprehensive analysis and evaluation of mitigations for these vulnerabilities.

Gyrophone [84] demonstrates an attack that recognizes human-spoken digits us-

ing smartphone gyroscopes by utilizing speech spectral information. Similarly, Accel-

Word [166] and Spearphone [12] investigate the feasibility of leveraging a smartphone’s

17



accelerometer to capture acoustic signals for hotword detection and human spoken

digits recognition, respectively. PitchIn [56] fuses across multiple unimodal sensors

(e.g., only accelerometers or gyroscopes) to reconstruct intelligible human speech.

However, our oversensing case study related to these attacks combines multidimen-

sional information from different axes of sensors. More specifically, this work finds

that different channels of the same sensor may serve as additional information sources

to enhance the attack.

2.4.2 Other Vulnerabilities and Attacks

Recent research demonstrates oversensing attacks utilizing smartphone motion

sensors to infer victims’ location or keystrokes. Similar to the work in this paper,

many of these papers use machine learning to make use of subtle information hidden in

sensor data by oversensing. ACComplice [57] leverages smart-phone accelerometer to

infer victim driver’s driving routes as well as the starting point. Narain et al. further

extended findings of ACComplice and demonstrated the feasibility of such attacks on

a larger scale across ten cities [89]. (sp)Iphone [79] accesses accelerometer readings

to infer typed text on nearby keyboards by observing the relative physical position

and distance in between each vibration detected. Similarly, ACCessory [99] utilizes an

accelerometer to infer keystrokes as the victim user types on his/her smartphone. Due

to minute differences in taps, it can sufficiently infer the typed keys. Tapprints [86]

further extends the findings of ACCessory by incorporating both accelerometer and

gyroscopes as well as conducting larger experiments at scale with more practical use

case scenarios.

PowerSpy [85] shows how an smartphone application can use valid permissions to

access a phone’s current power consumption because such information was originally

thought to be harmless. However, this permission enables the application determine

the user’s location through use of machine learning.
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Microphones have also been shown to be vulnerable to oversensing attacks. Ul-

trasound has been shown to affect microphone output [165, 163] and may be used to

track user location [13]. SpiKey [109] is an attack that can determine the shape of a

physical key from the time difference of clicks made by a victim using the key to unlock

their door. Backes et al. use microphones to determine the text being printed by a

printer from sound alone [15] and other work has shown the same on 3D printers [11].

Several works have used microphones to infer pins and keystrokes [132, 90].

2.4.3 Categorization and Mitigation Strategies

Chapter V provides a generalized approach to categorizing and limiting oversens-

ing vulnerabilities versus very specific solutions for individual problems. It does so

by demonstrating backward-compatible operating system changes in the sensor per-

missioning system that support several patterns of general use cases of sensor data.

Little other work has been done in this space. Other work [86, 99] proposes very spe-

cific mitigations to oversensing by limiting sample rates and [84] applying low-pass

filters. However, as later discussed in Chapter VI, this could affect the functionality

of benign applications. Mitigations presented in Chapter VI are functionality aware,

and so attempt to minimize the effect on benign applications. Spearphone [12] draws

attention to the fact that simply applying filters does not defend against oversensing

due to the complexity of signal aliasing.

19



CHAPTER III

Transduction Attack Model

This chapter, based on my past work1, introduces the Transduction Attack Model

(TAM) to detail how transduction attacks operate and systematizes existing vulnera-

bilities and defenses to reveal which defenses can be used more broadly across various

sensors effectively. TAM is a model to designed simplify transduction attack analysis

using a combination of (1) transfer mathematical models of sensor physics and (2)

the abstracted methods to exploit these mathematical sensor models. This model en-

ables a detailed description of the methods transduction attacks use such that sensor

engineers can more deliberately and concisely write down security requirements and

limitations concerning analog security risks to sensors. This process helps an engineer

to more quickly identify the security limitations of sensor design and to have a way to

debate the effectiveness of various defenses. A systematization of these attacks using

the model shows that many of these attacks share common methods, even if they use

different signal modalities (e.g., light vs sound) on different types of sensors.

As mentioned, TAM relies on mathematical transfer functions that map to the

components within a sensor’s signal conditioning chain to describe both how a sig-

nal changes as it is captured and how adversaries could alter the signal arbitrarily.

Each transduction attack exploits at least one transfer function. One can abstract

1Chen Yan, Hocheol Shin, Connor Bolton, Wenyuan Xu, Yongdae Kim, Kevin Fu. “SoK: A Min-
imalist Approach to Formalizing Analog Sensor Security,” In Proceedings of 41st IEEE Symposium
on Security and Privacy, 2020.
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and categorize these methods to exploit the physics of sensor circuits based on two

categories of basic steps to provide an easier-to-understand, higher-level description.

Each step describes a method to exploit a transfer function and is an abstraction

above the physical component level. Thus, different transduction attacks may share

some basic steps that exploit the same vulnerability in transfer functions regardless

of sensor components or sensor type. This mathematical abstraction simplifies the

comparison of attacks across different sensors and signal modalities, as many attacks

may be described as a chain of five or fewer steps.

Mitigation efforts can exploit these shared methods to enable defense abstraction

across different sensor types. Successful attacks require each piece in the chain of steps

to function correctly; thus the key to defending an attack is to mitigate at least one

step in the attack chain. Consequently, designing mitigations for the most common

individual attack steps defends multiple transduction attacks simultaneously. This

insight results in a language to describe mitigations that is abstracted from particular

sensor types and components.

3.1 Model Scope

3.1.1 Model Goal

The model presented in this chapter specifically models the analog properties of

sensor security, focusing on the trustworthiness of sensor measurement under the

threat of analog attacks. Trustworthiness refers to whether the measurement accu-

rately provides the sensor’s intended measurand, e.g., the phenomenon the sensor is

trying to measure. For example, the model should be able to describe a vulnera-

bility that causes a lidar to detect non-existing obstacles or a microphone to report

non-existing sounds. However, the model does not consider attacks that intentionally

modify the measurand, which may include some transduction attacks such as those
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that manipulate the actuator in a sensor system. For example, it does not consider

acoustic resonance of a hard-disk drive read-write head in the head-stack assembly

sensor system (such as described in Chapter IV) even though that is a transduction

attack (physical signal to manipulate sensor system). The sensor’s measurements,

though manipulated, still reflect reality. Additionally, it would not cover attacks such

as how attackers can use a hairdryer to heat a thermocouple such that the temper-

ature measurements are higher than the ones of the distant environment. Similarly,

the model does not consider fake fingers for fingerprint sensors [37], IR decoy flares

for infrared homing missiles [70], and melamine adulteration of milk for measurement

of nitrogen content [124], since all involve measurand manipulation.

3.1.2 Threat Model

3.1.2.1 Attacker Objectives

The model considers two adversarial objectives using transduction vulnerabilities.

Denial-of-service (DoS): The goal is to prevent a sensor from acquiring usable

measurements. For instance, a strong acoustic signal can cause unreliable, seemingly

random gyroscope output if the signal’s frequency is close to the gyroscope’s reso-

nant frequency. Thus, such a signal may prevent proper flight for drones relying on

gyroscope output [135].

Spoofing: The goal is to trick a sensor into providing seemingly legitimate but erro-

neous measurements. For example, for an RC car controlled by a phone’s gravitational

orientation, malicious acoustic signals can induce false acceleration measurements and

control the RC car’s movement while the phone remains stationary [143].

3.1.2.2 Threat Capabilities

This chapter considers adversaries with the following assumptions.

22



Analog Attacks: An adversary focuses on affecting the analog signals in a sensor

and does not interfere with digital measurement processing or transmission.

Sensor Assessment: Adversaries cannot tamper with victim sensors but can obtain

similar sensors for assessment. The adversary may reverse engineer sensor design pa-

rameters, such as operational frequencies, bandwidth, signal format, etc., and explore

vulnerabilities.

Attack Range: Transmission power generally bounds effective attack range, but an

adversary may extend the range by emitting stronger physical signals at extra costs.

Thus, this work focuses on other aspects contributing to attack feasibility rather than

strictly range.

3.2 Model Design and Attack Systematization

The Transduction Attack Model (TAM) seeks a balance between describing the

salient security properties of sensors while requiring minimal additional cognitive

effort by established sensor experts. To achieve this, the model adapts well-established

language from the sensor and signal processing communities in transfer functions, then

abstracts common methods from these transfer functions.

3.2.1 Model Overview

TAM addresses the challenge of how to identify and describe transduction attacks

using the existing representation of transfer functions by modeling transduction at-

tacks as a vector of malicious noise (Figure 3.1). Transfer functions [94] are a well-

established concept in signal processing community to model system input and output

relationships [42, 96, 28]. The model extends this approach by encapsulating the no-

tion of malicious interference as an additional vector of noise that maps to each stage

of a sensor’s signal conditioning chain and related support circuitry. Additionally,
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the model abstracts the most common methods of exploiting these transfer functions

into a set of basic steps that are sufficient to describe vulnerabilities, attacks, and

mitigations succinctly. These steps can be divided into two categories:

1. Signal injection steps describe key methods to inject malicious analog signals

into sensors by emitting malicious physical signals and are vital to all transduc-

tion attacks.

2. Measurement shaping steps describe key methods to shape injected analog sig-

nals to benefit the adversary and may be optional depending on the target

sensor and attacker goal.

3.2.2 Transfer Function Representation

This section describes the traditional transfer function model used as a base for

TAM and the additions needed to represent transfer functions in the model (Fig-

ure 3.1). Table 3.1 summarizes established notation and the minimal additions to

capture security properties.

3.2.2.1 Traditional Sensor Model Representation

TAM models each sensor component as a transfer function, which characterizes its

input-output relationship. Transfer functions are normally expressed in the Laplace

domain for analysis of the dynamic response [94, 95] and in the time domain for

analysis of the static response [42, 102, 133]. Note the use of the time-domain rep-

resentation of transfer functions, because transduction attacks usually damage or

exploit the static characteristics of sensors, e.g., accuracy and nonlinearity.

As shown in the middle of Fig. 3.1, traditional approaches characterize the ith

sensor component as a mathematical transfer function fi:

xi+1 = fi(xi, ni) (3.1)
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Figure 3.1: A generalized sensor schematic (top), the traditional and established way
of modeling a sensor (middle), and the adaptation to model a transduction attack
(bottom). The signal processing community models a sensor as cascading transfer
functions. Each transfer function (e.g., fi) has two inputs—the legitimate signal xi
and the noise signal ni. The output signal xi+1 becomes the input to the next transfer
function fi+1. x1 is the stimulus to the transducer (f1), and it is either pre-existing
or transformed from a probing signal x0 generated by the sensor if it is an active one.
The noise ni may come from the electrical circuit or the external environment. The
transduction attack model consists of a simple adaptation of established practices by
representing analog security exploits as a vector of intentional noise [a1, a2, . . . , am]
that leads the output y to an attacker-desired value of ŷ.

where the inputs consist of a legitimate signal xi and a noise signal ni, and the output

signal is xi+1. Note that xi+1 is also the input to the (i+ 1)th component. All signals

are time-varying, and this figure omits the time variable t in xi(t) for simplicity. The

noise ni is an unwanted disturbance to xi and may come from the electrical circuit

itself (electronic noise) or the external environment (coupled noise). In practice, the

noise signal ni and legitimate signal xi are mixed and cannot be separated easily [148].

The conceptual model serves to emphasize that noise inputs can affect the outputs

of the components and introduce errors to the measurement.

Examples: To provide intuition on model use, here are common examples of estab-
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Established notation from the traditional sensor modeling

fi, f The transfer function of the ith component and the sensor

m The number of components modeled as transfer functions

xi, x The legitimate input to the ith component and their vector

x0 The physical stimulus generated by active sensors

ni, n The noise input to the ith component and their vector

y The sensor measurement (at the ADC)

hi The unintended transfer function of external noise

Notation introduced by transduction attacks

ai, a The malicious physical signals emitted for the ith component and their vector

a′i, a′ The malicious noise signals injected into the ith component and their vector

g The adversary transfer function

ŷ The sensor measurement desired by the attacker

k Knowledge of the sensor model

x̃1, x̃0 The real measurement of x1 and x0 (optional for active sensors)

Table 3.1: Transduction Attack Model Notation.

lished transfer functions when the noise is additive, which is the most widely used

noise model.

1. A linear transfer function is defined as xi+1 = c0 + c1(xi + ni), where c0 is

the intercept and c1 is the slope. The linear relationship is expected for many

components in their ideal states, such as position transducers and amplifiers [42].

2. Nonlinear relationships apply to most components in practice. Common trans-

fer functions include [42]: logarithmic function xi+1 = c0 + c1 ln(xi + ni) (e.g.,

photodiodes), exponential function xi+1 = c1e
k(xi+ni) (e.g., thermistors), and

power function xi+1 = c0 + c1(xi + ni) + c2(xi + ni)
2 (e.g., silicon resistive sen-

sors). Higher-order polynomial functions may be employed for other cases.

As shown in the middle of Fig. 3.1, traditional signal processing formalizes the

transfer function of a sensor as the cascading components’ functions:

y = fm(· · · f2(f1(x1, n1), n2) · · · , nm) (3.2)
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where the output y is the sensor measurement and m is the number of components.

The inputs to a sensor include the physical stimulus x1 at the transducer and the noise

signals at each component. Let a vector of the noise signals be n = [n1, n2, . . . , nm]

and the overall transfer function of the sensor be f , Equation 3.2 simplifies to:

y = f(x1,n) (3.3)

3.2.2.2 Adding Transduction Vulnerabilities to the Traditional Model

Although noise reduction with signal processing circuits is a common practice,

sensor designers typically do not expect the intentional noise injected by transduction

attacks. The goal of a transduction attack is to modify a sensor’s measurement y by

injecting intentional noise to the legitimate physical or analog input xi. Formally, I

define transduction attacks as follows:

A transduction attack alters the measurement of a sensor to approach an attacker-

desired value ŷ by injecting intentional interference to the sensor. The measurement

under a transduction attack can be represented as

y = f(x1,n + a′) (3.4)

where a′ = [a′1, a
′
2, . . . , a

′
m] = [h1(a1), h2(a2), . . . , hm(am)] is a vector of malicious

noise signals injected by the attacker at each of the m components, and n + a′ =

[n1 + a′1, n2 + a′2, . . . , nm + a′m]. hi is the unintended transfer function of noise that is

hidden before the ith component and models the propagation and coupling of external

noise.

A transduction attack is modeled as shown at the bottom of Figure 3.1. The

injected signal a′i is of the same type as the original noise ni. The combination of the

injected signal a′i and noise ni may affect the output of components and eventually
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the sensor measurement. This output will be accepted because subsequent signal

conditioning components blindly trust inputs. A vector of the malicious physical

signals emitted by the attacker can be formalized by an adversary transfer function

g:

a = [a1, a2, . . . , am] = g(ŷ, k, x̃1, x̃0) (3.5)

where ŷ is the desired sensor measurement, k is the knowledge of the sensor model,

x̃1 is the measured stimulus from the measurand, and x̃0 is the measured stimulus

from the victim sensor if it is active. Independently, attackers may measure both

x1 and x0. Knowledge of the existing stimulus x1 is necessary to achieve accurate

control over the sensor’s measurement, and measuring the stimulus x0 emitted by

active sensors is optional, e.g., in spoofing sensors such as lidars [127] and ultrasonic

sensors [158].

3.2.2.3 Discussion

Without transfer functions, designing a viable physical signal for transduction

attacks is empirical and requires trial and error. With the transfer functions, I envision

that the simple sensor security model facilitates the design of malicious physical

signals a that can modify the sensor measurements to a given value and quantify

the effectiveness. In particular, given the desired sensor measurement ŷ, an attacker

can derive a by mathematically solving an optimization problem2. The model can

quantify the effectiveness of an attack by the expected error, i.e., e = |ỹ − ŷ|, where

ỹ is the real sensor measurement. An attacker’s goal is to minimize the expected

error e by optimizing the emitted physical signals a. Conversely, sensor designers

tasked with threat mitigation may consider methods to attenuate undesirable signals

2An attacker may acquire the transfer functions from public datasheets or by conducting sensor
assessment. If accurate modeling of a transfer function is challenging, e.g., the unintended EM
coupling effect, approximate solutions are applicable. Though inaccurate transfer functions may
degrade the model, they seldom impair the effectiveness of attacks, especially when an attacker does
not demand a highly accurate control over the sensor output.
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injected through each transducer, including unintended transducers. In addition,

designers should validate that real components match their theoretical behavior, even

for abnormal input.

To construct a transduction attack, the simple sensor security model indicates two

categories of basic steps.

1. The signal injection steps involve determining the necessary characteristics of

the malicious physical signals that can inject noise to the signal conditioning

path efficiently, including the injection point and signal parameters.

2. The measurement shaping steps consider how an attacker can construct physical

signals such that the injected analog signals (“injected signals” hereafter) can

shape the sensor measurement to desired values.

The following elaborates on the two categories of steps.

3.2.3 Signal Injection Steps

To successfully and efficiently inject malicious analog signals into a sensor, an

attacker must consider (1) the injection point, i.e., before or after the intended trans-

ducer, and (2) which signal types, amplitudes, and frequencies of the emitted physical

signals are most efficient.

3.2.3.1 Injection Point and Signal Type

Since transducers are by design the only component that intends to accept external

physical inputs, the model divides the injection point into pre-transducer (at or before

the intended transducer) and post-transducer (after the intended transducer). The

injection point determines the required signal type.

Pre-Transducer: Attackers may exploit how transducers are designed to be sensitive

to at least one type of physical signal (Section 2.1). Most existing transduction
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attacks exploit injection points at or before the intended transducers. Intuitively, the

malicious physical signal a1 can be the same type of signal as the legitimate stimulus

x1 so that they are inherently noise inputs without conversion. For example, Petit et

al. [104] and Shin et al. [127] succeeded in attacking lidars with light. Yan et al. [162]

managed to jam and spoof ultrasonic sensors with ultrasound. Attackers can also

use acoustic waves to attack sensors that measure movement vibrations, e.g., MEMS

gyroscopes [135, 151, 146] and accelerometers [143, 146].

Post-Transducer: Components after the intended transducer may act as unintended

transducers, converting noise or an attacker’s physical signal ai into an electrical

signal inside the sensor despite not being designed to do so. For example, wires in

a circuit may act as unintended antennas by converting electromagnetic waves into

analog electrical signals in the sensor via inductive or capacitive coupling [64]. Since

the injected signal a′i is usually weak after conversion, injection points before the pre-

amplifier are typically preferred so that the injected signal may have a more dominant

effect on the output than the legitimate input xi.

Rasmussen et al. [110] first suggested adversarial usage of wires being unintended

antennas, but as a possible pathway for wormhole attack [61] rather than in the

context of transduction attacks. Foo Kune et al. [40] first exploited this effect for

a transduction attack by injecting a voice signal into a Bluetooth headset. This

attack employed intentional electromagnetic interference (EMI) on the conducting

wire between the microphone and amplifier. Later work employed electromagnetic

coupling from outside [66] and inside [38] a smartphone to inject malicious signals to

its microphone, and compromised actuator control signals [121, 120, 152].

Attackers must consider how injection using a wave or field may affect several

sensor components simultaneously, as it may complicate the attack in terms of the

needed measurement shaping steps. For example, sound can vibrate all sensor com-

ponents besides the transducer, and electromagnetic injection may induce currents at
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many parts of a circuit. However, as we will discuss later, an attacker with knowl-

edge of the sensor may craft the malicious physical signal, such as choosing specific

frequencies, to affect targeted components more than others.

3.2.3.2 Efficient Injection and Signal Frequency

The effectiveness and efficiency of signal injection depend on the physical signal’s

form, especially the amplitude and frequency.

Amplitude: An injection is likely to be more effective with physical signals of higher

amplitudes. Shorter attack distances or increased transmission power may result in

higher physical signal amplitudes at the target sensor due to the power-attenuation

law for physical signals, e.g., sound and electromagnetic waves [92]. However, in

practice, one cannot easily increase the power indefinitely. For example, a high-

power radio frequency signal, laser, or sound may cause damage to human bodies [22].

Inaudible ultrasound at high power may create audible byproducts [163, 159] due to

nonlinear acoustics [17, 55], which makes inaudible attacks audible.

Frequency: An attacker may increase the efficiency of injection using the resonant

frequencies of the target injection point. A standard method to find the resonant

frequency is to conduct a frequency sweep and search for the highest amplitude re-

sponse [143, 40, 135, 146, 19]. In addition to using a resonant frequency, an attacker

may choose specific frequencies to satisfy the special requirement of attacks, e.g., to

be hidden. For example, attacks that employ ultrasound (> 20 kHz) are inaudible

to humans. Similarly, injecting infrared into cameras makes the attack invisible. De-

pending on the frequency, signals can be divided into two categories: in-band and

out-of-band.
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3.2.3.3 In-Band and Out-of-Band Signals

Typically, injecting an out-of-band signal can have two problems. (1) Out-of-band

signals do not directly interfere with ordinary inputs because they are at different

frequencies. For example, one cannot discern ultrasonic noises in audible sounds.

(2) Out-of-band signals are often attenuated by filters designed to remove signals

outside the expected frequency band. For an injected out-of-band signal to affect

the measurement, an attacker will require measurement shaping steps to convert the

injected signals to the expected frequency range, i.e., in-band.

3.2.4 Measurement Shaping Steps

Signal injection alone may be insufficient to meet all attacker goals; thus, an

attacker may have to take additional steps to shape the injected analog signals to

DoS or spoof the sensor. A common example is how an attacker may use steps

to shape out-of-band signals to in-band for sensor spoofing. To shape the signal

between transduction and digitization, an attacker may exploit specific properties of

sensor components by properly designing the malicious physical signals. Measurement

shaping steps are defined as these exploits of sensor component properties that shape

the injected signals. The following elaborates on how one can group several common

measurement shaping steps across a wide variety of sensor types and existing studies,

and show how these may be mathematically abstracted to fit into the model.

3.2.4.1 Saturation (Sat.)

Saturation is a common phenomenon in analog electronics referring to how a

quantity cannot exceed an upper or lower bound [42].

For example, as shown in Equation 3.6, an amplifier may become saturated when

the input is beyond a threshold. In this case, the input increment no longer propor-

tionally increases the output, which leads to clipping:
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fi(xi, ni + a′i) =


c1A(xi, ni + a′i) if A(xi, ni + a′i) ≤ k

const if A(xi, ni + a′i) > k

(3.6)

where A(xi, ni + a′i) denotes the intensity of combined xi and ni + a′i, c1 is the am-

plification factor, and k is the saturation point. For amplifiers, the clipping voltage

is normally determined by the power supply. Similar effects can happen to other

components such as transducers, ADCs, etc. Saturation is undesirable, and sensors

are designed to operate below the saturation point. However, an attacker can inten-

tionally saturate a component by injecting a strong interference a′i. In this way, the

adversary may mask legitimate input and DoS a sensor [101, 127, 104, 162], or let in

a DC signal component for spoofing when there was none [143].

3.2.4.2 Intermodulation Distortion (IMD)

IMD [156] can occur when a signal with two or more frequencies passes through a

nonlinear component. For example, amplifiers, diodes, and transducers are generally

known to be nonlinear; even ADCs show some level of inherent nonlinearity due

to internal amplifiers [45]. IMD forms cross-products at new frequencies that are

not present in the input signals. Specifically, the output signals include the sum

and difference of the input frequencies. For example, consider a nonlinear transfer

function in a simple 2nd-order power series:

xi+1 = c0 + c1(xi + ni + a′i) + c2(xi + ni + a′i)
2 (3.7)

Suppose the mixed signals of xi +ni +a′i contain two frequencies, f1 and f2 (f1 > f2).

The output xi+1 of this nonlinear transfer function contains frequencies at f1, f2,

f1 − f2, f1 + f2, 2f1, 2f2, and a constant offset. Note that f1 − f2 may be below the

original frequencies. An attacker can exploit IMD to convert malicious out-of-band
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signals to in-band, e.g., demodulating amplitude modulated (AM) signals [134]. Note

that in radio receivers, IMD is the desired effect by design for down-converting signals

to intermediate frequencies, such as in frequency mixers [60].

