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ABSTRACT
A recent national survey suggests that the HIPAA privacy
rule has not only failed to preserve patient privacy ade-
quately, but also has had a negative impact on clinical re-
search. Our work suggests that researchers revisit the possi-
bilities of homomorphic encryption and apply the techniques
to secure aggregation of medical telemetry. A primary goal is
to maintain the privacy of individual patient records while
also allowing clinical researchers to have flexible access to
aggregated information.

We discuss the preliminary design of HICCUPS, a dis-
tributed system that uses homomorphic encryption to allow
only the caregivers to have unrestricted access to patients’
records and at the same time enable researchers to com-
pute statistical values and aggregation functions across dif-
ferent patients and caregivers. In the context of processing
medical telemetry, we advocate expressibility of aggregation
functions more than fast computation as a primary metric
of system quality.

Categories and Subject Descriptors
K.4.1 [COMPUTERS AND SOCIETY]: Public Policy
Issues—Privacy ; D.4.6 [Security and Protection]: Infor-
mation flow controls; K.4.1 [COMPUTERS AND SO-
CIETY]: Public Policy Issues—Regulation

General Terms
Security, Design, Legal Aspects
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1. INTRODUCTION
A recent national survey [24] concluded that the HIPAA

privacy rule was perceived by clinical researchers as having a
substantial negative influence on research activities. More-
over, only a quarter of the participants perceived that the
rule has enhanced patients’ confidentiality and privacy de-
spite lawmakers’ efforts to protect patient privacy. Gostin
and Nass argued in a follow-up paper that HIPAA’s failure
to protect patient privacy may be due to coverage gaps, in-
consistencies, and variable interpretations of the rule [16].
As a consequence, Gostin and Nass made the case for a re-
form to HIPAA to enhance the way privacy is safeguarded
while promoting research. They suggested that a new ap-
proach should emphasize data security; transparency and
accountability; should facilitate the use of de-identified data,
and should clarify the distinctions between research and
practice, avoiding the current inconsistencies and variable
interpretations.

We argue that, before resorting to the use of such de-
identified data, the strengths and limitations of computing
on encrypted data should be re-examined in the context of
medical telemetry. To this end, we introduce HICCUPS, the
preliminary design of a system that uses homomorphic en-
cryption to cryptographically protect patient privacy while
enabling more open discovery of aggregated results (Sec-
tion 3). Our primary contributions in this early-stage study
include:

• Motivating research to enable medical device manufac-
turers and health researchers to increase availability of
statistical data while protecting patient privacy and
minimizing the potential exposure of large collections
of sensitive information.

• Introducing an application of homomorphic encryption
schemes for computing statistics on aggregated medi-
cal telemetry.

In addition, we suggest a way in which HICCUPS could
facilitate the proper recording of pacemaker and ICD mal-
functions in a way that researchers could access without
compromising the privacy of patients (Section 5). We believe
that because of the delay-tolerant nature of many studies us-
ing medical data, expressibility of aggregation functions will
serve as a more important evaluation metric than speed of
computation so long as computation demands are not exces-
sive.
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Figure 1: The figure illustrates the data flow that
prevails currently. Patients upload their telemetry
to the manufacturer’s servers, from which it is made
available to caregivers for analysis.

1.1 Complexities of Aggregating Medical Data
Today, preserving privacy of aggregated medical data of-

ten focuses on manual removal of personal information or
rigid processing of data by highly trusted information bro-
kers. While such systems can work well on a small scale,
drawbacks include the ad-hoc nature of manual redactions
and the trusting approach to putting all power in the hands
of a single entity that could be compromised. Our approach
to secure aggregation instead maximizes privacy of individ-
ual data without reducing the utility of aggregate informa-
tion that could identify trends and system-wide causes of
disease, procedural mistakes, or device malfunction.

Medical telemetry generated by home monitoring is an
example of an instance in which patient privacy could be at
risk due to current practices that do not limit the amount of
data given to device manufacturers. There is also no formal
infrastructure to allow clinical researchers to gain access to
key pieces of data of a statistical nature. The trend toward
remote monitoring allows patients with implanted devices
to ensure proper functioning without the inconvenience of
having to travel frequently to a clinical office. The current
mechanism employed to make this remote monitoring pos-
sible involves sending all of the medical telemetry directly
to the manufacturers which then make it available to a pa-
tient’s caregiver remotely (Figure 1).