An attacker may exploit any sensor component that is characterized by a nonlin-

ear transfer function for IMD. For example, Foo Kune et al. [40] utilized amplifier

nonlinearity to recover a baseband voice from the injected electrical signals coupled

from an RF carrier. Similarly, other studies [165, 115, 136] managed to recover voice

commands from ultrasound by exploiting nonlinear microphones.

3.2.4.3 Envelope Detection (Env.)

Diodes and capacitors are essential in many circuits, especially for electrostatic

discharge protection [141, 113]. However, they can also act as simple envelope detec-

tors that demodulate AM signals. Foo Kune et al. [40] found several capacitor-diode

pairs before a microphone’s amplifier that could demodulate the injected signals.

3.2.4.4 Aliasing (Ali.)

An adversary may exploit aliasing to convert the malicious out-of-band signals

to in-band frequencies after the ADC. For example, Trippel et al. [143] and Tu et

al. [146] managed to control the output of ADCs in MEMS accelerometers or gy-

roscopes by tuning the amplitude, frequency, or phase of the injected signals. Foo

Kune et al. [40] managed to demodulate the injected signals after ADC by setting

the carrier frequency equal to the sample rate.

3.2.4.5 Filtering (Fil.)

Ideally, filters before an ADC should remove all out-of-band signals and prevent

aliasing. Yet in practice, it is difficult to manufacture a filter that can remove all

out-of-band frequencies based on the designed cut-off frequencies while passing all in-
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Sensor Exploited Component Signal Injection Measurement Shaping Outcome
Paper

Application Type C. Trans. Wire Amp. Filter ADC Point Type Freq. Sat. IMD Fil. Env. Ali. DoS Spoof
A

u
to

m
ob

il
e

Lidar A  # G# # # Pre K In
 # # # #  # [127]
# # # # # #  [127, 104]

Camera P  # G# # # Pre K In  # # # #  # [104, 162]

Radar A  # G# # # Pre O In
G# # # # #  # [162]
# # # # # #  [162, 24]

Ultrasonic
Sensor

A  # G# # # Pre n In
G# # # # #  # [162, 158]
# # # # # #  [162, 158]

Magnetic

Encoder
A  # # # # Pre » In # # # # #   [129, 117]

Optical Flow
Sensor

P  # # # # Pre K In # # # # # #  [31]

D
ro

n
es

or
S
m

ar
t

D
ev

ic
es

MEMS
Gyroscope

P  # #   Pre n Out
# #  # #  # [135, 146]
# #  #  #  [151, 91, 146]

MEMS
Accelerometer

P  #    Pre n Out
# #  # #  # [143],[146]
# #  #  #  [143],[146, 91]
 #  # # #  [143]

Microphone P      
Post O Out

# #   # #  [40]
#   # # #  [40, 66]
# #  #  #  [40]

Pre n Out
G#  # # #  # [114, 126, 26]

#  # # # #  
[165, 163,
136, 115]

Touchscreen A  # # G# # Pre � N/A # # G# # #   [80]
Hard

Disk

MEMS Shock
Sensor

P  # G#  # Pre n Out G# #  # # #  [19]

Energy Infrared Sensor P #  # G#  Post O Out  # G# # # G# G# [121, 120]

Medical
Devices

Pacemaker Lead
P #  # # # Post O In # # # # # #  [40]

Defibrillator Lead

Drop Counter A  # G# # # Pre K In  # # # #   [101]
K Visible light or infrared O RF waves n Audible sound or ultrasound » Magnetic field � Electric
field  Applicable G# Probable # Not applicable

C. Category A Active sensor P Passive sensor Pre Pre-transducer Post Post-transducer In In-band

Out Out-of-band N/A Not available

Table 3.2: Systematization of Transduction Attacks.

band frequencies. Instead, there is a range of frequencies around the cut-off frequency

that is attenuated but not completely removed. For example, lower-order filters have

a wider transition range where signals remain only partially attenuated [60]. An

attacker could exploit this property to design signals that pass the filter, but the

following components cannot handle properly. Trippel et al. [143] found many low-

pass filters in MEMS accelerometers that show large transition ranges, and thus these

filters do not sufficiently attenuate higher-frequency signals that affect sensor output.

From the defense point of view, note that though high-order filters may hinder the

exploit of aliasing, they can also mask the trace of high-frequency malicious signals

if the exploit happens before these filters, e.g., IMD or saturation.

35



3.2.5 Constructing a Transduction Attack

An attacker can build a transduction attack based on the chaining explorations of

various signal injection steps and measurement shaping steps, which are determined

by the target sensor and the desired attack outcome. We summarize the basic steps

that have been exploited by existing transduction attacks in Table 3.2. In the design

of a transduction attack, an attacker can construct malicious physical signals by

examining the possible steps as malicious signals go through the signal conditioning

chain of a sensor. To this end, explicit knowledge of the sensor components and their

transfer functions, i.e., the simple sensor security model, is necessary.

3.3 Defense Systematization and Patterns

Defense mechanisms against transduction attacks can be divided into two broad

categories: detection mechanisms to discern attacks and prevention methods to en-

sure proper or trustworthy measurement during attacks. This section analyzes and

systematizes existing defenses (Table 3.3) using these categories in addition to previ-

ously described transfer functions and injection/measurement shaping steps. Effective

mitigations found during systematization can be utilized as general design patterns.

3.3.1 Detection Methods

Detection methods do not ensure proper sensor output if attacked. However,

they can be a starting point of more robust system-wide defenses, e.g., a trigger for

activating other preventive measures or a fail-safe mode. Detection methods do not

modify any existing transfer functions, but can be modeled as an additional binary

function, χ, as shown in Equation 3.8, which takes x′ = [x1, x2, . . . , xm, y(= xm+1)],
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Goal Cat. Subcat.
Related Component Injection and Shaping Steps Xfer1

Func.
Paper

TX Trans. Wire Amp. Fil. ADC Dig.2 Point Freq. Sat. IMD Fil. Env. Ali.

D
et
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ti

on

In
je

ct
. TX randomiz.  # # # # #  Both Both # # # # #

N/A

[130, 101,
158]

Verif. Actuation  # # # # #  Both Both # # # # # [40, 87]
Detect OOB Sig. #  # # # #  Pre Out # # # # # [151, 19]

S
h

ap
.

Saturation #  #  #  # N/A N/A  # # # #
[101, 162,
127]

IMD Features # # # # # #  N/A N/A #  # # # [165, 115]

P
re

ve
n
ti

on

R
an

d
.

TX Randomiz.  # # # # #  Both Both # # # # # P1,P2
[158, 104,
127]

RX Randomiz. # # # # #   N/A N/A # # # #  P1
[143, 146,
162, 31]

S
h

ie
ld

in
g Physical Barrier #       Both Both # # # # #

P2

[40, 135,
151, 101,
19]

Spatial ASR3 #  # # # # # Pre In # # # # # [127]
Temporal ASR #  # # # # # Pre In # # # # # P1 [104]
Spectral ASR #  # # # # # Pre Out # # # # # P1,P2 [104]

F
il

t.

LPF/BPF/HPF # # # #  # # N/A N/A #   #  P1,P2
[40, 165,
143]

Adaptive Filt. # #  # # #  Both Both # # # # # P2
[40, 151,
165, 19,
135]

Out-of-phase Samp. # # # # #  # N/A N/A # # # #  P1 [143]

F
u

si
on

Spatial Fusion        

Steps differ case by case

P3
[151, 162,
127, 158,
19]

Spectral Fusion   # # # #  P1,P3 [104]

Temporal Fusion # # # # # #  P1
[158, 31,
104]

Comp. Quality Improv.       # P1
[143, 135,
151]

1 Denotes the three xfer func. models of Section 3.3.2. 2 Digital Backend 3 Attack
Surface Reduction  Applicable # Not applicable

Table 3.3: Systematization of mitigations for transduction attacks.

n, and a′ as inputs (See Table 3.1).

χ (x′,n + a′) =


1 if it is an attack

0 if it is not an attack

(3.8)

Some detection methods may also include an active sensor’s generated stimulus x0

in addition to the basic parameters of x′, n, and a′. This simple model represents

a detection scheme based on the status (intermediate in/output signals and noise

levels) of each component. Detection methods may be further categorized by which

of an attack’s steps the method defends.
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3.3.1.1 Detecting Signal Injection Steps

Currently, three types of methods detect the exploitation of injection steps.

Detection by TX Randomization: Adopting randomness to an active sensor’s

transmission (TX) can often assist in detecting transduction attacks. Sensors with

random transmission schemes may detect attacks when an adversary should be unable

to predict the random pattern. Often, the sensor transmits a randomized physical

stimulus and checks that the randomness is intact in the received stimulus. Any

major changes to the signal indicate the presence of an attack. To include signal

transmitters, Equation 3.8 has to be expanded to embrace the transmitted stimulus,

such that χ (x′,n + a′; r (x0)). Here, x0 represents the physical stimulus generated by

active sensors originally, and r (·) denotes the randomizing function. A prime exam-

ple of a TX Randomization Detection scheme is a time-based randomization scheme

first shown by Shoukry et al. [130]. In the scheme, the sensor randomly ceases all

stimulus transmission. Then, any received stimulus during this pause indicates the

presence of an attack. While attackers with higher capabilities may still overcome

this scheme [128], it would greatly increase attack difficulty. Other work has pro-

posed the same time-based randomization scheme [101] for medical infusion pumps.

In the same line, Xu et al. [158] proposed physical shift authentication to detect trans-

duction attacks on automotive ultrasonic sensors by randomizing several waveform

parameters.

Verifying Actuation: A system with both sensors and actuators may detect attacks

by probing the surroundings periodically. Essentially, the actuator delivers a probing

signal to the surrounding environment and compares the measured response with

an expected response. A vast difference between expected and measured signals

indicates the presence of an attack. The transfer-function notation is similar to that

of detection by TX randomization, in χ (x′,n + a′; t (x0)) form, where x0 indicates the
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preset probing signal and t(·) denotes the function that converts the probing signal

to the environmental response. Prior work has suggested various forms of verifying

actuation detection schemes. Foo Kune et al. [40] proposed the adoption of a cardiac

probe that cross-checks whether cardiac signal readings coincide with the expected

values after investigative actuation to the cardiac tissue. In the same line, Muniraj

et al. [87] suggested an active detection method, which detects the attack based on

“judiciously designed excitation signals” superimposed on the control signal.

Detecting Out-of-band Signals: Defenders may come up with an additional re-

ceiver that detects targeted out-of-band signals. For example, as suggested by prior

work [151, 19], adopting an additional microphone can detect resonating sound against

MEMS sensors. Since sensors require only in-band stimuli to function, detecting out-

of-band signals does not affect sensors’ functionality, and there can be many other

variations according to the targeted out-of-band signals.

3.3.1.2 Detecting Measurement Shaping Steps

Previous work describes how to detect certain measurement shaping steps.

Saturation Detection: Several previous studies suggest saturation detection as a

defense [101, 162, 127]. Saturating a component leaves the component in an abnormal

state, that may be easily detectable with hardware or software support. The satura-

tion detection function, χsat, monitors if the input of a vulnerable component exceeds

a threshold, e.g., a voltage level. Assuming the ith component is saturated, χsat can

be modeled as a logical inequality as shown in Equation 3.9, where A (xi, ni + a′i)

denotes the intensity of combined xi and ni + a′i, and ε is the saturation threshold.

χsat (x′,n + a′) = A (xi, ni + a′i) > ε (3.9)

Detecting IMD Features: Studies have shown that attacks exploiting intermod-
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ulation distortion (IMD) for signal demodulation could leave identifying features in

analog signals. Zhang et al. [165] proposed to search for features of IMD demodu-

lated voice signals by the intensity at high frequencies (500 Hz to 1 kHz), and Roy

et al. [115] suggested to search for signal correlation in the sub-50 Hz band. These

features are introduced by IMD and may not be easily erased.

3.3.2 Prevention Methods

Prevention methods ensure proper sensor output even in the presence of a trans-

duction attack, generally by attenuating malicious signals either inside or outside of

the sensor. Prevention methods can roughly be modeled as three types:

P1 - Component Modification: A defender modifies an existing component to

reduce an attacker’s ability to exploit that function. Assuming the vulnerable ith

component (fi) is improved (f ′i), these defenses can be expressed as below.

∣∣f ′i (xadvi , ni + a′i
)
− xi+1

∣∣� ∣∣fi (xadvi , ni + a′i
)
− xi+1

∣∣ (3.10)

where xadvi denotes the input to fi under attack and xi+1 is the output of fi with-

out an attack. Thus, modification (fi → f ′i) reduces an attack’s effect on output

(Equation 3.10).

P2 - Component Addition: A defender inserts a new component to reduce the

effect of the attack on subsequent components. In terms of transfer function repre-

sentation, this type of defenses can be represented as below.

|f ′(x1,n + a′)− y| � |f(x1,n + a′)− y|, (3.11)

where f ′ is a new transfer function of the sensor obtained by adopting the new com-

ponent, and y is the sensor output without attack in Figure 3.1.
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Figure 3.2: Example of fused transfer-function chains. N chains with different num-
bers of internal components (m1 through mN) are synthesized together by the combin-
ing function C to produce an intermediary output xc. This intermediary output then
undergoes M more transfer functions (fc1 through fcM) to yield the final combined
output yc.

P3 - Component Fusion: A defender fuses multiple chains of components, either

full chains or parts of chains, to produce a new combined output. Figure 3.2 illus-

trates an example of combining chains. N chains of transfer functions are synthesized

together to produce an intermediary output xc, which is then processed by additional

M transfer functions to yield the final output yc. Throughout the combining process,

the effect of the attack becomes suppressed in the final output, yc.

The remainder of this section introduces various prevention methods built on

Component Modification, Component Addition, and Component Fusion.

3.3.2.1 Shielding

Shielding mitigates injection steps by reducing exposure to external physical sig-

nals. It can be a simple solution to mitigate transduction attacks but occasionally

required hardware changes may be inadequate [19] or too costly to implement. Shield-

ing typically adds additional hardware and thus corresponds to Component Addition.

Physical Barriers: A defender may add situation-specific barriers to attenuate ex-

ternal physical signals, e.g., using a Faraday cage to block electromagnetic signals.

However, by design some sensors must be exposed to the outer environment, and thus
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physical barriers may not always be applicable. For example, a defender cannot block

a lidar from lasers as the lidar needs to sense echoes of its transmitted lasers to func-

tion. Previously discussed physical barriers include shielding conducting wires [40],

acoustic damping [135, 151, 19], and optical shielding [101].

Attack Surface Reduction: Reducing the attack surface area selectively limits

transducer exposure to external physical stimuli, thus increasing injection difficulty

while allowing the transducer to remain exposed to intended physical stimuli. Exam-

ination of previous work shows that these reduction methods can be classified further

into spatial, temporal, and spectral categories. Spatial attack surface reduction at-

tempts to confine transducer exposure only to the direction of the physical stimuli to

measure. Spatial methods are especially relevant to sensors that take readings from

their field of view piece by piece. For example, Shin et al. [127] suggested increasing

the directivity of internal receivers/transmitters and removing curved reception glass

in lidars. Similarly, temporal reduction limits the duration of transducer exposure,

and spectral reduction limits the bandwidth of stimulus the transducer is exposed to.

Petit et al. [104] proposed limiting lidar reception time (temporal reduction) and fil-

tering out unwanted light frequencies (spectral reduction). Unlike spatial reduction,

the temporal reduction would correspond to Component Modification because reduc-

ing the effective duration can be implemented without additional hardware. Likewise,

Spectral reduction may also be implemented by Component Modification when re-

ducing the bandwidth to which the transducer is exposed is feasible without adopting

new hardware.

3.3.2.2 Filtering

Filtering aims to attenuate malicious analog signals within the sensor without

attenuating the legitimate signals. These defenses are suitable for sensors that fo-

cus only on a specific part of the analog signal, e.g., a specific frequency band. In
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terms of transfer-function representation, filtering defenses correspond to Component

Modification (when improving existing filters) and Component Addition (when an

additional filter is adopted).

LPF/HPF/BPF: A defender can use low/high/band-pass filters to attenuate fre-

quency bands containing only noise or malicious signals. In addition, they may

also mitigate IMD and aliasing by blocking frequencies that possibly induce such

phenomena. Previous work suggests a variety of relevant applications for these fil-

ters [40, 165, 143].

Adaptive Filtering: A defender may be able to use adaptive filtering to attenu-

ate injected signals when simple low/high/band-pass filters are inapplicable. In the

context of transduction attacks, adaptive filtering methods typically find some refer-

ence of a malicious signal and then use this reference to filter it out. For example,

a defender may augment a microphone with an additional wire to clearly receive an

attacker’s electromagnetic wave signal, and then use this reference to filter the mali-

cious analog signal on the sensing path [40]. Alternatively, differential signaling can

be employed to cancel out the injected signal [40, 135]. Other work has also employed

adaptive filtering in additional contexts [19, 151].

Out-of-phase Sampling: A defender may make an analog-to-digital converter

(ADC) adopt a special sampling pattern related to the frequency to which the injected

signals are confined. This strategy can mitigate attacks that exploit ADC aliasing for

output control (Section 3.2.4.4) as shown by Trippel et al. [143].

3.3.2.3 Randomization

Adding randomness can often mitigate attacker influence on the sensor output.

Randomness can be applied to various components: transducers, ADCs, and even dig-

ital backends such as microcontrollers. This defense can be subdivided into receiver-
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chain (RX) and transmitter-chain (TX) randomization based on where the random-

ness is applied.

RX Randomization: RX randomization applies randomness to RX control param-

eters and can effectively deal with attacks where the injected signals can only be

partially controlled, e.g., the raw injected signal is fluctuated randomly instead of a

controllable bias [143] or only a fraction of the injected signal is controllable [31]. Un-

der such partially controllable cases, attackers often exploit the predictable property

of a certain component, e.g., sampling points of an ADC. Thus, randomizing the ex-

ploitable property may prevent full sensor output control. These defenses correspond

to Component Modification because randomness can generally be adopted without

any additional components. RX randomization can mitigate ADC aliasing as sug-

gested by prior work on accelerometers and gyroscopes [143, 146]. Randomizing the

ADC’s sampling intervals prevents an attacker from predicting the exact quantization

timing, increasing the difficulty of inducing controllable bias to the output. However,

RX randomization may have other applications. Davidson et al. [31] suggested using

a random sample consensus (RANSAC) [39] to defend a transduction attack on opti-

cal flow sensors based on the Lucas-Kanade method [76]. To extract true optical flow

from the corrupted transducer output, RANSAC randomly picks a subset of features

to form hypotheses, then makes all other features to vote for them.

TX Randomization: Prevention and detection by TX randomization operate on

similar principles, but prevention by TX randomization focuses more on enhancing

the resiliency of sensors against attacks rather than detecting them. When ran-

domness is added to various parameters (e.g., direction, waveform, and frequency)

of the transmitted signal, the sensor itself, aware of the random pattern, can selec-

tively concentrate only on meaningful information. In contrast, attackers unable to

identify the random pattern embedded in the signal may not be as effective. TX ran-

domization often corresponds to Component Modification, but may also correspond

44



to Component Addition (e.g., adding actuators for spatial randomization). It also

should be noted that the modified transfer function lies not in the receiver but in

the transmitter chain. TX randomization has long been utilized for military applica-

tions, especially for radars [100], and for additional applications. The physical shift

authentication [158] can recover real echoes in the received signal of an ultrasonic

sensor. Petit et al. and Shin et al. [104, 127] suggested random-probing lidars, which

correspond to spatial randomization, to defend spoofing attacks. Additionally, Shin

et al. proposed randomizing lidars’ ping waveform.

3.3.2.4 Improving the Quality of Components

Sensor designers may choose to improve the performance of certain components to

mitigate attacker signals, though typically this increases production costs. The details

of a specific component improvement, including the sensor and attack to defend, allow

this class of defense to mitigate a variety of injection and measurement shaping steps.

For example, Trippel et al. [143] suggested using secure amplifiers whose dynamic

range is large enough to cope with the exploited saturation. Son et al. [135] proposed

to redesign MEMS gyroscopes to have resonance frequencies in non-critical frequency

bands. Although specific approaches were not given, designing acoustic-resonance

resilient MEMS gyroscopes were proposed as a defense by both Son et al. [135] and

Wang et al. [151]. All three cases belong to Component Modification because no

additional component is adopted.

3.3.2.5 Sensor Fusion

Defense by sensor fusion enhances resiliency against transduction attacks by uti-

lizing output from multiple sensors. They can be divided further into (1) spatial

fusion which utilizes multiple sensors, sometimes different types of sensors, (2) spec-

tral fusion that adopts multiple redundant frequencies/wavelengths for measurement,
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and (3) temporal fusion which utilizes the history of measurement. Spatial fusion

corresponds to Component Fusion as combines the output of multiple transducers,

i.e., multiple chains of transfer functions. It was commonly suggested as a defense

by prior work [151, 162, 127, 158, 19], and can be applied to systems that can bear

the cost of adopting multiple sensors. Spectral fusion can be thought of as both

Component Modification (when a single transducer suffices for such multi-band op-

eration) and Component Fusion (when multiple transducers are required). Petit et

al. [104] suggested utilizing multiple wavelengths to enhance lidars’ resiliency against

transduction attacks. Temporal fusion is typically more affordable than spatial as

it does not typically require extensive hardware modification and would be close to

Component Modification. Previous work has suggested the use of sensor fusion as a

mitigation design. Xu et al. [158] proposed a special filter to remove maliciously in-

jected echoes in ultrasonic sensors by examining echo consistency over multiple pulse

cycles. Davidson et al. [31] suggested weighted RANSAC with momentum to in-

crease resiliency against spoofing attacks. It not only utilizes RANSAC but also gives

weights to each feature according to how consistent it was in earlier frames. Petit

et al. [104] also discussed probing objects multiple times to limit the effectiveness of

attacks. Additionally, it may be possible to combine spatial, spectral, and temporal

fusion schemes to further enhance security.

3.4 Discussion

3.4.1 Improving Transduction Attack Model

The model serves as an initial step towards formalizing analog sensor security. For

example, it may be desirable to abstract new measurement shaping steps exclusive

to in-band attacks on active sensors that manipulate measurement by adjusting the

injection time [127, 104, 162] or signal frequency [129]. Incorporating emerging and
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potential attacks that modify the transfer functions, e.g., by injecting EMI to the

power lines of amplifiers [147] or heating temperature-sensitive components, may also

be a direction for future work.

3.4.2 Improving Research Methodology

I hope and believe the model and related analytical methods will improve the

transduction attack research methodology. This model highlights the importance of

discovering new signal injection and measurement shaping steps, as well as defenses

for these steps. The methodology demonstrates how these steps can apply across a

wide range of sensors. Thus, research based on the discovery or analysis of steps may

have a broader impact on sensor design as a whole rather than only targeting a single

sensor or system. Additionally, using the provided terminology can assist researchers

and sensor designers in understanding new transduction attacks and how the attack

may apply across sensors as a whole.

3.4.3 Predictive Defense Schemes

I discuss how the model enables two predictive defense schemes that enhance

sensor resiliency to transduction attacks.

• Predictive Attack Defense. A sensor designer could employ the strategy

of implementing a defense for every theoretical attack on a sensor. The model

allows a designer to predict theoretical attacks on a sensor they are designing.