Patient privacy could be greatly improved over present-
day methods of data collection. For instance, the data dis-
tribution model need not allow manufacturers to have access
to all the data in a device in order to provide service to the
patient. In fact, making it easier to access de-identified data,
as proposed by Gostin and Nass [24], may still pose unan-
ticipated problems. For example, Biel et al. [3] showed that
it is possible to identify an individual in a predetermined
group by using ECG data. Moreover, centralized locations
that even briefly have access to unencrypted data create sin-
gle points of failure where entire national databases could be
compromised by clever hackers or conspiring insiders. As an
alternative, HICCUPS proposes that both device manufac-
turers and clinical researchers be able to obtain the informa-
tion that they need about the data, via computing aggregate
functions on encrypted data.

1.2 Background on Homomorphic Encryption
Secure aggregation keeps input values encrypted in databases.

Moreover, inputs are never decrypted—enabling a strong
notion of privacy. But what use is input if it is never de-

crypted? Modern cryptography allows for computation on
encrypted values. This seemingly impossible idea is made
possible by a 1970s technique known as homomorphic en-
cryption [26] that became popular in the 1990s for secure
tallying of encrypted votes [25, 12]. Algorithms from num-
ber theory allow arithmetic on encrypted data.

The beauty of homomorphic encryption is that the infor-
mation aggregator need not be trusted. That is, the aggre-
gator could not easily violate individual patient privacy in
a mathematically provable sense. The scheme would pre-
vent rogue insiders from violating privacy and would pre-
vent accidental leakage of private information. The tradeoff
is that homomorphic encryption requires sophisticated com-
putation on a modern computer, which we believe is feasible
on commodity hardware for workloads common to medical
telemetry.

The potential of computing on encrypted data has promis-
ing theoretical results, especially after the recent findings of
Gentry [12] that prove fully homomorphic encryption schemes
can be implemented using lattices. This discovery suggests
that the research community may be close to extending the
capabilities of this technique to essentially allow arbitrary
computations on encrypted data.

2. MODELING ACCESS TO AGGREGATED
MEDICAL TELEMETRY

This paper focuses on the problem of making medical
telemetry available to medical device manufacturers and clin-
ical researchers in a way that protects patient privacy. This
section lists some desired properties for a solution to this
problem.

Our assumption is that direct caregivers need access to all
of a patient’s medical data in order to perform proper treat-
ment. Under this assumption, there is an unrestricted data
flow between patients and their direct caregivers. In such
a model, multiparty computation techniques can be applied
to allow distinct caregivers to compute collective answers
to queries posed by clinical researchers and manufacturers
(Figure 2).

For simplicity, we will avoid the problem of a patient hav-
ing multiple caregivers in this model. In principle, multi-
ple associations could lead to false aggregates due to du-
plication. However, such a situation can be addressed by
requesting that each patient has only one caregiver that re-
ports data on his behalf.

The queries required by researchers and manufacturers
can be classified into the following types:

1. Selective individual disclosure: Queries to ob-
tain a list of records. This type of query would
present the problem of returning a set of records that
match a set of criteria from data distributed across the
set of caregivers {C1, C2, . . . Cn}. The result of such a
query can be seen as a matrix, the rows of which are
the union of the rows of the sub-matrices that each of
the caregivers returns to the query posted. For exam-
ple, a query could request the age, gender and number
of critical events in a given month for all the patients
that have an ICD and that use a home monitor nation-
wide. Then each caregiver Ci would return a matrix
(query table) with three columns and as many rows
as patients are being treated by Ci. The final result
to the query should be a union of all these records.
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Thus the result can be thought of as a matrix with
the same three columns and with as many rows as the
total number of relevant records found nationwide.

2. Queries to obtain aggregated disclosures. This
type of query would present the problem of computing
an aggregate function on data distributed across the
set of caregivers {C1, C2, . . . Ck} while preserving the
privacy of the data between any two different care-
givers.

The main focus of this paper is to design a system us-
ing homomorphic encryption to address the queries of the
second type (aggregation), which are posed when clinical
researchers and device manufacturers need to compute ag-
gregates and other similar statistical information. We rec-
ognize that the objectives for obtaining the data may differ
between clinical researchers and device manufacturers, and
it is important to note that this model requires that both re-
searchers and manufacturers specify clearly and openly the
kind of information that they require.

Answering a query of the first type requires a different
approach. Further discussion of this point appears in related
work (Section 7).

2.1 Threat Model
The goal of HICCUPS is to prevent unnecessary disclo-

sure of large collections of medical telemetry. We assume
that locations with transient access to plaintext records (e.g.,
caregivers) are relatively small collections such that a com-
promise will result in only localized disclosure of informa-
tion rather than system-wide, catastrophic disclosure. The
threat model for HICCUPS considers both external and in-
ternal adversaries. For instance, an external hacker who
gains unauthorized access to a machine should cause at worst
a localized disclosure of patient information. An external en-
tity should not be able to cause a catastrophic disclosure of
the entire collection. Potential insiders include medical re-
searchers and aggregators. When these players follow the
established protocol, we expect proper availability of infor-
mation. However, if the players act maliciously they should
not be able to compromise the entire system but at worst de-
lay the availability of information. In our model, caregivers
are fully trusted by their corresponding patients. That is,
caregivers are not considered potential insiders but are po-
tential targets of external adversaries.

2.2 HICCUPS Desired Properties
In order to answer queries for aggregated information, it is

necessary to solve the problem of computing aggregates from
encrypted values using the public key Rp of a researcher R
by caregivers {C1, C2, . . . Ck}. Desirable properties for such
a solution include:

1. Anonymity of Data Provider. Given a set of ci-
phertexts {EncRp(a1),EncRp(a2), . . . ,EncRp(ak)} pro-
vided by a set of entities {Cj}, the probability of de-
termining that EncRp(ai), for a given i, was computed
by Cj for some j should differ by a negligible quantity
from guessing this association.

2. Distributivity. It is important to emphasize that
a proposed solution should be implemented using a
distributed model as opposed to a centralized model.

Patient 1
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Patient n

. . .

Caregiver 1

Caregiver 2

DB

DB
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Manufacturers Aggregator

DB

Query

Response

Figure 2: A researcher or manufacturer needs to
compute an aggregate function from data across var-
ious caregivers. The query can be handled by an ag-
gregator chosen among the caregivers that computes
on encrypted data.

A centralized approach would give too much power to
the holder and would create a single point of failure.
As discussed by Jefferson et al. [20] centralized systems
introduce several privacy risks in voting systems [19]
for example.

3. Semantic security. A final implementation of HIC-
CUPS should be done using an encryption system that
is semantically secure to avoid chosen plaintext at-
tacks, as will be discussed in more detail later (Sec-
tion 7.3).

3. DESIGN OF HICCUPS
Homomorphic encryption schemes have for decades been

successfully applied to several problems exploiting the fact
that at least addition or multiplication commute with the
encryption algorithm.

This section shows how having an encryption scheme with
the homomorphic property may provide an answer to the
problem of computing aggregate functions with data that
is distributed among various caregivers. Furthermore, some
sample aggregation functions that can be computed using
the homomorphic property are discussed (Section 4). Fi-
nally, how having a singly homomorphic encryption allows
us to compute interesting functions is discussed. The num-
ber of functions that can be computed using this technique
is dramatically extended if instead a fully homomorphic en-
cryption is used.

Unless stated otherwise, we assume the existence of a pub-
lic key infrastructure with a semantically secure homomor-
phic encryption scheme with key generation algorithm, en-
cryption algorithm and decryption algorithm (Gen,Enc,Dec
respectively).

Under the assumption that direct caregivers should have
access to all of a patient’s medical data in order to perform
proper treatment, it is possible to propose a model in which
patients give all of their medical data to their caregivers. In
this model, there could be various patients’ data clustering
around caregivers. The tasks of computing aggregates across
caregivers in order to answer the questions of manufacturers
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Figure 3: The aggregator is chosen at random to
eliminate the probability of a compromised aggrega-
tor systematically leaking data. The rest of the care-
givers compute sub-aggregates which can be com-
bined by the aggregator to produce a total aggregate
for the manufacturers and researchers.

and researchers could then be thought of as a multiparty
computation (Figure 3).