From this, the designer can adopt a simple strategy of ensuring there is at least

one defense for each theoretical attack. In addition to the benefit of mitigating

possible future attacks, this approach may reduce the loss of time and money

associated with redesigning, manufacturing, and distributing a new sensor each

time a new attack is demonstrated against a sensor.
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• Predictive Step Defense. Predictive step defense employs a different ap-

proach of designing a mitigation for every known signal injection or measure-

ment shaping step in a sensor. In the model, a successful transduction attack

requires all steps in its attack chain. Mitigating any step in the chain will mit-

igate the entire attack. So, a strategy that mitigates every known injection

or shaping step will prevent all attacks from exploiting those mitigated steps,

including attacks that have not yet been theoretically constructed. Thus, after

this defense scheme is employed, an attacker would need to construct an attack

chain entirely comprising newly discovered steps. Therefore, predictive step de-

fense provides a scheme for designers to protect their devices against unknown

theoretical attacks at design time.

3.5 Conclusion

Security researchers and practitioners can use the Transduction Attack Model

to better express and understand attacks employing physical signals to manipulate

sensor output, and defenses against them. This model employs transfer functions

and a vector of adversarial noise to allow the comparison of attacks across sensors of

different types. The model allows some predictive capability and enables new defense

schemes to make sensors more resilient against future attacks.
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CHAPTER IV

Blue Note: A Transduction Attack Case Study on

Hard Disk Drives

This chapter, based on my past work1, provides an in-depth example of two trans-

duction vulnerabilities via an attack that disrupts hard disk drive (HDD) availability

using acoustic waves. Availability is the most important security property of a con-

sumer hard disk drive (HDD). A lack of availability prevents meaningful preservation

of other security properties such as confidentiality and integrity. Specifically, this

chapter explores to what extent an adversary can intentionally manipulate HDDs

with acoustic waves (Figure 4.1) and mitigation designs for this specific attack.

Magnetic HDDs remain common [53] because of the long tail of legacy systems and

the relatively inexpensive cost for high capacity storage. However, sudden movement

can damage the hard drive or corrupt data because of the tight operating constraints

on the read/write head(s) and disk(s). Thus, modern drives use shock sensors to

detect such movement and safely park the read/write head. Previous research has

indicated that loud audible sounds, such as shouting or fire alarms, can cause drive

components to vibrate, disturbing throughput [119, 111, 131, 35]. Audible sounds

can even cause HDDs to become unresponsive [98].

1Connor Bolton, Sara Rampazzi, Chaohao Li, Andrew Kwong, Wenyuan Xu, Kevin Fu. “Blue
Note: How Intentional Acoustic Interference Damages Availability and Integrity in Hard Disk Drives
and Operating Systems.” In Proceedings of the 39th IEEE Symposium on Security and Privacy (SP),
2018.
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Figure 4.1: Vibration can interrupt disk I/O. Three plots show a Western Digital
Blue WD5000LPVX drive under normal operation (top), partial throughput with
vibration induced by a 5 kHz tone at 115.3 dB SPL (middle), and halting of writes
with 5 kHz tone at 117.2 dB SPL (bottom).

This chapter explores how sustained, intentional vibration at resonant frequencies

of various HDD sensor system components (i.e., transduction vulnerabilities) can

cause permanent data loss, program crashes, and unrecoverable physical loss in HDDs

from three different vendors (Figure 4.2). This chapter also proposes, simulates, and

implements several defenses against such attacks on HDDs that may translate to

other transduction attacks. This chapter’s contributions include:

• Physical Causality: How intentional audible and ultrasonic sounds cause

errors in an HDD sensor system via two separate transduction vulnerabilities.

• System Consequences and Attack Case Studies: How these transduction

vulnerabilities cause system-level errors such as hard disk drive non-responsiveness.

How an adversary could exploit these errors for an end-to-end attack.

• Defenses Design Patterns: Simulate, implement, and propose mitigations

for these vulnerabilities.
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Figure 4.2: Intentional acoustic interference causes HDD firmware errors due to trans-
duction vulnerabilities in the hard disk drive, which in turn cause system-level errors
and other undefined application-level behavior. An arrow indicates a confirmed cause
and effect relationship.

4.1 Overview

4.1.1 Hard Disk Mechanics and Acoustics

Acoustics vibrate the HDD head stack assembly and shock-sensor, leading to

throughput loss and physical damage.

Hard Disk Mechanics: An HDD read/write head floats (∼10 nm) above the surface

of each spinning disk. Data is organized in tracks that circle the disk. To read or write

data, the head stack assembly (HSA) must position the head above the desired track.

There is a narrow margin of error (on the scale of nm) within which the read/write

head can operate. For writes, there is a narrower margin of 10% of the width of the

track, while there is a 15% margin for reads [32].

Vibration poses problems for HDD designers. First, vibration may push the head

away from the center of the track and render the drive temporarily unable to write.

Second, the head may crash into the surface of the platter, physically damaging the

disk and leading to possible data loss.

Compensating for Vibration: Two approaches can correct for positional error due

to vibration (Figure 4.3): (1) a standard feedback controller that adjusts the head

position using the current positional offset of the head from the center of a track and
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Figure 4.3: Acoustics disturb the HDD head stack assembly and shock sensor. Modern
HDDs use sensor-driven feedforward controllers to adjust the head’s position. Our
work finds that ultrasonic vibration triggers false positives for head parking; audible
tones vibrate the head—causing poor positioning.

(2) a feedforward controller where a shock sensor adjusts the head in anticipation of

vibration. The HDD will park its head away from the track when the shock sensor

senses extreme vibration, such as when a laptop falls.

4.1.2 Threat Model

The attacks in this chapter assume an adversary that uses vibration to interfere

with an HDD on a target machine, typically induced through the use of a speaker.

The adversary may catalog frequencies that are most effective for a given model of

hard drive to speed up the attack. Two distinct attack models are investigated: a

self-stimulation attack [144] and a physical proximity attack.

Self-stimulated Attacks: An adversary can attack an HDD by inducing vibration

via acoustic emitters built into the victim system (or a nearby system). In this case,

an adversary would temporarily control an emitter in the system through some means.

The attack is more likely to succeed when the emitter is powerful and/or very close

to the victim.

A self-stimulated attack may use a standard phishing attack, malicious email,
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or malicious javascript to deliver audio to a laptop’s speakers. Most laptops have

speakers and the ability to browse the Internet. Modern browsers support JavaScript

and HTML5, both of which are capable of playing audio without user permission.

Therefore, should a victim visit a page owned by the attacker, the attacker would be

able to play audio over the victim’s speakers.

The frequency response of a built-in speaker may limit the ability of an adversary

to deliver ultrasonic attacks, but some speakers may be able to deliver ultrasonic or

near ultrasonic tones.

Physical Proximity Attacks: An attacker can induce vibration using a speaker

near the victim system. The attacker must either control a speaker close to the vic-

tim’s HDD or place a speaker in the proximity of the system. The case of controlling

a speaker close to the victim’s HDD is similar to that of the self-stimulated attack.

An example of this would be the attacker controlling an AM or FM station of a radio

playing sound near the victim’s HDD with the desired signal.

When the attacker is able to physically place the speaker, the attacker can choose

a speaker with the desired frequency range (audible, near ultrasound, or ultrasound).

In addition, the attacker can choose non-traditional acoustic emitters that may beam-

form signals to attack a drive from a long distance. A Long Range Acoustic Device

(LRAD) can send audible acoustic waves above 95 dB SPL miles away in open air [30].

4.2 Experimental Method

There are three operational challenges to quantify the effects of acoustic inter-

ference on hard disk drives: (1) isolating the experiment from uncontrolled signals,

(2) inducing precise vibration at the HDD, and (3) accurately measuring HDD errors

due to acoustic interference. Unless noted otherwise, the experiments in this paper

shared the same physical setup described in this section. Note that a setup with this
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Figure 4.4: The physical setup for testing mechanically uncoupled acoustic inter-
ference. For mechanically coupled tests, the device containing both the HDD and
speaker (such as a laptop) lay directly inside the chamber.

level of precision is only needed for scientific measurement to discover causality, but

an attacker could use a simpler setup to cause the deleterious effects.

4.2.1 Isolating the Experiment

The setup must prevent environmental factors from significantly altering the re-

sults of the experiment. In the setup, the HDD lies in an acoustic isolation chamber,

as shown in Figure 4.4, to prevent unintended noise from altering results. The setup

also monitors the drive’s temperature using SMART data to ensure the temperature

stays within operational limits (below 50 ◦C [9]). The speaker hangs from the ceiling

to mechanically uncouple it from the HDD in all tests.

4.2.2 Generating Sound

Accurately generating vibration is crucial in observing the effectiveness of this

attack. Audible and ultrasonic frequencies use the same basic setup (Figure 4.4).

Audible Frequencies: This setup generates audible frequencies using a Tektronix

AFG3251 function generator, a Yamaha R-S201 audio receiver, and a Pyramid Tita-

nium Bullet Tweeter speaker. The setup verifies the emitter’s output using a G.R.A.S.

Type 26CB microphone, a G.R.A.S. 12AL preamplifier, and a PicoScope 5444B.
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Ultrasonic Frequencies: This setup generates ultrasonic frequencies using a Keysight

N5172B EXG X-Series RF Vector Signal Generator, a CRY584 Power Amplifier, and

a NU C Series Ultrasonic Sensor. The setup measures the emitter’s actual output

using a CRY343 microphone and a RIGOL DS4022 oscilloscope.

4.2.3 Measuring the Effects of Vibration

The effects of vibration on HDDs during operation are typically: (1) throughput

loss, (2) program crashing when using the HDD, and (3) writes or reads taking an

indefinite amount of time to return (even if the acoustic interference subsides in the

middle of the write).

The testing computer measures throughput using writes to the victim disk via the

Linux dd utility with the fdatasync option. dd is a well-known and tested tool for

basic throughput measurement. The testing computer writes 1MB of pseudorandom

data directly to a pseudorandom location on the disk to avoid caching that may speed

up the write process. The fdatasync option forces dd to wait for each block of data to

be physically written to disk before writing the next block. Despite being well tested,

dd often crashes or hangs indefinitely during use. By monitoring dd in a separate

process, errors can be quickly intercepted and logged.

4.3 Transduction Vulnerabilities

In investigating this problem, two separate transduction vulnerabilities were found

in (1) vibration of the head stack assembly and disk platters and (2) motion sensor

spoofing.

4.3.1 Head and Disk Displacement

The first transduction vulnerability is the vibration of the read/write head and

disk platters of the hard disk drive (HDD). This is considered a transduction attack
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Figure 4.5: COMSOL simulation showing displacement of a HDD head assembly
and disk during 5 KHz acoustic signal attack (left: top view; bottom right: lateral
cross-section; top right: R/W head displacement). Note the displacement on the
disk surface (∼156 nm of maximum vertical displacement across the central tracks),
and the maximum horizontal displacement of the head suspension (∼8 nm, rectangle
box). This exceeds the 7.5 nm read and 5 nm write fault thresholds, assuming a
50 nm width.

that does not fall into the scope of the Transduction Attack Model (Section 3.2),

as these components are not part of the sensor itself, but are part of the feedback

control in the HDD’s sensor system (Figure 4.3). However, the attack functions

similarly to many of the attacks discussed in the model. Prior work reports that

audible acoustic waves cause throughput loss [119, 111, 131, 98]. A Finite Element

Model and numerous experiments analyze how acoustic waves (and thus vibrations)

displace the read/write head or disk platter outside of operational bounds, resulting

in either partial throughput loss or complete loss of throughput (Figure 4.1).

4.3.1.1 Vulnerable Hard Disk Drive Mechanics

A Finite Element Model (Figure 4.5, made using COMSOL, demonstrates the

vibroacoustic response of the HDD’s individual mechanical parts (a common use for

Finite Element Models [34, 103]) with common manufacturer materials and param-

eters [78]. Figure 4.5 shows how acoustic waves can displace a read/write head or

disk platter outside of operational bounds, inducing throughput loss. This model is

simulating a 5 kHz acoustic wave striking the HDD chassis from above at 120 dB SPL.

The model estimates maximum disk displacement of about 33 nm horizontally and
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Figure 4.6: Throughput loss under acoustic interference for a Western Digital Blue
HDD and Seagate 7200.12 HDD. There is a measurable gradual degradation in
throughput at each frequency for the audible range. Note that audible frequencies
require less power to block writes than reads due higher operation tolerances.

156 nm vertically, while estimating maximum read/write head displacement of 9 nm

horizontally and 112 nm vertically.

Given a track width of 50 nm [14], a 10% track width margin (i.e., a 5 nm margin)

of error for writes and 15% margin for reads (i.e., a 7.5 nm margin) [32], and a vertical

distance of 6 nm between the head and the disk [157], these displacements push the

drive outside of its operational bounds for reading and writing. In addition, these

numbers show the possibility of the read/write head crashing into the disk.

4.3.1.2 Mechanical Throughput Loss Pathologies

Using the setup described in Section 4.2, we gathered data to show the two main

qualities of throughput loss induced by head stack assembly and disk vibration: non-

binary throughput loss and reads being significantly harder to block than writes.

Non-Binary Throughput Loss: One critical quality of throughput loss due to

head stack assembly vibration is that it allows for partial throughput loss as shown

in Figure 4.6a. A signal can be strong enough to vibrate the read/write head or disk

sufficiently to hinder typical write throughput, but not strong enough to completely

block the drive from reading or writing to disk. Figure 4.1 shows this behavior as the
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lower amplitude signal vibrates the read/write head enough to hinder operation, but

not enough to completely block reads and writes. Then, when the amplitude of the

signal increases, the vibration of the read/write head also increases, leading to the

drive being unable to read or write.

Reads Require Higher Amplitudes to Block: Another quality of throughput

loss via head stack assembly vibration is that read blocking generally requires greater

amplitudes than write blocking, shown in Figure 4.6b. This is because the operating

margin of error is greater for reads than for writes. Thus, the head may vibrate within

the read error margin but outside the write error margin.

4.3.2 Motion Sensor Spoofing

The second transduction vulnerability is spoofing MEMS vibration or accelerom-

eter sensors. These sensors detect sudden disturbances (e.g., dropping the HDD)

such that the HDD can park its head to prevent damage. Accelerometers were shown

to be vulnerable to malicious sound waves and vibration [144] (Section 2.3). This

section shows that piezo shock sensors are also subject to similar attacks with ultra-

sonic acoustic waves. The erroneous sensor output tricks the HDD into inadvertently

parking its head, rendering the drive unable to read or write to disk. This vulner-

ability is shown in the Transduction Attack Model Systematization Table under the

application of “Hard Disk” (Table 3.2).

4.3.2.1 Vulnerable Sensor Mechanics

Spoofing the Shock Sensor: One can vibrate the shock sensor mass at its reso-

nant frequency to induce false sensor output similar to prior work on spoofing MEMS

accelerometers [144] and MEMS gyroscopes [135]. Shock sensors work similarly to

MEMS accelerometers in that vibration of a sensing mass creates a voltage represen-

tative of the motion perceived by the sensor. By placing a shock sensor on an object,
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Figure 4.7: An ultrasonic wave alters the output of a piezo shock sensor in a PKGX-
14-4010 shock sensor evaluation module.

the shock sensor can produce a voltage representative of the object’s vibration. How-

ever, one can make the vibration of the mass of the piezo shock sensor different from

the vibration of the object by exploiting resonant frequencies.

Figure 4.7 demonstrates altering output of a PKGX-14-4010 MEMS shock sensor

evaluation module, which is believed is the same unit inside the Toshiba MQ01ABF050

HDD (Figure 4.7). The output of the shock sensor module under normal operation

(with no intentional acoustic interference) is approximately 1.6 V. However, a 27 kHz

tone at 130 dB SPL produces a 0.6 V output — incorrectly indicating over 10g.

Throughput Loss from Sensor Spoofing: A spoofed sensor can lead to through-

put loss by making the HDD inadvertently park its head. Under intentional acoustic

interference, the shock sensor or accelerometer will report a false value to the HDD

firmware. This false value implies that the HDD is moving violently, such as if it

were dropped, and needs to park the read/write head. It follows that an attacker

could continuously falsify the sensor’s output to keep the head parked indefinitely,

preventing the HDD from writing or reading.

Experiments confirm throughput loss from sensor spoofing. First, the setup plays

inaudible sound at a resonant frequency of the shock sensor in the HDD (27 kHz at

125 dB SPL), which results in throughput loss (Figure 4.7). Second, to confirm that
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Figure 4.8: Ultrasonic throughput loss for a Western Digital Black WD1600BJKT
HDD. In contrast to audible frequencies, ultrasonic frequencies cause full throughput
loss (no partial) and block writes and reads using similar amplitudes.

it is indeed the shock sensor that causes the throughput loss, instead of read/write

head or disk vibration, we removed the shock sensor from the drive and measured

throughput with and without acoustic interference. This confirms that the sensor’s

erroneous output caused by acoustic interference leads to throughput loss.

4.3.2.2 Sensor Throughput Loss Pathologies

Binary Throughput Loss: The throughput of the HDD is either unaffected or lost

completely as shown in Figure 4.8a. This method cannot induce partial throughput

loss as head parking is the root cause of throughput loss. The head can only be either

parked or operate normally (assuming no other kind of interference).

Similar Amplitudes to Block Reads and Writes: Another observation is that

write blocking and read blocking require similar amplitudes for sensor-induced through-

put loss shown in Figure 4.8b. This observation may be because the firmware’s

threshold for head parking is similar, but not exactly the same for reads and writes.
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4.3.3 Other Pathologies or Observations During Testing

4.3.3.1 Consistent Resonance despite Manufacturing Variation

During testing, drives of the same model showed similar characteristics when

subjected to acoustic interference. I attribute slight differences to process varia-

tion. These observations are consistent with previous research [35] that shows little

frequency-dependent variation across drives of the same model. An adversary can

predict effective frequencies for target drives by profiling a drive of the same model.

To test this characteristic, I profiled one Western Digital Blue WD5000LPVX

HDD to discover the frequency that most affects drives of this model. Then I sub-

jected 13 other drives of the same make and model to this frequency. The vibration

denied each drive from being able to read or write. I also observed that ultrasonic

interference exhibited consistent resonant frequencies across drives of the same model.

In practice, experiments find that the most vulnerable frequencies remain similar from

drive to drive of the same model.

4.3.3.2 Bad Sectors

The vast majority of drives used in our tests developed several bad sectors or

became nonoperational. While this work does not specifically conduct an experiment

to test for abnormal levels of bad sectors, other indicate this trend.

Gathering the Data: Throughout our experiments, we collected the bad sector data

presented in Table 4.1 through the Self-Monitoring, Analysis, and Reporting Tech-

nology (S.M.A.R.T.) system, a de-facto HDD monitoring standard that can measure

bad sectors in HDDs [88, 106]. Our observations are anecdotal rather than controlled

experiments. The drives were subjected to different frequencies, amplitudes, and du-

rations of acoustic interference. All drives had between 15 and 500 power-on hours,

except one drive that had 755 hours.
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Drive # of Tested
Drives

Avg # Bad
Sectors

WD Blue WD5000LPVX 7 705
WD Enterprise WD1003FBYZ 1 82

WD Purple WD10PURX 1 500
Seagate 7200.12 3 961

WD Black WD1600BJKT 2 321
Toshiba MQ01ABF050 1 14,448

Total 15 1,639

Table 4.1: The cumulative bad sector data for several drives used in various experi-
ments. All drives had between 15 and 500 power on hours (except one that had 755
power on hours).

Interpreting the Data: As shown in Table 4.1, many of the drives tested showed

high bad sector counts. In fact, every drive suffered at least one bad sector. As

storage expert Erik Riedel [112] remarks “it would be highly unusual to regularly find

bad sectors on hard disk drives under 500 power-on-hours.” Analysis of bad sectors in

consumer-grade drives from data center environments is consistent with the assertion

that bad sectors are rare. Google found that only 9% of their consumer-grade hard

disk drives developed any bad sectors [106] over eight continuous months of use.

I surmise that the alarming number of bad sectors is due to head crashes caused

by the force that the sound exerts on the head stack assembly during experimentation

(as outlined Section 4.3.1.1). For instance, scratches visible to the human eye were

found on platters after disassembling some of the tested drives. However, there could

be several other factors at play. For example, it is possible that the HDD firmware

is incorrectly marking sectors as physically damaged after failing to write to them

several times because of the interference.

Ultrasonic attacks are less likely to cause a head crash but could damage the

drive in other ways such as causing the head to become unstable over time because of

excessive parking. This instability could make the drive less reliable in its reads and

writes, leading to sectors being marked as bad. For example, in a test that subjects

the Toshiba HDD to an ultrasonic signal at the head parking amplitude threshold, one

can hear head parking in rapid succession, possibly damaging the head controller.
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Figure 4.9: On Windows 10, prolonged acoustic interference induces delays in the
HDD that cause a timer in I/O requests between the port driver and miniport driver
to timeout, leading to the HDD entering a non-responsive state. Light blue indicates
the normal path of operation while dark red shows what happens during an acoustic
attack.

4.4 System Level Errors: HDD Non-responsiveness

During throughput testing under malicious acoustic interference (Sections 4.3.1

and 4.3.2), HDDs become non-responsive to the operating system (both Windows and

Linux). Prior research by the IT security community [98] observed similar phenomena,

yet the exact causality in the operating system remained a mystery.

4.4.1 Causes of Non-Responsiveness Errors

Evidence suggests that prolonged throughput loss may cause an HDD to enter a

non-responsive state by causing timeouts in I/O requests, along with other errors in

the I/O request stack. This non-responsive state lasts until the HDD is physically

unplugged and reconnected or the operating system restarts. Examining the Windows

10 I/O request path, particularly the port and miniport drivers, reveals what practices

cause these errors.

I/O Request Path to an HDD: The non-responsiveness error originates in the I/O

request path (Figure 4.9). In Windows 10, several actors process each I/O storage
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request (i.e., read, write, or control operations to the HDD) before delivering the

request to the HDD [3]. When a typical file read/write request reaches the file system,

the file system passes the file’s location information to the volume manager as a

partition offset. The volume manager converts this partition offset into an HDD

block number and sends it to the disk driver. The disk driver converts the I/O

storage request containing the HDD block number to a SCSI request block and sends

the request block to the port driver, which interfaces with the HDD miniport driver.

The miniport driver takes the request and sends it to the HDD.

I/O Timeouts and Other Errors: I/O timeouts and other errors in the I/O

request path can lead to the drive entering a non-responsive state. In Windows 10,

the timeout is specified in the port and miniport drivers. The port driver manages

general data flow for a class of devices, in this case HDDs, whereas the hardware

manufacturer designs the miniport driver to handle data flow specific to the device [5].

The pair work in conjunction to pass information from the disk driver to the HDD.

When an I/O request packet is sent from the port driver to the miniport driver, the

I/O request packet is put in a pending queue until the request is completed [7]. A

timer monitors each unfulfilled request. The timer should never expire normally as

expiration implies the device has stopped responding [8].

We find two types of errors in Windows 10. (1) The port driver may timeout,

indicated by an error with Event ID code 129. When this happens, all outstanding

I/O requests report an error to the programs that issued the request, and the port

driver sends a reset request to the hard drive [6]. (2) Some miniport drivers also report

a second error code with Event ID 153. Some miniport drivers may detect when port

driver timeouts are about to occur and abort the request itself [4]. The miniport

driver then returns an error code (ID 153) instead of the port driver returning an

error code. The miniport driver may also return an error (also ID 153) if it detects

HDD bus communication errors, unrecoverable read errors, or undocumented errors.
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4.4.2 Observations

Windows 10: During an attack, we mainly observe errors originating from the port

driver (ID code 129), but also some from the miniport driver (ID code 153), that

affected numerous applications and could even crash the operating system. The nu-

merous port driver errors indicate I/O requests frequently timing out, and also that

numerous HDD reset commands are sent to the miniport driver. However, some of

these reset commands remain incomplete, resulting in all outstanding requests re-

maining stuck, and causing some operating system applications to freeze. The mini-

port driver also returned errors, indicating possible bus or unrecoverable read errors.

Sporadically, the Windows 10 OS would crash with a CRITICAL PROCESS DIED or

UNEXPECTED STORE EXCEPTION error, likely because a critical process did not handle

the port or miniport errors correctly.