Let us consider the problem of computing a publicly known
aggregate function f for a variable x with data distributed
among a set of caregivers {C1, C2, . . . , Ck} from sub-aggregates
a1, a2, ..., an, pre-computed by the caregivers Ci. That is,
f(a1, a2, ..., an) is the aggregate value needed for the pub-
licly known function f . In Section 4, we show how such
aggregates can be combined to compute functions such as
sample mean, sample variance, maxima, linear regression,
and sample correlation.

A global aggregate could be computed as follows:

1. Request for an aggregate. A researcher R inter-
ested in computing a global aggregate submits the re-
quest specifying one of the possible aggregate functions
f . For example, the function could be a simple aggre-
gate sum f(xij) =

P
i,j xij , over a defined set of values

xij distributed among all the set of participant care-
givers {Ci}.

2. Selection of an aggregator. All the caregivers run
a distributed algorithm to determine a random aggre-
gator within the set of participant caregivers {Ci}. At
the end of this step, one of the participant caregivers
is designated the aggregator for the request. We will
denote this aggregator by A. Note that having a fixed
aggregator could lead to an attack in which the pri-
vacy guarantees could be reduced to essentially those
of handing over the sub-aggregates per caregiver di-
rectly to the researcher R. This may be undesirable,
for example, if a query is asking for the age of the
oldest patient in a group distributed nationwide. By
exposing sub-aggregates, the researcher would obtain
not only the age, but also potentially the name of the
patient’s caregiver. The selection of an aggregator ran-
domly can be done using distributed techniques similar
to those proposed by Kapron, et al. [21].

3. Computation of sub-aggregates. Each caregiver
Ci receives the request and computes its corresponding
sub-aggregate ai and encrypts it first using the public
key of the researcherRp, and then using the public key
of the aggregator Ap. The caregiver Ci can then use,

for example, a bulletin board style protocol to share
the encrypted result EncAp(EncRp(ai)). Coming back
to our example, the caregivers would create the ais
such that

P
i ai =

P
i,j xij , but would not send the

ais unencrypted.

4. Unwrapping. The caregiverA chosen to compute the
aggregate obtains the encrypted values {EncRp(ai)}
by decrypting the first layer of
EncAp(EncRp(ai)) for each i. This is needed to ensure
that only the designed aggregator A is able to compute
the aggregate. A complimentary technique can be used
to ensure participation; for example, the outer wrap
can be signed by the corresponding caregiver.

5. Aggregation. The caregiver A computes
f∗(EncRp(ai)), where f∗ can be obtained from f us-
ing the homomorphic property. Subsequently A de-
stroys each individual EncRp(ai). Implicitly, this as-
sumes that the majority of the caregivers are honest.
If that were not the case, and the majority of the care-
givers were willing to forward the individual EncRp(ai)
then the probability of falling victim to an attack like
the one in the case of having a fixed aggregator could
not be considered negligible. However, this assump-
tion may not be unrealistic, given that if the major-
ity of the caregivers were dishonest, there would po-
tentially be greater privacy concerns. Also note that
the aggregator was not in the position to learn any-
thing about the sub-aggregates from the other care-
givers since the sub-aggregates were encrypted using
the researcher’s public key. In our example f∗ corre-
sponds to adding encrypted aggregates with the oper-
ation ⊕, while f corresponds to addition of plaintexts,
thus f∗(EncRp(ai)) = ⊕iEncRp(ai).

6. Handing over. The aggregator A returns the en-
crypted aggregate value EncRp(f(ai)) to the researcher
R, which can be decrypted using its corresponding se-
cret key Rs.

Note that in an alternative approach this aggregation could
be done by encrypting each of the values {EncRp(xi,j)} dis-
tributed among caregivers C1, C2, . . . , Ck, where xi,j is a value
known to Ci and j ranges from 1, . . . , ni the sample size in
Ci. However, in the case of computing aggregates for medical
data nationwide this could potentially involve transmitting
millions of values to the aggregator A, instead of sending
only one sub-aggregate ai per caregiver. Thus, the proposed
approach could potentially avoid a large unnecessary over-
head.