Ubuntu 16.04: Expired timers in the I/O request chain lead to Ubuntu remounting

all loaded files as a read-only file system, with any previously unaccessed files becom-

ing inaccessible. Ubuntu 16.04 logging files (dmesg, kern.log, and syslog) confirm

that the hard disk controller driver (in this case a generic ATA/SATA II controller

driver) return errors to the operating system when under attack from acoustic inter-

ference. These errors are due to the expired timer of the outstanding I/O requests

in the pending queue (e.g., READ/WRITE FPDMA QUEUED command failure) [1]. When

the hard drive detects these conditions, it sends an error message to the controller

driver, and waits to receive a reset command. Note that the controller driver tries a

finite number of times (usually four) to send the reset request to the hard drive.

The file system disconnects and remounts as read-only if the attack persists after

the last reset request failures. dmesg shows COMRESET failure (errono=-16) four

times until finally showing reset failed, giving up. Then, the attack can also

generate delayed block allocation of inode error followed by a This should
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Model Freq (kHz) Amp (dB SPL) Time (s)

WD Blue WD5000LPVX 4.6 118.1 100
WD Purple WD10PURX 6.9 118.9 130

Seagate 7200.12 7.0 119.1 120
WD Black WD1600BJKT 21 120.0 5

Toshiba MQ01ABF050 27 127.2 8
WD Blue WD5000LPVX 31 138.1 6

Seagate 7200.12 31 139.5 6

Table 4.2: The frequency, amplitude, and the minimum required duration of acoustic
signals used to induce vibration resulting in communication errors that persisted until
system restart, HDD restart, or physical disconnection and reconnection of the HDD
to the computer on Linux. Ultrasonic frequencies were able to induce errors in as few
as 5 seconds while audible frequencies took as few as 100 seconds.

not happen!! Data will be lost message. In addition, the message previous

I/O error to superblock detected might appear multiple times. These error

messages indicate file system corruption and data loss.

4.4.3 Measuring Non-Responsiveness Errors

We measured how long it took to induce non-responsive errors on several HDDs.

Setup: We placed the drives in the experimental setup described in Section 4.2 and

determined an effective frequency for acoustic interference. The test began through-

put measurements as described in Section 4.2.3 for one minute without an acoustic sig-

nal present. Next, the experiment subjected the drive to intentional acoustic induced

vibration, and afterward queried the drive to provide its identification information.

Results: Drives exhibited similar behavior when the error occurred (Table 4.2). After

the acoustic signal subsided, the drive would still appear to the operating system as a

block device. However, when queried for its basic info, the drive would typically not

respond. In rare cases, it would send back nonsensical data, such as the WD Blue

drive reporting non-displayable characters for its model number and that its capacity

was 2,692 PB when its actual capacity was 500 GB. These problems persisted until

either the computer was restarted, the HDD was power cycled, or the SATA cord was

physically disconnected from the drive and reattached.
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4.5 Attack Case Studies

We demonstrate two case studies where an attacker exploits the transduction

vulnerabilities discussed previously (Section 4.3). In addition, we describe how an

attacker might select a frequency to attack a drive.

4.5.1 Attack Frequency Selection

To maximize effectiveness, an adversary would select a frequency that requires the

smallest acoustic amplitude to disturb a target HDD. To do so, an adversary may

consider the frequency responses of the speaker and HDD, and whether or not an

inaudible signal is possible or desirable. Note that because manufacturing variation

has a low effect on drive characteristics (Section 4.3.3.1), an attacker can select a

frequency using a different HDD of the same model as the victim drive.

Speaker Profiling: To profile a speaker’s frequency response, one can simply record

the loudness of the speaker at each desirable attack frequency. Alternatively, the

frequency response of the speaker may be available online. Our tests indicate speakers

of the same model share similar frequency responses, allowing an attacker to profile

a speaker of the same make and model of a target speaker if the target speaker itself

is unavailable.

HDD Profiling: The attacker can profile a drive as follows. The attacker sweeps

the frequency range and finds the minimum amplitude that causes write blocking

for each frequency. In addition, the program should periodically check the drive to

ensure it is still working properly within operating margins. This includes checking

the drive temperature (to see if it has overheated), the number of bad sectors, and

that the throughput of the HDD is similar to normal operating parameters.

Choosing a Frequency for Attack: Choosing an attack frequency can be as simple

as overlaying the speaker profile and HDD profile, then observing the cross-section
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Figure 4.10: Profiles for a Seagate 7200.12 HDD and a Pyramid TW28 speaker are
shown above. The areas where the profiles overlap (the shaded areas) are those where
the speaker can block HDD writes.

(Figure 4.10). After doing so, one could choose a frequency in one of the largest areas

of overlap for the best possibility of a successful attack. Alternatively, if ultrasound

or near ultrasound (as some people cannot hear near ultrasonic frequencies because

of high-frequency hearing loss) is an available frequency, then it may be desirable to

select that frequency over others to make the attack harder to detect.

4.5.2 Case Study 1: Blue Note

Experiments demonstrate several proof of concept attacks that affect both Win-

dows 10 and Ubuntu 16.04 systems in various scenarios. A webpage can launch a

self-stimulated attack on a laptop using the laptop’s own speakers while requiring no

extra user permissions. An attacker can place a speaker near a victim’s desktop com-

puter to conduct an inaudible physical proximity attack on the desktop computer,

even with the speaker and victim physically decoupled.

Test Methodology: This setup assumes that the attacker knows the model of

the victim drive and determined the vulnerable frequencies via the method in Sec-

tion 4.5.1. For each test, we installed a fresh operating system on the victim HDD,

then placed the victim system in an acoustic isolation chamber.

For self-stimulation attacks, the victim accesses the adversary’s website —perhaps
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Attack
Type

Machine
Description

Hard Disk
Drive

Operating
System

Freq
(kHz)

Symptom
Time
Un-
til (s)

Description

Self
Stimu-
lation
Attack

Dell XPS 15
9550 Laptop

WD Blue
WD5000LPVX

Windows 10
7.83 45 Frozen

125 System Crash
Ubuntu 16.04.1 7.95 120 HDD Non-Responsive (until OS restart)

HP Elite
Minitower w/
HP DC7600U
Speaker

WD Blue
WD5000LPVX

Windows 10 4.60 80 Intermittent Freezing

Physical
Proxim-
ity
Attack

HP Elite
Minitower

WD Blue
WD5000LPVX

Windows 10 10.00 113 System Crash
Ubuntu 16.04.1 10.00 225 HDD Non-Responsive (until OS restart)

Intel NUC
NUC5i5RYH

Seagate
7200.12

Windows 10 5.60 180 HDD Non-Responsive (until OS Restart)
Ubuntu 16.04.3 5.60 120 HDD Non-Responsive (until OS Restart)

Sony PCG Laptop
Samsung
HM321HI

Windows 10 40.00 120 System Crash

Table 4.3: A selection of attacks against operating systems using acoustically induced
vibration. Windows 10 commonly froze, and would sometimes crash. On Ubuntu,
the drive would often remount as read only.

through a phishing attack or a link within a malicious email. The site then plays

malicious audio without permission over the system’s built-in speaker to attack the

HDD. The victim accesses the malicious site using the latest version of Google Chrome

(58.0.3029.110).

For physical proximity attacks, the attacker places a chosen speaker near the

HDD. Thus, the malicious acoustic waves may be audible or inaudible depending on

the chosen speaker.

Results: Table 4.3 summarizes a selection of repeatable attacks on different laptops,

operating systems, frequencies, and the minimum required interference duration be-

fore the reported symptom appears. For Windows and Linux, the average case across

all tests (the majority of which are not shown) was that the HDD became non-

responsive (described in Section 4.4) after playing audio for a prolonged period of

time. This was the case for both ultrasonic and audible attacks. However, one no-

table outlier symptom was the Windows operating system crashing after freezing,

displaying a CRITICAL PROCESS DIED or UNEXPECTED STORE EXCEPTION message.

Possible Causes of System Crashing: It is likely that the Windows 10 crash
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(a) Frame Before Video Loss (b) Frame After Video Loss

Figure 4.11: Two frames from an unedited recording taken from a surveillance video
system’s HDD. During recording, the system was subjected to acoustic interference.
The displayed images are roughly 5 frames apart (less than a second apart in video
playback), including one frame that was only partially written because of acoustic
interference. However, the timestamps indicate that roughly 80 seconds of video are
missing due to the interference.

is closely related to the non-responsive error discussed in Section 4.4. The infor-

mation extracted from the crash dumps generated by the operating system reveals

information about the crashes. The crash dumps show the miniport driver return-

ing a device error (STATUS IO DEVICE ERROR), indicating there was an error in the

HDD. The operating system does not seem to handle this error correctly, leading

to UNEXPECTED STORE EXCEPTION. This indicates that the memory manager required

data from the disk, but was unable to write into memory because of an in-page I/O

error.

4.5.3 Case Study 2: Video Surveillance

An attacker can prevent a video surveillance system from writing to its HDD,

resulting in recorded video loss. Video surveillance systems constantly store large

quantities of video. These systems typically use HDDs rather than SSDs because of

the need for a large storage capacity. For such systems, the integrity of the recorded

data is vital to the usefulness of the system, which makes them susceptible to acoustic

interference or vibration attacks.
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Interference Duration(s) Delay Until Video Loss (s) Video Loss Lasted Until

60 12 Interference Stoppage
90 12 Interference Stoppage
100 12 Interference Stoppage
105 0 System Restart
120 0 System Restart
180 0 System Restart

Table 4.4: Acoustically induced video loss in recordings from a EZVIZ surveillance
camera system.

Video Surveillance System Setup: The attacked system is an Ezviz 720p 4-

channel video surveillance system using its stock Western Digital 3.5” Purple 1 TB,

part of Western Digital’s surveillance series of HDDs. The system stores its oper-

ating system on an onboard flash chip, and so the operating system is not directly

affected by vibration. The system lies in an acoustic isolation chamber as described

in Section 4.2.1. The speaker hangs from the ceiling, resting 10 cm directly above

the video surveillance system’s HDD. I did not tamper with the surveillance system,

leaving its casing intact. Lastly, three (of the possible four) cameras were attached to

the system, with one camera placed inside of the acoustic chamber and two cameras

placed outside of the chamber.

Attacking the System: This test subjects the system to the malicious signal for

increasing durations (Table 4.4) and records the results. I choose a 6,900 Hz sinusoidal

signal at 120 dB SPL using the methods discussed in Section 4.5.1. During the course

of the experiment, we monitored the system manually by looking at the live video

feed from the system. After concluding the experiment, we examined the recordings

from the HDD.

Results: For all tests, the observer did not notice any abnormalities in the live video

stream, but attack durations longer than 12 seconds caused video loss in the video

recorded on the HDD (Figure 4.11 and Table 4.4). There were two observed patholo-

gies. (1) Recordings from periods of interference less than 105 seconds exhibited video
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loss from about 12 seconds after being subjected to acoustic induced vibration until

the vibration subsided. In contrast, (2) interference for periods of 105 seconds or

longer resulted in video loss from the beginning of the vibration until the device was

restarted.

These two pathologies coincide with the behavior exhibited by prior tests. The

first pathology, with momentary video loss until interference subsides, is thought to be

the write throughput blocking effect discussed in Sections 4.3.1 and 4.3.2. The system

buffers video data until a certain limit, which in our configuration is about 12 seconds,

after which subsequently recorded video is discarded until the drive becomes available

once again. When the interference subsides, the system writes buffered data to disk

and begins operation as usual.

The second pathology resembles non-responsiveness errors (Section 4.4). Unlike

in the previous case, the HDD becomes non-responsive to the system until the system

restart. The system is never able to write the buffered video before being restarted,

explaining the immediate effect on the recorded video.

In the case that a victim user is not physically near the system being attacked,

an adversary can use any frequency to attack the system. The system’s live camera

stream never displays an indication of an attack. Also, the system does not provide

any method to learn audio in the environment. Thus, if a victim user were not

physically near the system, an adversary can use audible signals while remaining

undetected.

4.6 Defense Design

This section discusses, simulates, or implements several methods to detect or pre-

vent the transduction vulnerabilities detailed in this chapter. With the Transduction

Attack Model (Chapter III), one could see how these methods relate to those pre-

sented in other work (Table 3.3). Further, one could then compare these against other
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Figure 4.12: The block diagram of the servo control system with the disturbance
attenuator composed of a Proportional-Integral (PI) controller and a second order
low-pass filter.

transduction vulnerabilities (Table 3.2) to see how these mitigations could affect other

attacks.

4.6.1 Augmented Feed-Back Controller

For the read/write head and disk platter vulnerability, manufacturers can use a

software update to augment the firmware of the feedback controller with a disturbance

attenuator to enable the HDD to operate even while under attack (Figure 4.12). This

would be classified in the TAM (Section 3.3) as a prevention method using adaptive

filtering in the digital backend.

Position Error Signal: This mitigation uses the position error signal (PES), the

deviation of the R/W head from the center of the track, to judge attenuation ef-

fectiveness. The HDD actively uses the PES to control the read/write head under

vibration [164]. The PES varies mainly because of repeatable runout and/or non-

repeatable runout. Repeatable runout refers to vibration caused by repetitive oper-

ating factors, typically internal to the HDD, such as the oscillation of an imbalanced

disk rotating. Non-repeatable runout refers to vibration caused by non-repetitive op-

erating factors, typically external to the HDD, such as the acoustic attacks presented

in this paper [78].
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Figure 4.13: Simulated position error variation for a 7.5 kHz attack. Our proposed
attenuator reduces position error to within the read/write fault thresholds (15% and
10% of the track respectively).

Design of an Attenuator Controller: Attenuator controllers typically compensate

for precise, narrow-band peaks in mid-high frequency ranges [69, 139]. However,

acoustic signals that affect the R/W head cover a wider frequency range than what

is typical for an attenuator controller. Thus, we alter the controller to cover a wider

frequency band than what is typical. This modification results in a controller that

attenuates a wider frequency band, but with a lower attenuation strength.

Simulation Model: I design and simulate a feedback controller with an attenuator

for a Seagate 7200.12 HDD that attenuates signals from 6 kHz to 8 kHz, the greatest

range that affected the drive (Figure 4.6b). The simulation includes a 9th-order Mat-

lab model of the head-disk assembly and a controller designed using Simulink [2]. The

original Matlab model comprises a pre-existing control structure consisting of a first-

order low-pass filter in the return path and a Proportional-Integral (PI) controller

(Figure 4.12). PI controllers are a common type of feedback controller used in indus-

trial control systems. The PI controller calculates the error value of the head position

as the difference between the desired reference setpoint (in this case the center of the

track) and the actual position and adds a correction.

Assuming that the pre-existing control sufficiently controls the HDD under normal

74



operation, fulfilling basic stability and trackseeking requirements, the augmented feed-

back controller defense adds an attenuator (i.e., another PI controller [P= 0.0079,

I=0.1442]) plus a second order low pass filter (transfer function: [s + 2800]/[s2 +

128s + 2800]) to mitigate the attack effect. Its goal is to keep the PES within the

read/write fault margins.

The simulation models the disturbance d induced by the attack as a sine wave

with amplitude sampled from a uniform distribution, based on real PES data from

a Seagate 7200.12 HDD measured during an attack at 7.5 kHz (Figure 4.13). On

the non-attenuated controller, this signal induces a displacement up to 97.26% of a

track width from the center of the track, well outside of the thresholds for reading

and writing to disk (15% and 10% of track width respectively).

Simulation Results: The attenuator successfully keeps the PES within the read/write

fault threshold within the range of the attenuator. For example, the maximum dis-

placement for a 7.5 kHz disturbance using the non-attenuated controller is 97.26%

of the track width, while the maximum displacement when using the attenuated

controller is only 8.54% of the track width (Figure 4.13). Similarly, the maximum

displacement for a 6.5 kHz disturbance with the non-attenuated controller is 58.36%

of the track width, but only 5.12% of the track width with the attenuated controller.

4.6.2 Detecting Spoofing Attacks with Filtering or Sensor Fusion

Defenses in the previous sub-section would not prevent spoofing the vibration

sensor, but HDDs could make use of filtering or redundant sensors to prevent or

detect an ultrasonic attack. If the HDD were to detect such an attack, the drive

could operate normally instead of parking the head as a malicious false positive. The

key insight for the ultrasonic attacks is that they function effectively because they

make use of certain known resonant frequencies specified by the physical construction

of the component; countering this step can mitigate the attack.
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Notch Filter: Described in Section 2.2, notch filters can filter a specific frequency

while minimally attenuating other frequencies. The purpose of the motion sensors

is to detect if the HDD is falling, which is a motion with a frequency much lower

than the ultrasonic frequencies discussed in this section. Thus a notch filter that

attenuates the resonant frequencies of the sensor while permitting other frequencies

should mitigate the attack. This method was inspired by the design pattern in the

TAM defense Section 3.3.

Sensor Fusion: Also in the TAM defense Section 3.3, sensor fusion could detect

or prevent this vulnerability. For example, the HDD could have multiple vibration

sensors, each with different resonant frequencies. The attacker would have to emit a

tone at all of these resonant frequencies to successfully spoof the system, something

made even more difficult with manufacturing variation for multiple sensors.

4.6.3 Acoustic Signal Reduction

Reducing the amplitude of acoustic signals is another way to defend against in-

tentional acoustic interference (Section 3.3). Signal reduction approaches are either

passive, such as using noise dampening material, or active, such as active noise can-

cellation. This section implements a passive noise dampening solution, finding it to

be effective against higher frequencies but having the drawback of increasing drive

temperature. We also discuss active noise cancellation, finding it to be infeasible.

Passive Acoustic Attenuation: Many applications use noise dampening materials

to passively reduce incoming acoustic signals. To test the viability of noise damp-

ening materials as a defense, we placed sound dampening foam molded into a 4 cm

thick block on top of the HDD as described in Section 4.2. We developed acoustic

vulnerability profiles with and without the foam block, as shown in Figure 4.14.

Our experiments showed that the foam significantly reduced an HDD’s suscep-

tibility to write blocking. However, it did not attenuate lower frequency signals to
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Figure 4.14: The effectiveness of mitigating acoustic interference by simply placing a
4 cm thick piece of foam on top of a HDD.

the same degree as higher frequency signals. This result is likely because of the

physics behind how acoustic waves diffract. One could simply encapsulate an HDD

with noise reduction materials, but this has one major drawback. Noise dampening

material typically acts as a thermal insulator, leading to increases in operating tem-

perature (10 C in our tests). Increased temperature has been linked to increases in

drive failure, and thus makes this solution impractical. In addition, this solution can

be costly. Depending on the quality of the sound dampening material, this can cost

between $10 to $100 per drive.

Active Acoustic Attenuation: Noise cancellation may seem like a natural defense

against acoustic attacks. However, several difficulties arise when faced with imple-

menting such a defense that would likely make it impractical. It is simple enough to

cancel noise along a single plane of points orthogonal to an oncoming wave. However,

because of the high frequency of our injected waves, it is more difficult to cancel over

an area large enough such that the read/write head is completely enveloped as it

moves across the disk [67]. This is not accounting for canceling over the portions

of the PCB where the sensors are mounted. In addition, without a high-end micro-

phone, the machine under attack cannot easily determine which direction the sound

is coming from without the use of multiple receivers. Lastly, a noise-canceling defense
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requires a sound wave equal in amplitude to the attacking wave to completely cancel

it, which could be difficult to generate without affecting the hard drive’s operation.

In combination, these difficulties make us believe that sound cancellation is not a

practical defense for a hard disk drive.

4.6.4 Other Simple Defenses

There are a variety of other simple techniques that manufacturers or users could

apply to defend against acoustic interference on HDDs. The most obvious defense is

to use solid-state drives (SSDs) instead of HDDs. However, SSDs remain significantly

more expensive per gigabyte than HDDs. Another defense would be to write data to

multiple disks spatially spread out in a RAID configuration such that if an attacker

simultaneously attacks drives, the system could later reconstruct the lost data from

the other drives. If the drives are spatially distant in separately secure areas, denial of

service would be significantly harder. Another defense is to simply disable all nearby

unused emitters, but this may be situationally impossible or impractical.

4.7 Discussion

Feasibility of Acoustic Attacks: There are two hurdles for an adversary to cross:

the acoustic signal must be strong enough to cause errors and the attack must be

difficult to detect or stop. For instance, the attack in Cuba that allegedly used

inaudible ultrasonic waves to damage US diplomats’ hearing would be an example

of being difficult to detect. The attack would also be difficult to stop; no one has

claimed to have found any ultrasonic emitters.

Ultrasound may remain unnoticed by those in the vicinity of the attack despite the

strength of the signal, as ultrasonic waves are inaudible to humans. Near ultrasonic

attacks may remain unnoticed because of high-frequency hearing loss occurring in
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human beings, caused by factors including age and poor choice in music.

An adversary may attempt an attack when a victim steps away from a computer.

A malicious program or webpage might only play audio when people are likely to

be present. If the program or webpage is targeting a specific person or group of

people, it could utilize specific knowledge of that group to target times they are not

around. Our tests have measured a Dell XPS 15 9550 laptop’s output to be as high

as 103 dB SPL from 1 cm away from the laptop. We have observed write blocking

using signals as low as 95.6 dB SPL. This demonstrates the possibility of using the

laptop’s own speakers to attack its own hard disk drive.

Beamforming or concealing a speaker can make the speaker harder to locate and

harder to stop. For example, a beamforming Long Range Acoustic Device could

target a device from a distance greater than 1 mile and may cause malicious effects

before the victim would be able to find the emitter.

Acoustic Attacks in Data Centers and Medical Devices: In a private data

center, the environment is controlled by a single entity and the systems often have

no co-located speakers to mount a self-stimulation attack. Companies or individuals

can rent a rack, cabinet, cage, or room in a co-located data center. Thus, in a co-

located data center, an adversary could pay to place a speaker next to other targeted

machines. However, the speaker would need to produce inaudible ultrasonic waves

because of constant datacenter monitoring.

Medical devices require high availability. However, in most hospitals and other

medical buildings, there is typically an abundance of people, making it difficult to

attack with audible frequencies. In the chaos of a hospital or other such building, it

may be possible to conceal a device on one’s person, but it may also be just as easy to

cause a denial of service in other ways without the need of such equipment, such as by

unplugging cables. However, acoustic attacks could cause a denial of service through

more sophisticated means that leave little traceability back to the adversary.
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4.8 Conclusion

Adversaries without special-purpose equipment can cause errors in the hard disk

drive using either audible or ultrasonic acoustic waves. Audible waves vibrate the

read/write head and platters; ultrasonic waves alter the output of the HDD’s shock

sensor, intentionally causing the head to park. These errors can lead to operating

system level or application level consequences including persistent corruption and

reboots. Defenses include mitigating attacks in vulnerable frequency bands with

attenuation controllers, using sensor fusion to detect attacks, and noise dampening

materials to attenuate the signal.
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CHAPTER V

Oversensing Anti-system: a Smartphone

Permission System to Mitigate Oversensing

This chapter, extending ideas in my previous work1, introduces the Oversensing

Anti-system, OA-Sys, to detail common models of oversensing in smartphones and

provide a smartphone permission system that provides mitigation patterns for these

common models. The fundamental challenge for mitigating oversensing is determin-

ing exactly what information sensor data contains and then separating desired from

unnecessary information within the sensor data.

Sensor data often has subtle traces of sensitive information hidden within benign

information due to the limitations of physical sensor construction. For example, a

voice assistant application with microphone access also gathers the sounds of a user

inserting a physical key into a nearby door. An adversary could use these sounds

to reconstruct the physical key and access the door [108] (Figure 5.1a). While still

sound, there is a clear mismatch between the intention of granted permission (speech)

and given information (physical door access). Even if the hidden information in

sensor data is determined, separating this sensitive information from applications’

desired information can also prove challenging. Furthermore, combining data from

1Connor Bolton, Kevin Fu, Josiah Hester, Jun Han. “How to Curtail Oversensing in the Home,”
In Communications of the ACM, 63(6): 20-24, May 2020.
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(a) Oversensing with Microphones (b) Oversensing with Accel.