4. COMPUTING AGGREGATES
This section gives some examples of how multiple aggre-

gates computed as described in Section 3 can be combined to
calculate common statistical functions. The ability to com-
pute these aggregates is dependent upon whether a singly
homomorphic encryption scheme or a fully homomorphic
scheme is used. That is, whether one or two operations with
ciphertexts with the homomorphic property are performed.
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4.1 Computing Aggregates Using a Singly Ho-
momorphic Encryption Scheme

Consider a homomorphic encryption scheme that is IND-
CPA secure with key generation algorithm, encryption algo-
rithm and decryption algorithm (Gen,Enc,Dec respectively)
and with semigroups of plaintexts and ciphertexts M and C
respectively. That is, the homomorphic property is such
that for m1,m2 ∈ M an a pair of public and secrete keys
Ap,As

EncAp(m1 +m2) =p EncAp(m1)⊕ EncAp(m2)

where ⊕ is the corresponding operation to + on C and
=p denotes indistinguishability of distributions, that is, an
adversary would not be able to tell that EncAp(m1+m2) and
EncAp(m1)⊕EncAp(m2) correspond to the same plaintext,
however

DecAs(EncAp(m1+m2)) = DecAs(EncAp(m1)⊕EncAp(m2))

A randomly selected caregiver computes an aggregate such
as the sample mean and variance of a sample of values {xi,j}
distributed among caregivers C1, C2, . . . , Ck, where xi,j is a
value known to Ci and j ranges from 1, . . . , ni, the sam-
ple size in Ci. This procedure does not require the actual
knowledge of the values {xi,j}. Instead the knowledge of
appropriate encrypted sub-aggregate values suffices, as will
be shown next.

In this case, the mean of xi,j over all Cis is given by

x̄ =

Pk
i=1

Pni
j=1 xi,jPk

i=1 ni

And the variance of the sample is given by

s2 =

Pk
i=1

Pni
j=1(xi,j)2 −

(
Pk

i=1
Pni

j=1 xi,j)2Pk
i=1 ni

(
Pk

i=1 ni)− 1

Now, if we denote ai =
Pni

j=1 xi,j , and

bi =
Pni

j=1(xi,j)2 then the formulas can be rewritten as:

x̄ =

Pk
i=1 aiPk
i=1 ni

and

s2 =

Pk
i=1 bi −

(
Pk

i=1 ai)
2Pk

i=1 ni

(
Pk

i=1 ni)− 1

Thus, given the additive homomorphic scheme, researcher
R can compute these aggregates preserving privacy as fol-
lows: In order to compute aggregates such as the mean
and the variance, the aggregator A first collects the en-
crypted values of ai, bi, ni (using the public key, Rp of the
researcher R) from the caregivers. More explicitly, if each
of the Cis provides EncRp(ai), EncRp(bi), and EncRp(ni),

then the aggregator A computes a =
Lk

i=1 EncRp(ai), b =Lk
i=1 EncRp(bi), and n =

Lk
i=1 EncRp(ni) and sent these

three values to researcher R. Finally, the researcher R, us-
ing the corresponding secret key Rs, would simply compute:

x̄ =
DecRs(a)

DecRs(n)

since we know that

kM
i=1

EncRp(ai) =p EncRp(

kX
i=1

ai).

Similarly,

s2 =
DecRs(b)− DecRs (a)

DecRs (n)

DecRs(n)− 1
.

These ideas can be extended to compute a linear regres-
sion y = β0 + β1x and a sample correlation rxy. That is,
since the problem of estimating β0, and β1 can be obtained
from the sums:

P
x,

P
x2,

P
y,

P
y2, and

P
xy as follows:

β1 =

P
y ·

P
x− n ·

P
xy

(
P
x)2 − n · (

P
x2)

and

β0 =

P
x ·

P
xy −

P
y

P
x2

(
P
x)2 − n · x2

and

rxy =
n ·

P
xy −

P
x

P
yp

n ·
P
x2 − (

P
x)2

p
n ·

P
y2 − (

P
y)2

It may also be useful to compute maxima or minima. The
following shows how to compute maxima; the computation
of minima is completely analogous. While this described
method is not optimal, it serves to illustrate the feasibility
of computing such functions using aggregates.

In order to compute a global maximum for a variable
among a set of caregivers {Ci}, the problem must first be
redefined in a convenient way. In particular, it will be neces-
sary to have an idea of the range (rmin, rmax) and precision
d for these values. For example, if it were required to find
the maximum temperature for all the patients meeting cer-
tain conditions, one could specify the range to be between
35 and 48 degrees Celsius. Also, precision may need to be
obtained up to one decimal place, for instance.