Figure 5.1: Granting sensor permissions may provide hidden, unrequired, sensitive
information to applications.

multiple sensors can result in emergent sensitive information that would be even more

difficult to detect and eliminate, and might enhance an existing vulnerability. In short,

current permission systems have no way of knowing or monitoring what information

applications receive from sensor data, reminiscent to how until recently iOS had no

way of knowing some applications were in fact closely monitoring clipboard data [47].

OA-Sys’s solution to the above challenges is to better implement the well-established

Principle of Least Privilege [118] for sensor-derived data via sensor permission addi-

tions generally applicable to sensor-driven devices, specifically applied to the Android

OS. Additions are focused on providing highly defined sensor-derived information via

a permission (e.g., transcribed speech), rather than raw sensor data with a higher

chance of containing unnecessary, sensitive information (e.g., audio containing phys-

ical key insertion). In doing so, the use of these augmented permissions significantly

lessens the risk of oversensing without reducing application functionality.

This chapter investigates three common models of sensor data usage then design

a permission and demonstrative application for each model. These models include:

(1) the user initiated event model with a QR code reader example application, (2)

the event recognition model with a hotword recognizer example, and (3) continuous

sensor data streams model with a live compass example. We find that oversensing

risks are easier to reduce by design for more well-defined, sensor-derived information
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such as with the QR code (a website link) or a hotword recognizer (an interrupt

or flag indicating the hotword was recognized). However, other oversensing risks

where the sensor-derived information is difficult to define are much more difficult to

mitigate, such as the live compass application. In these cases, we rely on established

signal-processing design meant to mitigate specific types of oversensing (i.e., Dolphin

Attack [165]), which can be related to the transduction vulnerabilities in Chapter III.

The signal-processing design analysis is part of OA-Sys but separated into a dedicated

chapter in Chapter VI. Importantly, we describe how these permission capabilities

can be added to current permission systems without removing existing functionality,

supporting legacy applications.

We describe, implement, and evaluate anti-oversensing permission designs via OA-

Sys, custom Android OS implementation that builds upon recent work [54]. In this

implementation, we build our three demonstrative applications and their necessary

permissions. The QR code reader application can function without ever receiving

camera data, instead of receiving the encoded QR string (e.g., a website URL) from

the permission system. The hotword recognition application can always detect when

a certain phrase is uttered, without any microphone permissions or receiving audio

in any form. Our contributions include:

• Defining Oversensing Foundations: This chapter defines and categorizes

sources of oversensing, why these vulnerabilities can be difficult to mitigate,

how advanced adversaries can improve existing vulnerabilities and the goals for

mitigating oversensing.

• Designing Anti-oversensing Privileging Systems: We describe how to

augment existing privileging systems and design anti-oversensing permissions

for three common sensor uses — (1) user initiated events, (2) event recogni-

tion, or (3) continuous sensor data streams. New permissions are designed to
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limit raw sensor access and unneeded sensitive information while maintaining

functionality.

• System Implementation and Evaluation: We build an implementation of

the permissioning system with OA-Sys and evaluate this Android OS implemen-

tation along with our three applications (1) a QR code reader, (2) a hotword

recognizer, and (3) a compass. We also evaluate the system against a novel

multi-modal attack system we design to test the permissioning and demonstrate

the configurability of OA-Sys.

5.1 Oversensing Vulnerabilities

In the context of smart devices, we define oversensing as when an application

has access to sensor data that contains unnecessary information to complete the

application’s task and an oversensing vulnerability as when that information contains

potentially sensitive information. In some cases even if a signal remains unrecoverable

to an attacker, the mere presence of the signal serves as sensitive information. The

definition for oversensing is left purposely broad as knowing the potentially sensitive

information contained in raw sensor data is an extremely difficult and vague task. In

this section, we discuss categories for how sensitive information can be introduced in

sensor data and a demonstration of mitigation difficulties via a dial-tone keylogger

vulnerability.

5.1.1 Origins of Sensitive Information in Sensor Data

We divide sensitive information in sensor data into three types (Figure 5.2):

1. In-scope: information with the sensor’s intended specifications (stimulus, fre-

quency, amplitude, etc).
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(a) In-scope: QR Codes
(b) Out-of-scope: Hot-
words

(c) Unintended Stimuli: Motion
Sensing

Figure 5.2: Categories of oversensing vulnerabilities by how sensitive information
can be embedded in sensor data. These are: (a) in-scope, (b) out-of-scope, and (c)
unintended stimuli oversensing vulnerabilities demonstrated through (a) QR code,
(b) hotword, and (c) motion sensing example applications.

2. Out-of-scope: information originating from the sensor’s intended stimulus,

but outside the sensor’s intended scope (e.g., outside the frequency range).

3. Unintended Stimuli: information originating from a stimulus the sensor

should not transduce.

These types can impact what mitigations can remain effective for them. For example,

some of the mitigations discussed in Chapter III are relevant for out-of-scope and

unintended stimuli categories, but cannot mitigate in-scope vulnerabilities.

5.1.1.1 In-scope

As shown in Figure 5.2a, sensitive information with the same characteristics (e.g.,

stimulus, frequency, and amplitude range, etc) as benign, intended information can

be contained in sensor data given to an application (e.g., a credit card in camera

data). While providing both sensitive and benign data is within specifications, an

ideal system provides only benign information to applications.

Consider the QR code example. A QR code is a 2D grid of black and white

squares used to encode some message visually, typically a link to a website or to give

local access to some device or network. The code itself contains a simple link or local

password but camera access is required to acquire this data. This permission may
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unnecessarily provide the identities of nearby people, the user’s location, sensitive data

from local documents such as credit cards. However, the system cannot eliminate the

sensitive data as benign applications may require it to function correctly. Currently,

permissioning systems do not have a way to rectify the clear mismatch between the

needed data and the given data as seen with QR codes.

5.1.1.2 Out-of-scope

As seen in Figure 5.2b, sensor output may also contain traces of sensitive signals

from intended stimuli that are outside the sensor’s intended scope (i.e., outside the

intended frequency range). As sensors are only designed to accurately capture signals

within their range, these signals are often distorted or significantly altered in an

unrecoverable manner. However, an attacker needs to only discern the presence of

these signals to acquire sensitive information.

Consider a hotword application. A hotword is a designated phrase such as “Ok

Google” that triggers an action when spoken. An application that desires this func-

tionality would need undisturbed microphone access — clearly a dangerous permis-

sion. Any spoken information (which is in-scope), including passwords, credit cards,

and more, would be readily available to a malicious application. However, this may

also lead to out-of-scope vulnerabilities. For example, a microphone can often re-

ceive human-imperceptible ultrasonic acoustic signals, outside typical microphone

frequency range specifications. Exploiting this out-of-scope interaction between mi-

crophones and ultrasound can lead to attacks such as location tracking [13].

5.1.1.3 Unintended Stimuli

Sensitive signals from stimuli a sensor is not designed to measure may still affect

the sensor’s output, stealthily placing sensitive information in sensor output such

as seen in Figure 5.2c. Furthermore, within sensor circuitry the information may
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appear to be either an in-scope or out-of-scope signal in terms of characteristics

such as frequency, amplitude, etc. These stealthy relationships enable an adversarial

application to request one permission to sense something that should normally require

separate permissions.

Consider a motion-sensing application such as a compass. This common feature

uses multiple sensors including a magnetometer, accelerometer, and gyroscope to

calculate true north. However, these sensors have been shown to perceive nearby

speech. This would be a clear mismatch between intended use (motion and direction)

and given information (nearby speech). Other applications with motion sensor data,

such as motion-reactive user interfaces, could similarly use this attack.

5.1.2 Why Oversensing Mitigations are Difficult to Build: Touchtone

Keylogger Example

Oversensing vulnerabilities are difficult to mitigate as hidden, sensitive informa-

tion can be difficult to detect, discern, and differentiate from benign information;

furthermore, designing methods to eliminate this sensitive information while preserv-

ing the benign information in its entirety is also a challenge in itself. Furthermore,

any remaining discernible byproducts are sufficient for an attack. To highlight some

of these mitigation difficulties we provide a short feasibility study using a touchtone

keylogger (Expanded upon in Chapter VI), then discuss how an advanced attacker

could improve oversensing attacks including the keylogger.

5.1.2.1 Dial-tone Keylogger

This motivational oversensing example infers a victim’s dial-pad input when nav-

igating through an automated call system on a smartphone at high accuracy using

motion-sensor access. Many automated phone systems require the user to input sen-

sitive information such as a credit card number (for activation), a personal pin, an
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Figure 5.3: A short study on why oversensing may be difficult to mitigate. Two dial-
tones are emitted from a Google Pixel 2’s loudspeakers. The phone’s accelerometer’s
x-axis is shown (a) with no defense, (b) with a reduced sampling rate, and (c) a
digital low-pass filter. The aliases for the dial-tones remain distinguishable despite
the defenses, meaning the vulnerability is not mitigated.

account number, a social security number, and in some cases votes in a federal elec-

tion (done by phone) [150]. This keylogger is based on how dial-tones, also known

as dual-tone multi-frequency (DTMF) signals, produced by a phone’s speaker affect

the phone’s motion sensor output as discussed in Section 2.1. The dial-tones produce

distinguishable, deterministic byproducts in the motion sensor output (Figure 5.3a)

called aliases. The alias distinguishability can be used as the basis of an oversensing

attack as detecting an alias indicates a press of the corresponding key. Detailed fur-

ther in Section 5.4, this idea was used to create an attack with accuracy greater than

99%.

5.1.2.2 Aliasing

As noted, aliases and aliasing are one of the core reasons the dial-tone keylogger

works correctly and is a core component for many out-of-scope and unintended stimuli

oversensing vulnerabilities. Aliasing can create discernible, deterministic byproducts

called aliases for sensitive signals with frequencies higher than the sensor’s normal fre-

quency range. To be correctly sampled, a sensor must sample a signal with frequency

fS at or above 2fS, which is called the Nyquist frequency fN . An attacker may use
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the presence of these byproducts to indicate the presence of the original signal.

Aliasing can make signal processing-based oversensing mitigation significantly

more difficult. Take for example two mitigations suggested in previous literature

motion-sensor eavesdropping attacks with reduced sampling rates and digital low-

pass filtering. As shown in Figures 5.3b and 5.3c, the aliases for the dial-tones remain

distinct despite the mitigations. Therefore the vulnerability remains unmitigated

(detailed in Section 5.4). In this specific mitigation, the filter should attenuate all

frequencies from 150-200 Hz, however, the aliases were produced below the 150 Hz

threshold (Figure 5.3c). One could lower the threshold, but doing so attenuates even

more benign information. A 150 Hz threshold attenuates 1/4 of the available range

in this specific example, yet has little to no effect on these specific dial-tones.

5.1.2.3 Improving Oversensing Attacks via Adversarial Sensor Fusion

We propose that advanced adversaries can improve existing attacks or create new

oversensing vulnerabilities by selectively integrating data from multiple sensors for

a single oversensing attack. This idea is based on the intuition that more sensors

should yield more total information that can be used to create emergent oversensing

vulnerabilities. This same idea, using multiple sensors to reveal emergent informa-

tion, has been used by researchers for benign purposes in several fields including on

drones [73], body-sensor networks [50], and much more. It follows that attackers with

sufficient permissions could achieve similar results, though for adversarial purposes.

We find that even adding data from separate axes of the same sensor may carry

some measure of unique information. Take for example the response of a phone’s

motion sensors (accelerometer and gyroscope) to the phone emitting different tones

via its loudspeaker (5.4). Each axis of each sensor responds differently to acoustic

signals of 470 Hz and 520 Hz, and each axis is more receptive to certain frequencies

independently of the other axes. This difference means each axis may be a better

89



Accel Y-axis

aaaa-52 dB/
Hz

aaaa-34 dB/
Hz

70 140
Frequency (Hz)

10

20

30

T
im

e 
(s

)

Accel Z-axis

aaaa-32 dB/
Hz

aaaa-50 dB/
Hz

70 140

10

20

30

Gyro Y-axis

aaaa-65 dB/
Hz

aaaa-54 dB/
Hz

70 140

10

20

30

Gyro Z-axis

aaaa-82 dB/
Hz

aaaa-80 dB/
Hz

70 140

10

20

30

-100

-50

0

P
ow

er
/F

re
qu

en
cy

(d
B

/H
z)

Figure 5.4: Figure depicting how the y and z axes for a Pixel 2’s accelerometer and
gyroscope may contribute different frequency information to an oversensing vulnera-
bility. A Pixel 2’s loudspeaker plays a 470 Hz and then 520 Hz tone each for 15 seconds
while the phone records accelerometer and gyroscope readings. Each depicted axis
responds to the tones differently due to different frequency responses.

receptor of certain frequencies, which in theory could lead to the axis being a better

predictor for something based on those frequencies.

5.2 OA-Sys: Designing Anti-Oversensing Permission Models

We present OA-Sys (Oversensing Anti-System) as a framework and real-world

implementation (in Android OS) to address oversensing attacks via a permissioning

system and configurable signal processing framework. First, as a foundation for OA-

Sys, we provide a detailed look at the necessary changes to a permissioning system

to mitigate oversensing. We provide high-level permission designs for three common

models of sensor usage. The primary goal of these designs is to bring the Principle

of Least Privilege to sensing devices by mitigating oversensing while still providing

full sensor functionality to applications. Oversensing vulnerabilities in certain sensor

use-cases are easier to design out (such as with QR-codes) but are more difficult

for others (such as motion sensor data streams for a compass application). We first

outline the design goals, constraints, and considerations our design must address.

Second, we detail the requirements of a permissioning system to be able to support

our specific permission models. Then, we detail the design of specific permissions

for the three common models of sensor usage. Finally, we investigate the privacy vs.

performance trade-offs of using signal processing in the design of permissions for the
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more difficult-to-mitigate oversensing vulnerabilities, which may not have a perfect

ideal solution.

5.2.1 Defining the Goal: Principle of Least Privilege

The goal for system designers should be to deliver the minimum amount of in-

formation to an application while preserving that application’s functionality, an idea

known as the Principle of Least Privilege (PoLP) [118]. In the context of security, this

principle’s goal is to limit adversary capabilities by limiting the information available

to all applications. PoLP is a widely employed principle in software systems, es-

pecially operating systems of all kinds. For example, privilege sets, Linux groups,

Window’s administrator mode, sandboxes, and more all implement this principle to

some degree. Smartphones and other smart devices already prevent blatant viola-

tions of PoLP via permissioning systems, but distinguishable sensitive information

may still subtly leak through to applications.

However, implementing PoLP for sensor data brings several context-specific chal-

lenges. For example, how does one define exactly what is the minimum amount of

information that an application needs to function? Current permission systems are

implementing PoLP to some degree, but it is increasingly hard to know what a sen-

sor’s information contains, which makes the current permission systems insufficient.

For example, compare audio data to a phone contacts list. Audio data might contain

speech, but might also be used to track user location or gain access to a user’s home

by deciphering their physical door key [108]. The information in the contact list is far

more defined than the information in sensor data, but modern systems have similar

designs for each type of permission. These challenges make implementing PoLP for

sensors non-trivial.

While PoLP is a noble aspiration, real-world constraints make this difficult for

sensor-based systems. Implementing real-life mitigation must balance several con-
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straints while minimizing sensitive information and preserving application function-

ality.

• Effectiveness: The system must limit sensitive information to applications.

• Unobtrusiveness: Mitigations should minimally alter benign sensor signals

and require minimal application code changes.

• Overhead: The system should require minimal overhead including power loss,

signal delay, physical space, additional computational burden, and cost.

• Ease of Deployment: The mitigation should be easy for manufacturers to

deploy.

5.2.2 Augmenting Permissioning Systems

OA-Sys permissioning changes aim to bring the Principle of Least Privilege to sen-

sor permissions by providing applications with only the specific information they need

from sensor data while still enabling full functionality (Figure 5.5). These changes

add functionality to current permission systems without removing existing function-

ality; legacy applications would need to make no changes to continue their existence

(but would not be any more or less secure than before). We detail key requirements

for a system to support our augmented permissions.

5.2.2.1 The Key: Limiting Raw Sensor Access

Future permission systems must support permissions that limit raw sensor access

to mitigate oversensing. Full access to a sensor’s data typically enables far more in-

formation than an application needs to complete their task (Figure 5.2). Oversensing

attacks can exploit this information gap to create a malicious application that ap-

pears to use a sensor’s data for one task but utilizes the extra information given by
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Figure 5.5: Our permission system provides permissions that provide well defined
sensor-derived information such as transcription and qr codes. Permissions should
have a notion of risk and raw sensor data should be labeled as more risky.

the required permission to accomplish some malicious goal. Once granted informa-

tion access, they can save this data either on the device or send it to the server (if

granted internet access, which is commonly given). Then the adversary can use signal

processing or machine learning to search for any latent sensitive information in the

given data. In such a scenario, few present-day systems can detect such a misuse of

the given data, especially in an offline attack.

The key for new permissions is to better define the information and associated

risk of sensor-derived information given to benign programs; systems must support

such permissions. Most benign applications use only a fraction of the total data

given by a permission, usually calculating a few specific quantities from the given

data. Changing the permission systems to enable permissions that can give specific

quantities instead of the totality of the data (i.e., raw sensor data) reduces the amount

of data given to each application and reduces overall risks.

.

5.2.2.2 System Design Requirements

We note a few design requirements, which we capture in our Android OS imple-

mentation of the permission system.

Clear Risk Labels: Each permission and its associated data must be assigned

an appropriate level of risk and the system itself should indicate to the end-user
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each time moderate or a dangerous permission is used. Use of dangerous privileges

(i.e., raw sensor data access), especially in those of background services, should be

discouraged but enabled and labeled. A visual, foreground sensor use (e.g., camera

data actively displayed on the screen), should be labeled less dangerous than its

background alternative. Alerting the user each time a dangerous privilege is used is

essential.

Modular, Extendable Framework: The sensor permissioning system must be able

to support custom calculations on sensor data to support future, unseen needs and

have the ability to easily add or subtract the code for these permissions in a modular

fashion. To do so, application designers could design a permission and submit it to

whoever maintains the permission service. As a default to ensure privacy, each new

permission could initially be given a risk level of its most dangerous sensor data source.

Signed permission modules could be downloaded when an application is installed that

needs the new permission.

Support for Sophisticated Permission Services: The permission system must

support sophisticated permissions that may require active services or activities as part

of giving data to an application. Most modern permissions merely give sensor data to

applications, but do not do much else. Fundamentally, anti-oversensing permissions

would take sensor data and reduce it in some manner. How it reduces the data

may be complex, and there may need to be interaction with the user (such as in the

case of QR codes). Additionally, a permission may need to periodically send data

to one or multiple applications using the permission. To complete these tasks the

permission itself may wish to run a brief foreground activity or background service

that is always on. These permissions may need expressive API functionality, with

applications having the ability to send or receive a wide variety of parameters to

support feature-specific permissions.
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5.2.2.3 Performance Benefits

As a brief note, a permissioning system that limits raw sensor access and promotes

processed data instead may have several performance benefits in addition to security.

The first is that this may ease application programmer burden, where instead of

having to manually transform sensor data, they can simply request said data from

validated, optimized, core, or OS level APIs. This shared API will reduce application

size if multiple applications use the same API, will enable hardware acceleration

support, and could reduce energy consumption.

5.2.3 OA-Sys Specific Permission Designs

In this section, we describe three common models of sensor data usage and provide

high-level designs for permissions to prevent oversensing for each model (Figure 5.6).

These designs are specific to OA-Sys, but project to other permission systems. These

designs include:

1. User initiated events: upon a user’s request sensor data is acquired and

consumed.

2. Event recognition: an application consistently acquires sensor data to recog-

nize a specific event(s).

3. Continuous sensor data stream: an application consistently acquires and

consumes data.

5.2.3.1 User initiated events

Applications commonly acquire sensor data upon user request to perform some

action. In this model, the application acquires sensor data only upon the user’s

request, which could be the user pressing a specific button or updating data upon the
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initialization()
eventStatus =
perms.myEvent.register()
contStatus =
perms.myContData.register()
while applicationRunning do

if userPerformsAction then
userData =
perms.myUser.request()
han-
dleUserEvent(userData);

end
if eventStatus.get() then

handleEvent()
end
contData =
contStatus.getData() up-
dateSensorData(contData);

end
perms.eventRecognition.unregister()
perms.contSensorData.unregister()

(a) Example of an application using our
three privilege models.

initialization()
while permRunning do

registeredApps.updateApps()
while registeredApps.num > 0
do

registeredApps.updateApps()
sensorData =
sensors.getData()
processed =
sensorData.process() for
app: registeredApps do

cond =
app.eventConditions if
processed.isEvent(cond)
then

app.sendEventNotification()
end

end

end

end

(b) Privilege model for event recognition.

initialization()
appInfo = getRequestingApp()
sensorData = sensors.getData()
processedData =
sensorData.process()
appInfo.sendData()

(c) Privilege model for user initiated events.

initialization()
while permRunning do

registeredApps.updateApps()
while registeredApps.num > 0
do

registeredApps.updateApps()
sensorData =
sensors.getData()
processedData =
sensorData.process() for
app: registeredApps do

app.sendData(processedData)
end

end

end

(d) Privilege model for continuous sensor
data.

Figure 5.6: This shows (a) an example of using the privilege model to collect data, and
privilege models for (b) user initiated events, (c) event recognition, and (d) continuous
sensor data.
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user entering or leaving an activity. This can include a user requesting camera access

to read a QR code, such as in our demonstrative application, or requesting a current

GPS location.

Permissions for the user-initiated one-time events act as a simple function at a high

level, providing a result when called (Figure 5.6c). When the application receives user

input that requires the sensor-derived information, it calls the required permission

with necessary parameters. This permission, outside of the application, starts its

process and accesses the needed sensor data via the OS. Getting the sensor data

may require user interaction. The permission then performs the operation needed to

reduce the sensor information into its minimal form, which should be clearly defined

(such as providing a QR code string) information. This information is then returned

to the application and the permission’s process is ended. Essentially, the permission

system (OA-Sys) sandboxes the sensitive function and is a mediator between the raw

sensor data and the application.

5.2.3.2 Event Recognition

A second common model in which applications use sensor data is intermittent

event recognition. In this model, an application gathers data periodically and checks

the data in some manner for particular events. This periodic checking can be started

or stopped by the user. This can include functionality such as hotword recognition,

such as in our demonstrative application, or gesture recognition.

Permissions for continuous event recognition act as a service that sends an inter-

rupt to a registered application when the event is sensed (Figure 5.6b). When an

application wishes to be notified of an event that is recognized via sensor data, they

register with the event permission and give any associated parameters. If an applica-

tion has registered with the permission service, it runs a separate process outside of

application space, in the OS, that periodically gathers the necessary sensor data to
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check for the event. The process checks to see if any of the registered applications’

events would be triggered (each could have separate parameters such as different

phrases for hotword recognition). If any events are sensed, it sends the correspond-

ing registered application a notification that the event was sensed. The service will

continue notifying all registered applications each time the event is sensed until all

applications have unregistered, during which the service turns off its process loop.

5.2.3.3 Continuous Sensor Data Stream

In addition to the two previous models, it is common for applications to display,

consume, or log constant streams of data, for example in activity tracking or step

counting. In this case, the application receives a similar or the same amount of data

as in the continuous event recognition model; however, the intent of the application

is different in that it intends to use all the data, more than simple event recognition.

Thus most applications that log some form of sensor data, display sensor data in

real-time, or feed sensor data to a machine learning model in real-time would fit in

this category.

Similar to the event recognition scheme, applications register with the privilege

model for the continuous sensor data stream through OA-Sys (Figure 5.6d). However,

because specific events are not being captured, OA-Sys must do a general set of signal

processing to reduce the privacy sensitivity of the data. Straightforward approaches

could include averaging and filtering out voice bands to reduce eavesdropping. How-

ever, this can be difficult to design, which we discuss in more detail in the next

section. This processed sensor data is sent to the application periodically, and the

application de-registers the permission when it is done collecting. OA-Sys manages

these background services and kills them when they are no longer needed, and also

shares this data to applications that request it, to reduce duplication of work.
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Figure 5.7: An example showing how signal processing should attempt to deliver
the in-scope signal to the permissioning system. Software and hardware mitigation
should eliminate signals produced out-of-scope and by unintended stimuli but may
be unable to mitigate in-scope oversensing without eliminating benign data. Specific
permissions may be able to further reduce the in-scope information.

5.2.4 OA-Sys Signal Processing Permission Design

Signal processing is a likely candidate to address many oversensing vulnerabil-

ities. Many of these mitigation techniques can be shared from those presented in

Chapter III. In this section, we discuss crucial considerations in designing specific

mitigations such they can be easily deployed into existing systems without affecting

benign application behavior. Chapter VI focuses and expands upon signal processing

mitigation design for oversensing.

As there are many different sensors and applications, and new attacks are un-

covered frequently, a general framework is required versus a single solution. Signal

processing solutions can have different impacts based on their location (Figure 5.7),

each with its benefit. I examine the most important features and pitfalls of oversens-

ing signal processing mitigation design to aid manufacturers and operating system

designers in building a specific defense for their scenario including where the signal

is processed, distortion, and hardware variables2.

2For signal processing, we consider hardware and system changes that affect sensor output to be
part of the permission design as those changes can alter the way certain permissions are designed.
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5.2.4.1 Signal Processing Placement

Signal processing can happen in hardware blocks, OS, permission systems, or

individual permissions.

Inside or Before Individual Permissions: Signal processing placement alters its

design constraints and possible effectiveness (Figure 5.7). If a mitigation is placed

in individual permissions the solution can be tailored to each permission. Individual

permissions are more aware of what sensor information is important to its provided

functionality and thus can better tailor the signal processing mitigation to remove

specific oversensing vulnerabilities without removing the crucial information. This

means that signal processing mitigations may be able to eliminate in-scope, out-of-

scope, and unintended stimuli sensor information without functional penalty.

Conversely, placing the mitigation before the individual permissions, in the sys-

tem or hardware, applies the signal processing mitigation to all permissions that use

that sensor data. This has the advantage that permission designers need not worry

about mitigating that particular vulnerability, and reduces the capability of malicious

actors. However, designing such solutions is more difficult as little is known about

the intended use of the data. Thus, these mitigations must preserve all in-scope

information to not affect benign application performance. They should otherwise

attempt to limit the sensor data to the sensor’s intended use (e.g., an accelerometer

should measure only acceleration) by eliminating out-of-scope and unintended stimuli

information.

Analog vs Digital: One crucial consideration in a filter implementation is whether

to implement a digital or analog filter. Generally, digital filters are easier to im-

plement and deploy as digital software filters can be given as a software update.

However, analog filters circumvent some of the crucial issues faced by digital filters

(e.g., aliasing) while perhaps needing extra hardware support (Figure 5.8a).
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Software digital filters are largely desired due to the ability to easily deploy the

mitigation as an update, such as a permission update in OA-Sys. These mitigations

can be configured and further updated over time should other vulnerabilities become

known. Additionally, they require no extra hardware overhead such as additional

physical space or latent power draw (when unused). Thus, effective software mitiga-

tions are of great value when available. For this reason, we only consider mitigations

that may be implemented as a software update in our evaluation.

Mitigating Aliasing Based Oversensing: Aliasing is a major source of over-

sensing vulnerabilities (Section 5.1.2.2), and something all filters must consider to

eliminate oversensing. Aliasing is not a large problem for analog filters (Figure 5.8a)

as aliasing takes place after the signal is digitized and analog filters work on pre-

digitized signals. However, digital filters are often desirable over analog filters due to

the aforementioned deployability benefits.

To enable effective digital filters, the sensor must sample at a rate greater than

what the system intends to give to applications. This act of sampling at a rate

faster than what will eventually be given is often called oversampling. As shown in

Figure 5.8b, aliasing will produce byproducts in sensor output for any signal with a

frequency above fN , which is fS/2. Mitigations should aim to provide applications

with minimally altered benign information in the sensor signal. Filtering large parts

of the expected bandwidth, or range of frequency information, would violate this

principle. However, without oversampling low-pass filters must filter large parts of

the expected bandwidth to attenuate sensitive signals such as dial-tones used in our

example (Section 5.1.2). Yet, if the signal is oversampled (Figure 5.8c), this problem

will be alleviated to a certain degree. This is due to how the oversampling will

alter the aliases of these sensitive signals, possibly placing them above the desired

bandwidth to provide to applications. This is a basic idea behind anti-aliasing filters,

which are two of our tested mitigations.
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(a) LPF analog defense

(b) No Oversampling

(c) Oversampling

Figure 5.8: How analog and digital filters handle the 8 dialtone frequencies used
in the keylogger (Section 5.1.2). (a) Analog filters work on pre-digitized data, and
thus circumvent the problem of aliasing. (b) Digital filters without oversampling
cannot filter sensitive digitized signals (in this case dial-tones) without attenuating
a significant region of benign signals (green area). (c) With oversampling there is a
greater chance sensitive aliases may be outside of the range of benign signals (green
area) and can be filtered digitally.

Oversampling should be possible in most smartphone hardware, as the sampling

rate of the sensor is limited by the operating system due to power constraints. An

operating system update could enable the oversampling and then filter the signal.

Then to provide a data rate (number of samples per second) the same as before, the

system can down-sample the signal to the original data rate.

However, oversampling does have a few drawbacks. The downsampling step may

introduce minor distortion in the signal unless the oversampled rate is a multiple of

the original rate. Additionally, oversampling will likely slightly increase the power

consumption of the sensor. Last, implementing oversampling in software will have

memory and computational overhead may burden resource constrained systems.
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Figure 5.9: Filters trade performance vs. distortion. Filters with a flat passband
minimally distort benign application data, but filters with sharper cutoffs may be
more secure against oversensing vulnerabilities.

5.2.4.2 Distortion

Most filters in hardware or software will cause some distortion of the benign infor-

mation in the sensor data. Depending on the use case, more or less output distortion

may be permissible. The filter’s design will have a large effect on the distortion of

the signal. There are several established digital and analog filters. We identify five

common choices for various applications (Figure 5.9). Our implementations use a

Butterworth filter for having a good balance of minimal distortion and sharp cutoff

to attenuate a larger range of potentially sensitive data. however, other applications

may wish to use a different design.

Two other factors that will affect the distortion of benign data are the filter order

and cutoff frequency. Both parameters can be fairly application-specific. Cutoff fre-

quency limits bandwidth, and thus should likely never be much less than the system’s

original sampling frequency. Otherwise, this risks misleading and harming benign ap-

plications. However, the frequency should likely be close to the Nyquist frequency in

some way to maximize the attenuation for stopband frequencies.

Filter order balances how sharp the filter roll-off is with cost, size, and real-time

delaying detriments. The higher the order, the sharper the transition band is, and

thus the more of the intended range of frequencies to filter will be filtered. However,

in hardware a higher-order requires more components, which may not be permissible

given cost and space limitations.
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5.2.4.3 Hardware Based Signal Handling.

Other miscellaneous hardware changes may also significantly reduce oversensing

vulnerabilities. In particular, recent work has investigated how hardware changes may

mitigate malicious signals from unintended stimuli [161]. Many of these changes could

include sensor redesign. For example, there are microphones designed specifically to

be resistant to light affecting the audio output. There are also thermal accelerometers

designed to be resistant against high-frequency vibration that may significantly alter

the output. Unfortunately, hardware changes cannot be implemented via a software

update and will require a significant redesign of the system. However, they may

enable long-term solutions to mitigate many oversensing vulnerabilities.

5.3 OA-Sys Implementation

We built OA-Sys as a proof-of-concept of a permission system for oversensing,

targeting Android OS 9 and built on Privacy Enhancements for Android (PE for

Android)3 This section describes two implementation efforts towards building and

evaluating OA-Sys (detailed in Table 5.1):

1. OA-Sys: the permission system. This includes the additions to PE for An-

droid to provide a framework for adding new permissions related to oversensing,

and new signal processing techniques at the OS level.

2. OA-Permissions: the individual permissions. The individual permissions

and associated services are designed for a QR code, hotword, and compass

application, fulfilling outlines given in Section 5.2.3.

The PE for Android implementation was chosen because of its adoption and sup-

port by industry partners and the research community, including multiple efforts

3To learn more about Privacy Enhancements for Android, see https://android-privacy.org/
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Name Description
OA-Sys Android OS designed to enable permissions to mitigate oversensing.
OA-Permissions Short running functions that provide reduced sensor data to applications.
OA-Services Trusted services that assist OA-Permissions with complex functionality.
QR Code Application Demonstrative application for user initiated events.
Hotword Application Demonstrative application for event recognition.
Compass Application Demonstrative application for continuous sensor data streams.

Table 5.1: Systems, permissions, applications, and case studies used to implement or
evaluate OA-Sys.

by researchers to enhance Android privacy building on the platform [74, 93, 59].

Evaluation for signal processing mitigations for the compass application appears in

Chapter VI.

5.3.1 Permission System

Our permission system extends the implementation of the Privacy Enhancements

for Android [54, 59] to support the requirements listed in Section 5.2.2. Figure 5.10

displays how the permission service provides applications data. Each non-standard

component is described below. OA-Services are the core hierarchy addition from the

original PE for Android implementation. OA-Services which are trusted userspace

services that permissions can interact with for complex operations. This system is

deployed as a custom Android OS image.

5.3.1.1 Private Data Request

A private data request is a request for (sensor-derived) data through our imple-

mentation system or a signal to communicate with a permission service that would

provide such data. These requests come in three types: (1) a request for a singular

instance of data, (2) a registration request for permission service, and (3) an unregis-

tration request for a permission service. Each request specifies the data it would like,

the purpose for requesting the data, a result listener to receive the resulting sensor
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Figure 5.10: How a permission with an OA-Service request resolves in the An-
droid implementation, highlighting alterations and additions from Privacy Enhance-
ments (PE) for Android. Private data requests can include a request for a singular
instance of data, registering for a permission service, or un-registering for a permission
service.

data, the specific OA-Permission to transform the data, and any permission-specific

parameters. The private data request remains relatively unchanged from the PE for

Android version; however, regular PE for Android did not have OA-Services and thus

no communication with those services.

5.3.1.2 Private Data Manager

The private data manager is a system API in PE for Android that facilitates

communication between applications and OA-Permissions. This service registers and

manages all OA-Permissions while also listing the available permissions to applica-

tions. When an application makes a private data request, the private data manager

gives the request to the privacy manager and receives a decision on whether to al-
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low or deny the request. With a denial, nothing happens except the application is

notified. When a request is allowed, the private data manager calls the appropriate

OA-Permission with any needed parameters or data.

In our implementation, the Privacy Manager also provides the permission with

the request’s result listener. This is the primary and only code change to PE for

Android’s private data manager implementation. This allows OA-Permissions and

services more flexibility in fulfilling requests, such as an OA-Service sending results

continuously to any registered applications. This is the crucial change that enables

OA-Services.

5.3.1.3 Privacy Manager

The privacy manager is a trusted userspace application that permits and denies

requests for sensor-derived data. Through the Android System Settings, the user

can select the active privacy manager. Only one privacy manager can be active at

a time and the privacy manager must be signed for the system to permit its use.

Our implementation does not change the purpose or underlying code of the “Privacy

Checkup” policy manager from its original implementation in PE for Android. The

manager allows users to check which applications have which permissions.

5.3.1.4 OA-Permission

An OA-Permission is the core of OA-Sys, either fulfilling a request for sensor data

directly (if the request is simple) or communicating with an associated OA-Service if

the permission requires complex management (e.g., event recognition). This code is

meant to be single-threaded and run quickly to interface well with the private data

manager. The OA-Permission can hand off complex functionality to an OA-Service

which runs asynchronously.

OA-Permissions, being in userspace, could be easily and modularly installed as
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separate applications from the app store. In the future, when a new application is

downloaded, a manager service could identify, download, and install all new necessary

OA-Permissions. However, these permissions must be signed and trusted to be used

in our system. As said before, each permission is arbitrarily given a risk level. Our

implementation of OA-Permissions is very similar to the original PE for Android

implementation for uPALs. uPALs are micro-Privacy Abstraction Layer modules

that reduce a standard Android permission’s information before applications receive

said information.. However, we found uPALs, built to simple and quickly-terminating

modules, on their own to be insufficient for our complex sensor usage. We modified the

existing uPAL implementation by allowing OA-Permissions to facilitate the handling

of result receivers (such as to OA-Services). These result receivers allow the OA-

Permission (and the OA-Service) to send results back to the application.

5.3.1.5 OA-Service

OA-Permissions that require more complex or continuous sensor data management

require an OA-Service. These services are given the requesting application’s result

receiver, which they can use to send data back to the requesting application at any

time. This enables the service to interface with the user through foreground activities,

get a result, and send it back. Another example is how multiple applications can

register with a single ongoing service process, which can perform an operation on

sensor data and send the result to selected registered applications. This is a new

addition to the PE for Android implementation. Like OA-Permissions, they can be

easily installed separately. Ideally, these services should be signed and registered

with the Private Data Manager to be valid; however, our implementation forgoes this

for an easy proof-of-concept system and instead implements these services as basic

Android foreground services that notify the user when run.
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5.3.2 Demonstrative Applications and Permissions

Each of our applications is written in Java for OA-Sys. Each application uses a spe-

cific OA-Permission for sensor data and requests sensor data without using the more

dangerous Android permission. Each OA-Permission has an associated OA-Service

which is implemented via a foreground service and implements the corresponding per-

mission model pseudocode found in Figure 5.6. Additionally, each application logs

power data via the BatteryManager API at a rate close to 20 Hz for power evaluation.

The QR and Hotword OA-Permissions provide near theoretical minimal information

to applications to support functionality. The Motion OA-Permission provides more

information to the Compass application than required for serving as a basis to eval-

uate the attack system and signal processing mitigations.

5.3.2.1 QR Code Application and Permission

This application gets a QR code with no camera permission and instead only

receives the QR encoding itself from the QR OA-Permission. This permission is an

example of an user-initiated event (Section 5.2.3.1).

Application: This application’s user interface is simple: one button to initiate cap-

turing of a QR code, and one text box to display the result of the last QR code. The

user pushes the button, the activity requests the QR code OA-Permission in our sys-

tem, and then asynchronously receives a result. The application itself never receives

any camera data, and only receives a QR code string (a website URL in our tests).

OA-Permission: This OA-Permission is very simple: when receiving an authorized

request it sends the request to the QR code OA-Service along with the requesting

application’s result receiver.

OA-Service: When the OA-Permission calls this service, written as an activity as it

has UI elements, it starts and promptly launches a foreground activity that captures
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and displays the camera using the androidx camera API. When the service detects

a QR code in the camera using the Google zxing API, it sends the result back to

the application that called this OA-Permission via the result receiver. To provide

this functionality, this service needs to request the Android camera permission and

declare it uses camera hardware in its AndroidManifest file.

5.3.2.2 Hotword Recognizer Application and Service

This application performs hotword recognition without having microphone data or

permissions in any form. Instead, it only receives a notification from the Hotword OA-

Permission and service. This provides an example of an event recognition permission

model.

Application: This application has a user interface with two buttons and one text box

for display. The phrase “oversensing” is hardcoded into the application to serve as the

hotword. The hotword phrase is displayed on the text box to remind the user. The

first button, the start button, registers the application with the hotword recognition

OA-Permission when pressed. Until the stop button is pressed the application will

receive a notification any time the hotword is spoken in the vicinity of the phone.

The stop button unregistered the application with the OA-Permission.

OA-Permission: Upon an authorized request, this OA-Permission simply sends the

Hotword OA-Service (1) the requesting application, (2) the result receiver for that

application, and (3) the desired hotword phrase.

OA-Service: When called by the permission, the service receives (1) the requesting

application, (2) the result receiver, and (3) the desired phrase from the OA-Service.

It stores each triplet a list. When the list has any entries, the service listens using the

microphone for any nearby speech. It uses Google Speech to Text API to transcribe

the phrase, then compares the top 5 results against the list of all registered hotwords.
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If a hotword is recognized, the service sends a simple message indicating the hotword

was found to the corresponding application through its result receiver. In this fashion,

one application can register multiple hotwords and be notified when a specific one is

said and multiple applications can register different (or the same) hotwords. Notice,

in a case where many hotwords or applications are registered the recognition code is

still only run once, saving power versus each application performing this separately.

5.3.2.3 Compass Application and Motion Service

This application receives motion sensor data without motion sensor permissions

in any form. Information in this provided data could be reduced via signal process-

ing; however, in this specific implementation, we provide unfiltered motion sensor

data such that the data can be recorded for several software-based signal processing

mitigations to be tested on the same data. Additionally, one could make a simple

“compass heading” OA-Permission and service to further reduce data. We instead

provide the motion sensor data itself. This permission and service is an example of a

continuous sensor data stream permission.

Application: This application has a user interface with a start and stop button,

a text box that displays the current bearing, and a compass image that rotates to

display the current north heading. When the start button is pressed, the application

registers with the motion sensor data permission that supplies accelerometer, gyro-

scope, and magnetometer data. When the application receives this data, it uses the

SensorManager API to calculate its current orientation and then updates the current

bearing text and the compass image’s rotation angle.

OA-Permission: Similar to the Hotword and QR code permissions, this permission

is kept simple and forwards the authorized requester and its receiver to the Motion

Service to handle properly.
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OA-Service: This service receives and stores the requester and receiver pair into a

list. If the list of pairs has any members (if any application is registered with this

permission), the service registers a listener with the Sensor Manager service to receive

accelerometer, gyroscope, and magnetometer data. If the list loses all members, the

service unregisters these listeners. When a sensor manager listener receives data, the

service forwards this data and its timestamp to all registered apps. Note that this

service purposely does not use signal processing to reduce the information in this

data, but easily could before sending the data to the registered applications. It does

not reduce the data so that the data can be logged unaltered, and so that our software

signal processing mitigations can be tested on the same data.

5.4 OA-Sys and OA-Permissions Overhead

We find the apps that use our permissions incur little to no power overhead and

slightly smaller APK, android application package, sizes. We installed our system and

permission implementations (Section 5.3) on an unlocked Google Pixel 3 to measure

power consumption and measure APK size. We created non-OA-Sys versions of each

demonstrative application (which we refer to as normal applications, versus OA-Apps)

to use as comparisons in this subsection.

5.4.1 Power Overhead

We collected power consumption using the built-in power logger described in Sec-

tion 5.3.2 for the system and each application. A blank activity, an application with

a blank screen and no calculations, served as a power consumption baseline. For each

case study, we collected power readings from the OA-App and normal versions of

the code in OA-Sys for 20-21 minutes. The collections were staggered (OA-App then

normal, repeat) to reduce temporal bias from outside factors. This was done three

times each, with each version having a total of 60 minutes of logged power readings.
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Configuration Application Power Draw (mA)
OS App Type Blank QR Code Hotword Compass

OA-Sys OA-Apps 144.87 594.69 193.93 160.06
OA-Sys Normal 143.79 599.83 193.96 160.63

Table 5.2: Average power draw (mA) over 20-21 minutes of a combination of OA-Apps
and normal Android apps on OA-Sys and Android 9.

Applications OA-Sys
App Type QR Code Hotword Compass Permissions Service
OA-Apps 3.212 3.300 3.470 3.331 3.800
Normal 3.895 3.303 3.471 n/a n/a

Table 5.3: APK sizes (MB) of normal applications, OA-Apps, OA-Permissions, and
OA-Services.

The 60 minutes total was averaged for our final numbers. During all collections, the

screen brightness was adjusted to its lowest setting; wifi and Bluetooth were turned

off to reduce outside effects on power consumption. For the hotword applications

specifically, the smartphone was placed in a quiet room. The applications consume

non-trivial power when noise is detected to classify the noise. Thus reducing ambient

noise reduces the chances of one test attempting more classifications and biasing the

power results. Last, each application was manually checked at the start and end of

its power recording to ensure Android OS had not killed reliant processes, affecting

power consumption.

Table 5.2 shows that the power difference between the OA-Apps and normal apps

is fairly minimal and likely under the measurement noise threshold. This is to be

expected, as much of the code between the two implementations are very similar,

except in the normal version the code is in the application itself, whereas in the

OA-Apps version the code is in the OA-Permissions.

5.4.2 Application and Permission File Sizes

We also provide the sizes of the applications. As one can see in Table 5.3, the

sizes for OA-Apps are slightly smaller than the sizes of the normal apps. This is

113



to be expected as the OA-Apps rely on the OA-Services to perform much of the

calculations. Thus they have less code in their applications while having similar

functionality. However, OA-Sys also requires the overhead of the OA-Permissions

and OA-Services to be installed. This does incur some overhead. Yet, if there are

server applications that use these permissions it may save overall storage size.

5.5 Discussion

5.5.1 Security of QR and Hotword OA-Permissions

The QR and Hotword OA-Permissions mitigate respective oversensing vulnera-

bilities by design. The extent to which they improve security is difficult to evaluate

quantitatively as they provide very different forms of data. However, both permis-

sions reach near theoretical minimums for information given to applications while

providing full original functionality. The QR OA-Permission reduces video data to a

website link or character string, the encoded data, and nothing more. The hotword

OA-Permission reduces ongoing microphone data to an event indicating the time that

the hotword is said, essentially a timestamp for the event and nothing more. One

potential security flaw for the hotword OA-Permission would be if an application reg-

isters for many hotwords simultaneously. However, the operating system could limit

the number of registered hotwords or require the application to declare registered hot-

words on install. While difficult to evaluate quantitatively, both reduce information

to applications and reduce oversensing vulnerabilities.

5.5.2 Enabling Future Applications

Future applications, such as those in mobile augmented reality systems, may heav-

ily rely on sensor data to function correctly. Current permissioning models may not

sufficiently support secure models of sensor usage for these future applications, such
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as provided by our hotword OA-Permission. Modern permissioning systems consider

cameras, microphones, and other sensors that are always available to applications to

be quite dangerous, and with good reason. However, future application functionality

will hinge on sensor use. Eventually, permissioning systems must support function-

ality while preserving user privacy such as in OA-Sys.

5.5.3 Security Analog Filtering

Analog filters are a likely mitigation for oversensing vulnerabilities that rely on

aliasing, such as for the attack system described in Section 5.3, as these filters operate

on signals before aliasing occurs in analog-to-digital converters. For our case study,

we chose to instead build signal processing mitigations that could be deployed via a

software update such as in a OA-Permission as these can be most readily adopted

by the largest number of people. However, in the future manufacturers will consider

building analog filters into their sensor chips instead of digital filters (as seen with

the digital anti-aliasing filter) to better mitigate such vulnerabilities.

5.5.4 Operating Systems Support and Compatibility

Our proposed changes to permission systems should be more expressive and enable

more sensor functionality; however, they should also be completely compatible with

modern systems and applications as they add functionality into systems without re-

moving existing functionality. These more expressive and secure permissions could be

deployed into current systems, with older permissions and capabilities left untouched.

This would completely support all existing applications. However, with these more

secure permissions available, the older permissions should be marked as significantly

more dangerous than they currently are. This danger should then be conveyed to

users explicitly through something like a pop-up each time the dangerous permission

is used. This may encourage a gradual switch to the newer permissions. Significant
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potential future research remains in this area.

5.6 Conclusion

Future applications, such as those in augmented reality or the Internet-of-Things,

will need fine-grain sensor data to properly function. However, current permission

systems must undesirably choose between providing privacy-sensitive information em-

bedded in raw sensor data — introducing oversensing vulnerabilities — to applications

or preventing those applications from functioning correctly by withholding raw sensor

data. We design OA-Sys to bridge this gap and mitigate oversensing vulnerabilities,

providing applications with necessary sensor-derived data while eliminating access to

other information from that sensor. OA-Sys builds on previous work [54] to produce

an open-source custom Android 9 implementation in which we build three permissions

to provide QR codes, hotwords, and compass functionality to demonstrative appli-

cations despite these applications receiving significantly reduced sensor information.