Given these two values, one can define a vector with l
entries where l is equal to the number of intervals of size
d in the interval (rmax, rmin), or simply l = rmax−rmin

d
if

rmin, rmax ∈ Z. Then each of the entities in {Ci} can return
a vector

vi = (EncRp(c0), . . . ,EncRp(cj), . . . ,EncRp(cl−1))

where cj = 1, if rmin + cj is the maximum value within the
caregiver Ci’s data, and cj = 0 otherwise.

By adding the vectors {vi} across caregivers, we obtain
a vector v =

P
i vi such that the last non-zero entry of

the decrypted vector DecRs(v) (decrypted entry by entry)
corresponds to the global maximum.

This approach would require the computation of l sum ag-
gregations, and, therefore, the complexity of this algorithm
increases linearly with the number of possible values for the
maximum. This complexity can be greatly reduced by using
a typical tree-like approach to determine if the maximum
is on the left or on the right of a given interval. That is,
one can run this aggregation scheme with only two possible
values for the maximum, implementing it so that the par-
ticipant caregivers return either one or the other as being
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closer to the maximum. After one side has been chosen, the
algorithm would be used recursively on this selected subin-
terval to again determine if the maximum is on the left or
on the right side of the interval until the desired precision
has been achieved. While this approach would require a log-
arithmic number of sum aggregations on l, there would be
an overhead in the communication caused by multiple pro-
tocol interactions. Therefore, a detailed complexity analysis
of both methods would have to be evaluated through im-
plementation. This analysis could be undertaken in future
work.

4.2 Computing Aggregates Using a Fully Ho-
momorphic Encryption Scheme

As shown in section 4.1, some interesting functions can
be computed when the homomorphic scheme holds for one
operation. Let us now consider a fully homomorphic en-
cryption scheme that is IND-CPA secure with key genera-
tion algorithm, encryption algorithm and decryption algo-
rithm (Gen,Enc,Dec respectively) and with sets of plain-
texts and ciphertexts M and C respectively with ring struc-
tures. Then, the homomorphic properties are as follows: For
m1,m2 ∈M and a pair of public and secret keys Ap,As,

EncAp(m1 +m2) =p EncAp(m1)⊕ EncAp(m2)

and

EncAp(m1 ·m2) =p EncAp(m1)� EncAp(m2),

where (+, ·) are the operations in M, and (⊕,�) are the
corresponding operations on C. And, =p denotes indistin-
guishability of distributions.

Then, as was briefly mentioned earlier, having this struc-
ture expands dramatically the type of functions that can be
computed. In particular, one can see that matrix multipli-
cation on matrices with encrypted data is easy to compute.
This would allow the computation of multiple regression
models, for example. The challenge, however, is to elimi-
nate the need for communicating the large matrices to an
aggregator, and instead, think of subdividing the problem
into smaller problems that each of the caregivers can com-
pute separately.

5. PRACTICAL APPLICATIONS
This section presents some real-world telemetry applica-

tions that would benefit from the implementation of HIC-
CUPS. These examples show that even basic statistical ag-
gregations could solve important problems when they are
computed on data-sets that are distributed among multiple
institutions nationwide and that may contain private infor-
mation.

5.1 Pacemaker and ICD Reliability Studies
The way in which pacemaker and ICD malfunctions are

recorded does not allow for the determination of the fre-
quency of failure of a particular device model. That is, while
there have been studies that attempt to measure the relia-
bility of these devices, the studies are limited by the fact
that malfunctions are only included in the records if the
malfunction results in a device replacement.

For example, in 2006, cardiologist Dr. William Maisel [22]
published a meta analysis of pacemaker and ICD registries

to assess the rates of pacemaker and ICD malfunctions in
order to be able to identify trends in the reliability of these
devices. The analysis included data from various interna-
tional registries. One of the most important limitations of
the analysis as described by the author was that the mal-
functions of these devices are underreported because most
often the malfunctions are reported only when a replace-
ment is made. Therefore, the study could not determine the
true clinical implications of device malfunctions that did not
require device replacement.