Two of the permissions reduce given information near to its theoretical minimum,

while the last demonstrates how to rely on signal processing to reduce sensitive in-

formation for difficult-to-eliminate oversensing vulnerabilities (reducing our dial-tone

keylogger accuracy by >50%). We provide OA-Sys to the community to provide anti-

oversensing concepts, designs, and implementations that may be built upon or built

into other permission systems as an initial step to mitigating oversensing as smart

devices, mobile devices, and sensing reliant applications become ubiquitous.
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CHAPTER VI

Touchtone Eavesdropping: An Oversensing

Example on Smartphone Motion Sensors

This chapter, based on my previous work1, presents an example of an oversensing

vulnerability in touchtone eavesdropping on smartphone motion sensors and signal

processing mitigations to mitigate this vulnerability. This chapter’s oversensing vul-

nerability is an out-of-scope vulnerability. The signal processing-based mitigations

could be included in permissions for continuous sensor data streams such as for the

Compass application discussed in Chapter V.

Touchtones, the sounds produced by a smartphone when a numerical key is

pressed, are an established communication standard [149] often used to encode user

feedback in telephony channels. In modern telephony systems, touchtones often rep-

resent important information such as credit card numbers (during activation), bank

pins, various account numbers, social security numbers, selections for various options

in automated services and even votes in a federal election (done by phone) [150].

Recent research has shown that sound produced by a smartphone’s speaker may leak

into the same phone’s motion sensors, particularly speech. This chapter’s experiments

show that touchtone leakage, touchtone information leaking into motion sensor data,

1Connor Bolton, Yan Long, Jun Han, Josiah Hester, Kevin Fu. “Touchtone Leakage Attacks via
Smartphone Sensors: Mitigation Without Hardware Modification.” 2021 arXiv. https://arxiv.

org/abs/2109.13834
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Figure 6.1: (a) A touchtone, indicating a “5” on a smartphone number pad, leaks into
accelerometer data. (b) A malicious smartphone application can classify this leakage
to discern that a “5” touchtone was emitted, infering user input of a “5” for purposes
such as dialing a phone number or inputing information into automated services.

enables malicious smartphone applications with motion sensor access (e.g., a seem-

ingly benign smartphone game) to ascertain any numerical user input that produces

touchtones (Fig 6.1), an attack we term touchtone eavesdropping. This chapter’s

primary goal is to open discussion on how to reduce this oversensing vulnerability.

To understand how to mitigate touchtone eavesdropping, it is necessary to un-

derstand how acoustic information is hidden in motion sensor data and how signal

processing and physical phenomenon, such as aliasing or varying frequency responses,

aid adversarial recovery of the original user keypress. These phenomena cause arti-

facts of touchtone information to manifest in several ways, but an adversary only

needs the capability to ascertain user input through one of those manifestations.

More advanced techniques such as selective integration of multiple sensors and sensor

axes via machine learning can utilize several of these manifestations simultaneously

for a more proficient attack. Our experiments show user input can be recovered by

an adversary at over 99 % accuracy with such methods.

Mitigations can reduce touchtone leakage by reducing the total information in

sensor output, but this also affects benign applications relying on such data. It is thus

important to keep functionality in mind when designing mitigations. Additionally, we

focus on solutions that may be implemented as a software update to support existing

118



devices and designs where hardware changes may not be viable.

Using these criteria we analyze both effective and ineffective solutions to demon-

strate ideas to emulate or avoid. For example, we analyze and evaluate how some

apparent mitigations briefly suggested in related work, such as sampling rate reduc-

tion or digital low-pass filtering alone, are ineffective at reducing touchtone leakage;

sampling rate reduction can reduce available information to all applications by more

than 80% yet our classifier maintains accuracy over 95% for three of the four tested

phones. Other designs, such as a software anti-aliasing filter that uses oversampling,

do not change the amount of information available to applications while reducing

accuracy by over 50.1%. Our contributions include:

Touchtone eavesdropping assessment: We discuss and experimentally demon-

strate the relevant physics and signal processing theory of touchtone leakage to reveal

challenges mitigations must consider, such as aliasing and non-linear frequency re-

sponses. We detail both simple and advanced adversaries, discussing how selective

integration of multiple sensors’ data with machine learning can further impede miti-

gation efforts.

Defense design analysis: We analyze the advantages and disadvantages of several

signal processing-based leakage reduction solutions. We explicitly include the idea

of not reducing functionality as design criteria. Some apparent approaches, such as

reduced sampling rates, are unintuitively ineffective mitigations. Other filter designs,

such as software Butterworth anti-aliasing filters, can reduce leakage in the signals as

a software update. Hardware changes could serve as long-term solutions.

Implementation and evaluation: We implement and evaluate both simple and

more advanced touchtone leakage attacks. These attacks serve as baseline metrics for

mitigation evaluation. Baseline attacks can achieve accuracy higher than 99%. We

evaluate several signal processing mitigation designs to demonstrate both effective and

ineffective designs. Apparent mitigations, such as digital low-pass filters and reduced
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sampling rates, may remain ineffective (less than a 1% difference in accuracy from

baseline) even while reducing benign information crucial to application functionality.

Our anti-aliasing filter reduces accuracy by over 50.1% with no information loss and

can reduce further with minor benign information loss.

6.1 Overview

6.1.1 Touchtones

Touchtones, also known as dual-tone multi-frequency (DTMF) signals, are a stan-

dardized [149] code of two-tone audible acoustic signals that play upon a numerical

keypress, often used in telecommunications or other applications with a numerical

touchpad [27, 72, 125, 51]. The sound produced by a phone when you press an in-

dividual key to dial a phone number, answer an automated telephony question (e.g.,

“press 1 to....”), register credit card numbers or bank pins over the phone, or other

such actions are examples of touchtones. There are 16 unique touchtones (Fig 6.2),

each consisting of two frequencies taken from two separate frequency sets, used for

the numbers 0-9, the symbols * and #, and an additional four tones reserved for

special services. As they are unique, hearing one touchtone is indicative of a particu-

lar number input. These dual-tone combinations are designed for reliability in noisy

channels for reliable communication.

6.1.2 Threat Model

This paper considers an adversary whose goal is to determine a user’s numerical

keypresses on a smartphone using access to a smartphone’s motion sensor data and

the knowledge of touchtone leakage, an attack we term touchtone eavesdropping. We

assume the adversary can obtain and save motion sensor data through means such as

a malicious application with motion sensor access. The adversary may have access
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Figure 6.2: Touchtones are comprised of two single-frequency tones emitted simulta-
neously to convey numerical input.

to the same model as the victim’s phone(s); a phone’s model can be determined

by an application using fingerprinting techniques [18, 107, 167]. The adversary can

use their duplicate phone(s) to collect training data to build a classification system.

Last, the adversary has unlimited time to classify victim data; data is easily saved

for offline processing and sensitive information (e.g., credit card numbers, bank pins,

social security numbers) is unlikely to often change.

6.2 Touchtone eavesdropping assessment

Developing an understanding of how attacks utilizing touchtone leakage occur

(Fig 6.1) and why they can be difficult to mitigate (Fig 6.3) is crucial for defense

design. At a high level, touchtone leakage is classified as an out-of-band oversensing

vulnerability using the relationship between acoustic waves and motion sensor out-

put. This attack is possible in continuous data stream sensor use cases as defined in

Chapter V. We assess (1) how touchtones produced by a phone’s speaker leak dis-

tinguishable, deterministic byproducts to the smartphone’s motion sensors (e.g., the

accelerometer and gyroscope), and (2) how adversaries can use leakage to determine

user input.
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Figure 6.3: Touchtone leakage for #3 and #4 touchtones in a Google Pixel 2’s ac-
celerometer’s x-axis. These signals remain discernable and predictable in the fre-
quency domain with (a) a normal, unaltered signal, and also despite previously sug-
gested mitigations in (b) reduced sampling rates and (c) digital low-pass filtering.

6.2.1 Touchtone information in motion sensor data

Artifacts of touchtone leakage manifest in motion sensor data in a multitude of

forms due to various physical and signal processing phenomenon. Each of these

manifestations can contain redundant or complementary information regarding the

original touchtone. However, an attacker only needs one recovery method for one

touchtone artifact to achieve an eavesdropping attack. Defenders must then consider

how to block as many touchtone artifacts and recovery methods as possible.

6.2.1.1 Touchtone aliasing

Aliasing (Section 2.2) is a key factor in both making touchtone leakage occur

and for making it difficult to mitigate. Touchtones have frequencies higher than the

Nyquist sampling rate for most smartphone motion sensors, and thus have aliases.

However, the frequencies of these aliases can be predicted as the touchtone frequency

and sampling rate are both known (Fig 6.3). An attacker can use these known aliases

to indicate the presence of the missing original touchtone frequencies.

Furthermore, the non-linear placement of these aliases — how all touchtone fre-

quencies can lie somewhere in the sampled signal’s frequency band — can make

touchtone eavesdropping resistant to suggested mitigations. For example, reducing

the sampling rate will not eliminate aliases; changing the sampling rate only alters
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Figure 6.4: Touchtone information can be embedded in a variety of forms or to varying
extents in motion sensor data. In (a), two axes have distinct non-linear frequency
responses to a 420 Hz to 580 Hz chirp from the loudspeaker. Different axes may be
better predictors for certain tones. (b) shows how there may be many subtle artifacts
in touchtone data. An attacker could use any of these artifacts to launch a touchtone
eavesdropping attack.

aliased frequencies (Fig 6.3b). Low-pass filters remain ineffective unless the cutoff

frequency is placed low, as touchtone aliases could be close to 0 Hz (Fig 6.3c).

6.2.1.2 A cacophony of sensitive information

The above factors enable touchtone leakage when combined with how acoustic

waves interact with motion sensors (Section 2.3). However, various physical and signal

processing phenomenon can cause the same target information (i.e., a touchtone) to

uniquely manifest in different sensors’ data (Figure 6.4a) or manifest in a multitude

of forms simultaneously in the same sensors’ data (Figure 6.4b). An attacker may

only need one of these manifestations for a successful attack. An attacker could also

make use of all information simultaneously for a more effective attack.

For example, different sensors or sensor axes can contain complementary or dif-

ferent frequency information about the same set of touchtones (Figure 6.4a). This

difference stems from varying frequency responses in inherent to phone construction,

speakers, sensors, or even individual axes of sensors. With access to multiple axes

or sensors, an adversary may be able to exploit how each axis or sensor could be a

better indicator of certain frequencies due different signal-to-noise ratios.
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Additionally, in the same signal (i.e., sensor axis) information about the same

touchtone can manifest in different manners (Figure 6.4b). For example, an axis

will have information on an alias of the touchtone frequency, but could also have

information on the harmonics of the same touchtone. A touchtone eavesdropping

attack would only need to recognize one of a touchtone’s alias, harmonic, or even an

alias of the harmonic to be successful.

6.2.2 Adversarial touchtone recovery

The goal of the attacker is to recognize when a touchtone is pressed by discerning

the presence of the eight individual touchtone frequencies (Fig 6.2) in motion sensor

data. The adversary can benefit by trying to use all possible touchtone information

in motion sensor data, as discussed in Section 6.2.1.2. The most straightforward

approach to do this is by making a machine learning-based classifier as the attacker

does not particularly care which information the classifier uses, just that it can classify

motion sensor data into touchtones. The advent of easily usable machine learning

tools makes this task easy in the modern-day.

Furthermore, adversaries can make use of the varying information in different

sensors and sensor axes by selectively integrating data from multiple sensors (in our

case the accelerometer and gyroscope). For example, one sensor axis may be more apt

at discerning the presence of a particular touchtone but a separate sensor axis could

be a better indicator of a separate touchtone. This same idea, using multiple sensors

to reveal emergent information, has been used by researchers for benign purposes

in several fields including on drones [73], body-sensor networks [50], and much more.

Building a classification model to specifically use this fact should lead to more efficient

attacks.
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6.3 Functionality-aware software mitigation design

Touchtone eavesdropping mitigations require careful forethought and consider-

ation of leakage mechanics (Section 6.2.1) to effectively reduce leakage while not

hampering benign application behavior, a problem shared by all signal processing

oversensing mitigations. To accomplish this task, mitigations should reduce touch-

tone information in motion sensor data while minimally altering or reducing any other

information. This chapter adds an additional criterion that mitigations should be able

to deploy as a software update to support current devices. This section examines sev-

eral mitigation designs to show how some apparent designs such as sampling rate

reduction can only reduce touchtone leakage by reducing the total information in a

signal, hampering application functionality, while other designs such as anti-aliasing

filters can reduce touchtone leakage while minimally harming application functional-

ity.

6.3.1 Designing for both privacy and functionality

While protecting the privacy of smartphone users from touchtone eavesdropping

attacks is an urgent issue, I consider ensuring functionality to be a second — but no

less critical — criterion for mitigation design. The reason is that to be adopted into

mainstream systems the mitigation must also support the expected functionality of

motion sensor dependent applications. It is widely accepted that security and privacy

must support some level of functionality and usability [160, 153, 81] as these features

drive device markets and development.

Touchtone eavesdropping attackers and benign smartphone applications using the

motion sensors use the same signals — the motion sensor readings. As a result,

limiting the attackers’ capability might also inadvertently limit benign applications’

performance. Thus for practical deployment, designing such mitigation for privacy

protection requires the designers to be functionality-aware and guarantee minimal
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degradation of functionality by carefully optimizing the implementation of their mit-

igation.

As discussed in Section 2.2 two significant factors for reducing information in a

signal — and thereby reducing application functionality — are (1) bandwidth reduc-

tion and (2) signal distortion; conversely, minimizing bandwidth reduction and signal

distortion can better support application functionality. There is a nearly unanimous

trend of higher sensor bandwidth leading to higher performance in previous research

in various activities such as human activity recognition [68], animal health monitoring,

[105], road quality assessment [20], etc. In addition, more commercialized techniques

such as using motion sensor readings for smartphone image stabilization [62] and

rolling shutter correction [65] rely on sample rates higher than 100 Hz, correlating to

a bandwidth of 50 HZ. Thus reducing bandwidth below those ranges risks causing

these applications to malfunction and may stifle future application performance. A

significantly distorted signal could also impact application behavior and thus should

also be minimized when possible, but it is more difficult to ascertain how much dis-

tortion is permissible. Ideal mitigations should support the original bandwidth with

minimal distortion, only removing traces of touchtone byproducts.

6.3.2 Apparent mitigations that sacrifice functionality

Mitigation strategies predicated on reducing available sensor bandwidth may not

only hinder application functionality but also may ineffectively attenuate sensitive

touchtone information. This section analyzes apparent mitigations of sampling rate

reduction and digital low-pass filtering to show how touchtone information may persist

despite significant bandwidth reduction.
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6.3.2.1 Sampling rate reduction

Lowering sampling rates directly lowers available bandwidth (Section 2.2) in an

attempt to also lessen the threat of acoustic eavesdropping; however, it is ineffective

at attenuating leakage (Fig 6.3b) primarily due to how aliasing will place touchtone

information in a digital signal no matter the sampling rate (Section 6.2.1.1). Even

at very low frequencies, the eight touchtone frequencies still provide discernible and

potentially recoverable aliases. However, such low sampling rates may prevent an

attacker from differentiating between different touchtone aliases at high fidelity. But

the low rates similarly affect dependent applications’ functionality similarly. Our

experiments back this intuition (Section 6.5.2.1), as reduced sampling rates achieve

minimal accuracy reduction for our touchtone eavesdropping attack until having sam-

pling rates under 100 Hz, a fourth of the original sampling rate.

6.3.2.2 Digital Low-pass filter

Low pass filters may at first seem like a natural mitigation for touchtone leakage,

which relies on aliasing, but a software digital low-pass filter alone cannot increase

privacy while preserving functionality (Fig 6.3c). To note, previous papers seldom

specify which low-pass filter design they suggest, and hardware changes to include

analog low pass filters may be a sufficient future defense as later discussed. However,

when discussing software-updatable mitigations, digital low-pass filters alone also do

not address the problem of aliasing. Referring back to Section 6.2.1.1, many of the

resulting touchtone aliases could be under the low-pass filter cutoff frequency that is

chosen due to the non-linear placement of alias frequencies. A lower cutoff frequency

is more likely to attenuate more aliases, but only because it is reducing the available

bandwidth for all motion sensor data. Thus it also suffers from needing to reduce

available bandwidth to provide better privacy. Our experiments demonstrate this

pathology (Section 6.5.2.2).
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6.3.3 Designing functionality-aware signal processing mitigations

A functionality-aware signal processing mitigation should minimally reduce avail-

able bandwidth and distortion while attenuating touchtone leakage. Our approach

is to rely on established digital signal processing techniques designed to eliminate

specific leakage contributors, particularly aliasing. We propose a software update

enabling oversampling and digital anti-aliasing filters as a primary means of defense

against acoustic general acoustic leakage. Additionally, we describe how one can

utilize the predictable nature of touchtone aliases in defense design.

6.3.3.1 Oversampling and digital anti-aliasing filters

Oversampling is the act of sampling at a faster rate than the bandwidth that

you wish to eventually provide, and can be used to create anti-aliasing filters that

reduce touchtone leakage while still providing the original bandwidth to current ap-

plications (Fig 6.5). Oversampling can be implemented as a software update on most

phones as often the sampling rate is limited not by the sensing hardware, but by the

operating system and sensor drivers to preserve power. Thus, a software update could

change these driver values to provide a faster sampling rate to the operating system.

The operating system can then perform some operation on the oversampled signal

and subsequently downsample the signal to the original sampling frequency. If the

oversampled frequency is a multiple of the original by a factor of n, downsampling

is trivially performed by selecting every nth sample. The oversampling frequency

being a non-multiple can introduce distortion into the digitized signal. This method

provides the same signal sampling rate and bandwidth as current designs.

Digital anti-aliasing filters can employ oversampling to attenuate touchtone aliases

while minimally altering other information applications may desire. The key is that

the filters can remove any information above the original sampling rate’s Nyquist fre-

quency without affecting legitimate (i.e., not touchtone alias) data as seen in Fig 6.5.
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Figure 6.5: Digital anti-aliasing filters can attenuate more touchtone aliases than a
low pass filter without reducing available bandwidth due to the use of oversampling.
In the example with a sampling rate of fS = 400Hz, fN = 200 Hz, and fc =
180 Hz, touchtone aliases (numbered 1 to 8 to correlate with the eight touchtone
frequencies in the blue box) are attenuated if filtered (diagonal red-lined area) and
otherwise unattenuated (green area). (a) A digital low-pass filter may be unable
to attenuate many touchtone frequency aliases without also eliminating significant
frequency information benign applications may rely on (Section 6.3.2.2). (b) A digital
anti-aliasing filter with the same fc can filter more frequencies due to the use of
oversampling (Section 6.3.3.1).

Due to the non-linear nature of aliased frequencies, with oversampling the touchtone

aliases may fall into range and can be attenuated without affecting benign informa-

tion. This is not a panacea, however, as aliases of sensitive information may still

be in the original sampling range, but such a design can attenuate touchtone aliases

without attenuating information that applications may expect.

6.3.3.2 Mitigations for targeted sensitive frequencies

When there is a case of known sensitive signals with specific frequencies, such as in

the case of mitigating touchtones, one can use frequency-specific mitigation designs

such as notch filters and selective sampling frequencies in combination with anti-

aliasing or other filtering techniques. A notch filter is a digital or analog filter design,

similar to the high and low pass filters in Section 2.2, that attenuates information with

frequencies between two cutoff frequencies. One could design multiple notch filters to

attenuate targeted sensitive frequencies such as the eight touchtone frequencies.

Another approach is to use an anti-aliasing design while carefully selecting the
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Figure 6.6: A mitigation designer desiring to attenuate the most touchtone aliases
using the lowest sampling rate fS when given a bandwidth fc to support can make use
of the non-linear but predictable nature of aliased frequencies. As the oversampled
rate increases, the number of aliased frequencies above fc will change. The designer
can calculate this number of attenuated aliases then select an appropriate sampling
rate to meet design constraints.

sampling frequency to maximize the number of targeted sensitive frequencies above

fN (Fig 6.6). The basis for this lies in the non-linear relationship between signal

frequency, sampling frequency, and the alias frequencies as seen in Section 2.2. One

can set the filter cutoff frequency fc to design for the desired bandwidth. Then, the

designer could change the sampling rate until a desired number of aliases fall above

fc so they can be eliminated. This could allow a mitigation designer to select lower

sampling frequencies that result in greater protection from touchtone leakage.

6.4 Experimental Method

We recorded and used a custom machine learning classifier to recognize touchtone

samples on multiple phones with and without mitigations in place. Our machine

learning classifier mimics advanced adversaries using a variety of time and frequency

features along with selective axis integration as explained in Section 6.2.2. We im-

plemented and tested four software-based signal processing mitigations.
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Figure 6.7: Data collection setup in conference room

6.4.1 Data Collection

6.4.1.1 Hardware

We have three different hardware setups for motion sensor data collection. The

first two setups collect data from the four Android phones listed in 6.1 for baseline and

software-only mitigation evaluation; these two setups differ only in physical locations:

a quieter conference room versus a noisy server room. The conference room was next

to a busy atrium with the door closed to mimic a conference call setting, while the

server room was chosen to mimic a noisy environment measured at an average of

67 dB SPL as measured by a General DSM403SD sound level meter [142]. Each

setup used an Intel NUC running Ubuntu 18.04 [63] as a base station, smart-phones

(Table 6.1), cables, and base station peripherals on a table (Fig 6.7). In this setup, the

acoustic speaker was a phone’s loudspeaker and the motion sensors (accelerometer and

gyroscope) were the same phone’s sensors. The base station used a python API for

the Android Debug Bridge [33] to upload a custom Android data collection program

to each phone and for other communication or file transfer.

The third hardware setup collects data at faster sampling rates for anti-aliasing

software filters and for testing on-board sensor anti-aliasing filtering. Phone hardware
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Manufacturer
and Model

Release
Date

Reported
IMU Model

Sampling Rate (Hz)
Reported Measured

Google Pixel 1 Oct 2016 BMI160 400.00 401.69
Google Pixel 2 Oct 2017 LSM6DSM 400.00 409.96
Samsung Galaxy S8 Mar 2017 LSM6DSL 400.00 429.27
Samsung Galaxy S9 Mar 2018 LSM6DSL 415.97 413.61

Table 6.1: Reported inertial measurement unit (IMU) model, which contains both an
accelerometer and gyroscope, and sampling rates are found via the Android Debug
Bridge tool. Note that the sampling rates are limited by the operating system, and
not sensing hardware.

can collect at rates faster than what is made available to applications in smartphones

to limit power consumption. Although current phones do not support it, we test

it with external sensors to emulate possible future mitigation. To that end, our

setup uses LSM9DS1 breakout boards, a very similar chip to the ones in three of the

phones (Table 6.1), a Teensy 3.6 microcontroller, the same Intel NUC base station

as in the previous setup, and an external speaker connected to the NUC to produce

audio. The speaker was placed 10cm away from the LSM9DS1 breakout board. A

python program was used to produce audio on the speaker and interface with a custom

sensor collection program on the Teensy micro-controller.

6.4.1.2 Recording

To reduce temporally correlated biases from data collected over a long period of

time, the python3 program running on the base station first determines a randomized

order for all audio samples to record. The program then ensures the proper setup of

all devices for the experiment. It then has the speaker for the experiment play each

touchtone audio clip in succession while recording motion sensor data. In the event

with multiple devices connected to the base station, only one speaker and sensor

were used simultaneously. Motion sensor data was collected at the fastest available

sampling rate and saved and sent back to the base station to save the recording to

disk.
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Figure 6.8: Our system extract signals features and selectively combine useful motion
sensor data from multiple sensors and axes to better classify touchtones.

For each individual setup, we recorded the motion sensor data as each individual

dial-tones was played for 0.5 s, with each tone being recorded 250 times per setting

for a total of 4,000 recordings. The data set was divided into training and test sets

at 80% and 20% respectively. It was ensured that touchtones were divided equally

during the split (e.g., in the test set there were 50 samples of each of 16 touchtones).

6.4.2 Touchtone classifier

6.4.2.1 Selective integration of sensor data

To emulate a more advanced adversary, we build classifiers that selectively in-

tegrate feature data from multiple sensors into a single attack model based on the

intuition that each sensor axis can be a better or worse predictor for a given touch-

tone (Section 6.2.2). Previous work has demonstrated classifiers for acoustic leakage

onto motion sensors [83, 166, 12]; however, to our knowledge no previous work has

combined data from both sensors simultaneously or selectively integrated axes into

a single model. This improvement works as each axis from each sensor carries some

measure of unique information. Selectively combining these sources of unique infor-

mation should yield the best results.
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Our method to selectively integrate axes is as follows. First, the system imperially

ranks the axes in order of best predictor by building a model for each individual axis

and tests its accuracy on validation data. Then the system builds a model with the

most accurate two axes, then top three, etc., until a model with all axes has been

tested. Then the system selects the best performing model among the single-axis and

multi-axis models to use in actual testing. Once the best combination of axes has

been chosen, the axes will be selected in the Axis Selection step shown in Fig 6.8.

6.4.2.2 Features and Classifier Design

We briefly detail the feature extraction and classifier of our touchtone classifier in

this section.

Time-alignment and Windowing: For feature extraction of a sample, our model

first time-aligns signals from different sensors (i.e., sample 1 from one signal correlates

with sample 1 of the others). Subsequently, it divides each time-series signal into a

series of windows. Each window should correlate with windows of other signals.

Extract Statistical Features: The system calculates a series of statistics per win-

dow per selected sensor axis and concatenates these metrics to produce a single feature

vector. The set of statistical measurements (Table 6.2) is similar to previous work [12].

Mean Median Kurtosis Absolute Area % Mean Crossings
Minimum Variance Skew Standard Deviation Interquartile Range
Range Maximum Variation Spectral Entropy Signal Power

Fast Fourier Transform First, Second, Third Quantiles

Table 6.2: A list of features used in classification. The signal would be split into
windows where the above features were calculated.

Zero-padding: The classifier requires feature vectors of equal duration and sub-

sequently an equal number of time windows. However, recordings will often have

slightly different duration due to factors such as experimental error. This imprecision

can result in varying numbers of time windows. The system corrects this by zero
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padding each feature vector to the same length. To perform zero-padding, the system

adds zeros or windows of zeros to shorter samples until all samples have the same

length.

XGBoost Classifier: Our system uses xgboost to classify the extracted features

from the selected axes. Xgboost is a common classifier that uses gradient boosting

and has been shown to effective in several different applications [25].

6.4.2.3 Implementation details and hyper-parameter tuning

The system uses a python3 program to process the sensor recordings and subse-

quently train and/or test recognition models. We utilize numpy, scipy, and other

standard python3 libraries to perform feature extraction as described previously.

The system then uses python3 XGBoost implementation with support libraries from

Scikit-learn to perform any training, validation, or testing of machine learning mod-

els. To select the optimal combination of axes as described previously, the system

would first train separate models for each individual axis. These axes would be then

be ranked by individual accuracy performance. Axes would be added in order of

highest accuracy and evaluated. Last, for these eleven combinations (6 individual

and 5 multi-axis), the system would choose the best performing axis combination and

use that for its model.

To choose specific features and model hyper-parameters, we performed a random-

ized grid search using data collected from a Pixel 2 phone in a conference room to

imperially pick parameters. The randomized grid search did not test every possible

combination of parameters in the interest of time, and thus it is possible more opti-

mal parameters could be chosen. The possible parameters for features and classifiers

are shown in Tables 6.3 and 6.4 respectively with selected parameters shown in bold.

We tested these settings against a commonly used feature set for audio classifica-

tion with Mel Frequency Cepstral Coefficients (MFCCs) [83] and another common
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Feature Setting Possible Choices

Statistic Features
Frame Size (#vals) 10, 20, 50, 100
Frame Step (#vals) 5, 10, 20

MFCC
Window Length (s) 0.025, 0.05, 0.1, 0.2, 0.3, 0.5
Window Step (s) 0.01, 0.05, 0.01

Table 6.3: Feature settings. Settings used in the final model are in bold.

Classifier Setting Possible Choices

xgboost

learning rate 0.05, 0.10, 0.15, 0.20, 0.25, 0.30
max depth 3, 4, 5, 6, 8, 10, 12, 15
min child weight 1, 3, 5, 7
gamma 0.0, 0.1, 0.2 , 0.3, 0.4
colsample bytree 0.3, 0.4, 0.5 , 0.7

Random Forest

bootstrap True, False
max depth 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, None
min samples leaf 1, 2, 4
min samples split 2, 5, 10

n-estimators
200, 400, 600, 800, 1000, 1200, 1400
1600, 1800, 2000

Table 6.4: Classifier Settings. Settings used in the final model are in bold.

classifier with Random Forest [12] to provide a comparison against other commonly

used selections. We took the highest accuracy result to select feature and classifier

settings. These settings stayed the same throughout all testing.

6.4.3 Signal Processing Mitigations

6.4.3.1 Selection

We selected a total of four signal processing mitigation designs to evaluate. Two

designs were chosen due to their mention in previous research as possible mitigations:

a software-only low pass filter and reduced sampling rates. However, our analysis

(Section 6.3.2) projects that both mitigations should have minimal effect on touchtone

leakage without significantly reducing the available information to all applications.
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The low-pass filter used a Butterworth filter design with an order of 5.

The third and fourth mitigations, software and hardware digital anti-aliasing fil-

ters, were chosen to better support application functionality by not reducing band-

width while still attenuating touchtone aliases. The tested software anti-aliasing filter

design is essentially oversampling combined with filtering as shown in Fig 6.5. Specif-

ically, it uses the oversampled data with a Butterworth low-pass filter and we test

various filter orders. The Butterworth filter provides a good balance with only slight

signal distortion and a sharper cutoff. The slight signal distortion means it should

minimally affect applications relying on sensor data while the sharper cutoff means

it should theoretically attenuate aliased signals further. Furthermore, this filter can

be implemented as a software update to any phone but will require some compu-

tational burden and cause some signal delay, which may be unacceptable for some

applications.

The hardware digital anti-aliasing filter refers to the on-board anti-aliasing filter on

the LSD9DS1 breakout board, which should also be included on the LSM6DS(L/M)

sensors on three of the tested phones. This filter should work similarly in theory to

software anti-aliasing filters as they are both digital anti-aliasing filters, but the exact

filter details are unfortunately black-box. The hardware filter benefits by requiring

no computational burden and requiring less signal delay, but has the drawback that

is less configurable and may not be available on some devices. To note, it can be

implemented as a software update should the hardware be available by changing

values in the sensor driver.

6.4.3.2 Implementation Details

Implementation details for our four tested mitigations include:

1. Reduced sampling rate. The reduced sampling rate mitigation uses the

original motion sensor data from the conference room hardware setup, but takes
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1 sample of every n samples to emulate downsampling. We vary n to test

sampling rates from 400 Hz to as low as 50 Hz, with Nyquist frequency and

bandwidth equal to half the sampling rate.

2. Software low-pass filtering. The low-pass filter uses the original motion

sensor data from the conference room hardware setup with an unaltered sam-

ple rate but applied the Python scipy Butterworth filter with an order of 5 for

low-pass filtering. The signal cut-off frequency was varied from 200, 150, 100

to 50 Hz. This cut-off frequency effectively becomes the bandwidth of unatten-

uated information in the signal.

3. Software (digital) anti-aliasing filtering. The software anti-aliasing filter

uses the oversampled data from the sensor breakout board setup and then ap-

plies a scipy Butterworth filter (the same as from the original low-pass filter)

with a cutoff frequency equal to the eventual desired bandwidth. We vary this

desired bandwidth to use as a comparison against other mitigations. The filtered

signal is then downsampled (similar to the reduced sampling rate mitigation)

to the desired bandwidth. We also vary filter order in this evaluation.

4. Hardware (analog) anti-aliasing filtering. The hardware anti-aliasing filter

collects data from the sensor breakout board, changing the sensor’s onboard

filtering settings. There are four bandwidth configurations. The data from the

four configurations are then processed by the classifier.

6.5 Evaluation Results and Analysis

In this section, we report the attack and mitigation results with the setups de-

scribed in Section 6.4. We analyze and summarize the findings of our assessment of

the eavesdropping attack and different mitigations. Software low-pass filtering and
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Figure 6.9: (a) Conference room and (b) Server room hardware setups. For each
phone, we show the accuracy a classification model trained on individual axes alone,
then show the accuracy for the model trained on the optimal combination of axes.

reducing the sensor sampling rate can only moderately mitigate the attack while sig-

nificantly hindering data bandwidth (and thereby application functionality). Software

and hardware digital anti-aliasing filters cannot eliminate touchtone eavesdropping,

but can more significantly mitigate the threat while also preserving more data band-

width.

6.5.1 Baseline evaluation metrics: attack effectiveness

We find that the unmitigated touchtone classifier achieves accuracy exceeding

99% for three of the four phones as shown in Fig 6.9, demonstrating that malicious

applications can effectively recover user input.

6.5.1.1 Differences between phone models

One of the phones, the Pixel 1, performs poorest in nearly every test despite

similar sampling rates as the other phones. The highest touchtone inference accuracy

for Pixel 1 does not exceed 85% while other phones can all achieve over 99%. The
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most obvious explanation would be that it has a different inertial measurement unit

produced by a different manufacturer than all other phones (Table 6.1).

This result demonstrates that factors other than sampling rates can vary recogni-

tion rates. These factors could include a signal propagation path that attenuates the

acoustic signal, less sensitive sensors, different frequency responses, or different sen-

sor configurations. This result also suggests that some motion sensors may be more

resistant to touchtone leakage than others. An examination on which motion sensors

are less susceptible could provide insight into future hardware-based mitigations.

6.5.1.2 Accelerometer vs. gyroscope axis accuracies

Classification based on data from an accelerometer axis achieved higher average

accuracy gyroscope axis data. While the exact reasons remain unclear, we provide

a possible assumption. Accelerometers measure linear acceleration while gyroscopes

measure angular acceleration. The phone’s speakers produce audio through vibration,

and then vibration travels through the phone body to affect both the accelerometers

and gyroscopes. Vibration acts as linear acceleration in this case, which the ac-

celerometer is designed to measure. While the gyroscope is not designed to measure

linear acceleration, its sensing mass(es) still vibrates and these vibrations are quan-

tized. Thus, the intent of each sensor changes the effectiveness of this particular

scenario.

6.5.1.3 Selective integration of sensor axes.

Selective integration of axis data only achieved significantly higher results for one

phone model, the Google Pixel 1, but it did improve accuracy versus a single axis for

all but one case. This case was the test for the Google Pixel 2 in the conference room,

and it could not improve accuracy as accuracy was already 100%. For all phones but

the Pixel 1, the improvement was limited because the results were already near 100%
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accuracy. However, for the Pixel 1 the selective-axis integration improved as much

as 40% over single-axis accuracies. This indicates that in cases with noisier data, the

selective axis integration could help a classifier model utilize the various touchtone

information in each axis to achieve higher accuracies.

6.5.2 Mitigation strategy evaluations

6.5.2.1 Reduced Sampling Rates

The results for the reduced sampling rates mitigation support the theoretical anal-

ysis in Section 6.3.2.1 to show that this approach does not greatly affect touchtone

eavesdropping until sampling rates are reduced significantly (Fig 6.10a). Once again,

this is because touchtone aliases will remain in the digitized signal no matter the sam-

pling rate, and this mitigation affects eavesdropping accuracy by reducing the total

information available (affected functionality of benign applications). More concretely

in our results, the reduced sampling rate does not seem to have much of an effect

until the sampling frequency is roughly 100 Hz, and thus bandwidth reaches around

50 Hz.
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Figure 6.10: (a) Results for the downsampling mitigation with listed bandwidth equiv-
alent to half the used sampling rate. (b) Results for the low-pass filter mitigation
with listed bandwidth equivalent to the cutoff frequency used. Both mitigations do
not greatly reduce touchtone eavesdropping accuracy until bandwidth is under 50 Hz,
which could hinder functionality for benign applications.
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6.5.2.2 Software Low-pass Filter

Our evaluation supports the intuition (Section 6.3.2.2) that software low-pass

filters do not reduce classifier accuracy without significantly reducing available signal

bandwidth. As Fig 6.10b demonstrates, in our tests the touchtone accuracy results

were only minimally affected until a very low 40 Hz cutoff frequency was reached. In

fact in some cases, such as with the Pixel 1’s accuracy results, the average accuracy

improved when using cutoffs of 160 Hz and 120 Hz, which could indicate a large

amount of noise in the 160 Hz to 200 Hz range for that particular phone. However,

for the Pixel 2 the accuracy remained unaffected even at a 40 Hz cutoff frequency.

6.5.2.3 Software and Hardware Anti-aliasing Filter

Our experiments show that anti-aliasing filters are more effective than either

pure low-pass filters or sampling rate reduction. For example, with a cutoff fre-

quency/bandwidth of 100 Hz, the order 5 and 8 software anti-aliasing filters reduce

the touchtone eavesdropping accuracy from over 99% to below 40% (see Fig 6.11),

while neither the pure low-pass filter nor the reducing sampling rate mitigation could

reduce the accuracy to below 80%.
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Figure 6.11: While not completely eliminating the attack, the software anti-aliasing
filter is able to significantly reduce the accuracy of the touchtone eavesdropper and
speech snooper attacks. Additionally, with better hardware implementations (higher
sampling rates), this mitigation could be even more effective while preserving band-
width.
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Both the software and hardware anti-aliasing filter work to some degree, but

neither are perfect mitigations. Most manufacturers may expect a built-in, hardware-

based “anti-aliasing filter” to fully filter aliases without looking into the details. While

somewhat effective, it was the software-based solution we found to work best. We do

not currently know the exact filter parameters of the hardware filter due to the black-

box nature of the design. However, the hardware implementation would likely increase

in effectiveness by increasing filter order, as seen in our software implementation. The

8th order, 200 Hz bandwidth software anti-aliasing filter is likely the best solution

from our experiments as it preserves the 200 Hz bandwidth used by most of our

phones while still having a significant effect on the attacks.

6.6 Discussion

6.6.1 Hardware solutions

Some mitigations embedded into circuitry could serve as long-term solutions. Ana-

log filtering mitigations schemes should work well against touchtone leakage as they

can directly attenuate the original touchtone frequencies before sampling, and there-

fore before aliasing. Additionally, randomized sampling could mitigate some of the

aliasing effects.

6.6.2 Application to other acoustic leakages

This chapter focuses on touchtones, but lessons are largely applicable to other

forms of acoustic leakage. I focus on touchtone leakage as it provides a high-impact,

yet simple signal for attack and mitigation analysis when compared to other potential

targets such as speech. Touchtones are difficult to mitigate due to being intentionally

designed to be easily recognizable in the presence of noise. Other targets, such as

speech, are likely more affected by noise due to signal complexity. Thus, mitigation
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strategies that are effective against touchtones should remain effective against speech.

6.7 Conclusion

This chapter examines how to mitigate recognizable artifacts of touchtones, repre-

senting sensitive user input such as credit card number or selections in an automated

telephony service, from leaking into smartphone motion sensor data. Our experiments

show that an adversary with understanding of relevant physics and signal processing

concepts can use this motion sensor data to recover user input at >99% accuracy.

Some of the more obvious mitigations, such as software low-pass filters or reduced

sampling rates, are ineffective without significantly reducing information available to

all applications. I instead propose software and hardware digital anti-aliasing filter-

ing designs which achieve moderate success and can be implemented as a software

update.
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CHAPTER VII

Discussion

7.1 Transduction Mitigations Applied to Oversensing

Many of the ideas for transduction vulnerability mitigations shown in Chapter III

in Table 3.3 may also apply to oversensing vulnerabilities. Specifically, the transduc-

tion mitigations often apply to the out-of-scope and unintended stimuli categories of

oversensing (Chapter V).

Furthermore, the Transduction Attack Model (TAM) could be used to describe

some vulnerabilities in sensor circuitry for oversensing. For example, take Wal-

nut [143] and the touchtone eavesdropping attack shown in Chapter VI. Both vul-

nerabilities could be described in TAM as using:

[pre-transducer injection] −→ insufficient filtering −→ aliasing

The difference is that while in Walnut the interaction of the acoustic waves and the

transducer is done intentionally, i.e., injection, this same physical interaction occurs

unintentionally for the touchtone eavesdropping attack.

Oversensing and transduction vulnerabilities that share the same or similar phys-

ical causes, i.e., a signal interacting with sensor output, could rely on similar defense

methods. For example, Dolphin Attack [165] describes a transduction vulnerability
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where ultrasonic acoustic waves affect the output of a microphone intended for au-

dible sound. The sound first injects a signal into the circuit via the microphone’s

transducer. Then to complete the attack the adversary makes use of two measure-

ment shaping steps: (1) intermodulation distortion in the transducer and amplifier,

and then (2) filtering to remove traces of the original signal. This transduction vul-

nerability has similarities with user location tracking via ultrasonic beacons [13], an

oversensing vulnerability. The exact signal path in the sensor circuitry for the over-

sensing vulnerability is yet unknown, but one could use (as described by TAM) either

of the below methods to receive ultrasonic information used for tracking:

• pre-transducer injection −→ IMD −→ filtering

• pre-transducer injection −→ aliasing

Thus, using TAM mitigations for IMD, filtering, or aliasing could result in this

oversensing vulnerability being mitigated.

7.2 Attacks Using Both Transduction and Oversensing Si-

multaneously

Transduction and oversensing vulnerabilities are not mutually exclusive, and par-

ticular attacks could be transduction and oversensing simultaneously. For example,

the oversensing attack listed in the previous section, user location via ultrasonic bea-

cons [13], could be thought of as a combined attack. The emitted ultrasonic waves

are essentially a signal crafted to inject a certain pattern in the sensor output, a

transduction vulnerability; this pattern can then be received by the attacker via a

microphone permission, an oversensing vulnerability.

Combining transduction and oversensing vulnerabilities could lead to many possi-

ble attacks, such as covert channels. A transduction vulnerability would allow for an
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adversary to covertly send data. Then an oversensing vulnerability could allow the

adversary to recover this data elsewhere.
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CHAPTER VIII

Conclusion

This dissertation investigates the question of “How is systemic design for sensing

vulnerabilities possible?” While there is still work remaining, the work in this docu-

ment shows how this goal is reachable. It provides language and models to describe

this wide threat space, showing the similarities between many of the vulnerabilities.

Then it provides mitigations patterns, either from existing work or new, to defend

against these classes of vulnerabilities. In summary, this dissertation’s contributions

include:

• Categorizing and analyzing the space of physical sensing vulnerabilities. The

first “categorization” is transduction and oversensing vulnerabilities. Trans-

duction vulnerabilities are then further described and systematized using the

Transduction Attack Model (TAM). Oversensing vulnerabilities can call into

one of several described categories, and adversaries can recover information

in one of several described patterns described in the Oversensing Anti-System

(OA-Sys).

• Mitigation design patterns are provided for both transduction and oversensing

vulnerabilities. TAM was used to systematize past mitigation strategies and

shows how each of these strategies could be applicable to other transduction
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attacks, even across sensor designs. OA-Sys provides patterns to mitigate over-

sensing vulnerabilities for the most common sensing uses in smartphones.

• Detailed case studies are provided for transduction and oversensing vulnerabil-

ities in (respectively) Blue Note and Touchtone Eavesdropping. These chapters

provide intuition on how the high-level concepts and strategies provided in the

other chapters map when applied to specific problems.

Looking forward, the work in this dissertation provides opportunities to advance

the research community and provide practical solutions to manufacturers and op-

erating system designers. The models and language provided in this dissertation

provide methods to describe vulnerabilities for physical attacks on sensors and reveal

the previously opaque problems preventing mitigation. This ability to communicate

and describe both prevents confusion on similarities or differences between research

and illuminates when a vulnerability investigated on one sensor could map to other

sensors.

In addition, this dissertation provides concrete mitigation strategies for many

known physical vulnerabilities on sensors, across both transduction and oversensing

vulnerabilities, in an organized fashion. Manufacturers or operating system designers

will still have to design their specific solution, but this work provides a beginning for

design.

In summary, as sensor systems become ever more prevalent and impactful on

everyday life – driving our entertainment, transportation, manufacturing capability,

and more – I believe this work provides a foundation to address the problems presented

by physical attacks on sensing systems.
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Trends in a Large Disk Drive Population. In USENIX FAST, volume 7, pages
17–23, 2007.

[107] Rahul Potharaju, Andrew Newell, Cristina Nita-Rotaru, and Xiangyu Zhang.
Plagiarizing smartphone applications: attack strategies and defense techniques.
In International symposium on engineering secure software and systems, pages
106–120. Springer, 2012.

[108] Soundarya Ramesh, Harini Ramprasad, and Jun Han. Listen to your key:
Towards acoustics-based physical key inference. In Proceedings of the 21st In-
ternational Workshop on Mobile Computing Systems and Applications, pages
3–8, 2020.

[109] Soundarya Ramesh, Harini Ramprasad, and Jun Han. Listen to your key: To-
wards acoustics-based physical key inference. In Proceedings of the 21st Inter-
national Workshop on Mobile Computing Systems and Applications, HotMobile
’20, page 3–8, New York, NY, USA, 2020. Association for Computing Machin-
ery.

[110] Kasper Bonne Rasmussen, Claude Castelluccia, Thomas S Heydt-Benjamin,
and Srdjan Capkun. Proximity-based access control for implantable medical

159



devices. In Proceedings of the 16th ACM Conference on Computer and Com-
munications Security (CCS), pages 410–419. ACM, 2009.

[111] Brian Rawson and Kent Green. Inert Gas Data Center Fire Pro-
tection and Hard Disk Drive Damage. Technical report, The Data-
center Journal, August 2012. http://www.datacenterjournal.com/

inert-gas-data-center-fire-protection-and-hard-disk-drive-damage/.

[112] Erik Riedel. Personal Communication, January 2018.

[113] Cyrous Rostamzadeh, Flavio Canavero, Feraydune Kashefi, and Mehdi Dar-
bandi. Effectiveness of multilayer ceramic capacitors for electrostatic discharge
protection. In Compliance Magazine, 2012.

[114] Nirupam Roy, Haitham Hassanieh, and Romit Roy Choudhury. Backdoor:
Making microphones hear inaudible sounds. In Proceedings of the 15th An-
nual International Conference on Mobile Systems, Applications, and Services
(MobiSys), pages 2–14. ACM, 2017.

[115] Nirupam Roy, Sheng Shen, Haitham Hassanieh, and Romit Roy Choudhury.
Inaudible voice commands: The long-range attack and defense. In Proceedings
of the 15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI), pages 547–560. USENIX Association, 2018.

[116] Seref Sagiroglu and Gurol Canbek. Keyloggers: Increasing threats to computer
security and privacy. IEEE technology and society magazine, 28(3):10–17, 2009.

[117] Yasser Shoukry Sakr. Security and Privacy in Cyber-Physical Systems: Physical
Attacks and Countermeasures. PhD thesis, UCLA, 2015.

[118] Jerome H Saltzer and Michael D Schroeder. The protection of information in
computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.

[119] Derek Sandahl, Alan Elder, and Andrew Barnard. The Impact of Sound on
Computer Hard Disk Drives and Risk Mitigation Measures. Technical report,
Tyco, Michigan Technical University, 2015. https://www.ansul.com/en/us/

DocMedia/T-2016367.PDF.

[120] Jayaprakash Selvaraj. Intentional Electromagnetic Interference Attack on Sen-
sors and Actuators. PhD thesis, Iowa State University, 2018.
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