Another similar study also aimed at counting the malfunc-
tions of pacemakers and ICDs examined data from multiple
years included in the annual reports of the Federal Drug
Administration of the US [23]. The authors of this study
pointed out that the database registries that monitor the
performance of these devices are limited primarily by their
small size or by their voluntary nature. Additionally, while
manufacturers do provide performance reports, historically
these have not contained comprehensive information about
the number of device malfunctions or the rate of or reasons
for malfunction. The authors noted yet again that the study
only accounted for malfunctions that were significant enough
to warrant device replacement. One of the conclusions of
this study was that the FDA should require more thorough
monitoring of postmarket performance by manufacturers for
selected devices, including pacemakers and ICDs.

Both of the studies cited above concluded that ongoing
surveillance of pacemaker and ICD performance should be
required. We argue that a system like the one described
in this paper could allow institutions such as the FDA to
conduct reports that provide a more detailed aggregation
of device malfunctions including device model numbers and
types of malfunction.

Additionally, the data-sets made available using this model
could be larger, and the aggregation could potentially be
computed more frequently and in an automated way. Fur-
thermore, if manufacturers published their parameters for
identifying a malfunctioning device without extracting them
from the patient, then not only the caregiver but also the
FDA, would be able to react to reliability or safety issues.
For example, the FDA would be in a better position to issue
recall information.

5.2 Identifying the Impact of Low Income on
Preterm Birth Risk

This year the Center for Democracy and Technology in
the US published a document to encourage the use of de-
identified and anonymized health data and to rethink the
protection of this data by regulations such as the HIPAA
Privacy Rule [27]. This document notes that one of the
common uses for this kind of data is research. In particu-
lar, the document mentions as an example that de-identified
data has been used to perform research on the prevention of
premature births.

One such research study, performed by DeFranco, et al.
studied the effect of living in a socioeconomically deprived
area on the risk of preterm births [10]. In this study, a num-
ber of counties in Missouri were identified as being below
the US poverty line based on census information. These
counties were then classified according to various levels of
poverty. The number of pregnancies that resulted in various
periods of preterm birth were counted using de-identified
records, and the aggregates were analyzed. The study con-
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cluded that women residing in socioeconomically deprived
areas are at an increased risk of having a preterm birth,
above other underlying risk factors.

We argue that our system could help in the validation
or extension of this analysis to regions all over the nation.
That is, the homomorphic techniques described in this paper
could allow researchers to aggregate the number of preterm
births in various counties across the nation that are below
the US poverty line. These aggregates could also be com-
puted for different preterm birth periods and then analyzed
to determine the impact of low income conditions.

6. DEFINING EVALUATION METRICS
As mentioned early in this paper, this work is a prelim-

inary attempt to learn the problems and limitations that
arise when trying to employ homomorphic encryption tech-
niques to aggregate medical telemetry. It is tempting to ask
questions regarding the performance of a system implement-
ing these techniques. This section would like to argue that
finding good performance metrics for evaluating a solution
to this problem is in itself an achievement.

It is well known, for instance, that in biomedical image
analysis, processing a single fMRI brain image may take a
few hours or even more if processing the image requires tasks
such as manual skull stripping or manual selection of areas of
interest by an expert. At other times, gathering the appro-
priate medical data to perform research involves contacting
multiple institutions and having different IT departments
gather the data according to multiple parameters. This task
would probably take days at best. Therefore, running time
of homomorphic encryption likely should not serve as the
primary metric of quality given that instantaneous results
are not expected.

6.1 The Case for Expressibility
The last observation suggests that if gathering medical

telemetry for research purposes using homomorphic tech-
niques does not require days of processing, then computa-
tion time may not be the only performance metric, or even
an important one.

In fact, we believe that determining the extent to which a
system like HICCUPS is useful should involve measuring its
expressibility. That is, if a system allows the computation
of only one type of aggregate, then the capability to express
an aggregate problem is limited. On the other hand, if a
system allows the computation of most types of aggregates,
or even further, most types of functions on aggregates, this
would mean that the capability of expressing an aggregate
problem is high.

From this perspective, we recognize that this paper just
scratches the surface in an attempt to determine the express-
ibility of HICCUPS. That is, while throughout this paper we
have discussed the various advantages that would result from
having a system such as HICCUPS, we have also pointed out
that there are essentially two major limitations.

The first of these is that researchers or institutions that re-
quire the computation of aggregates must define the kind of
aggregates that they need beforehand. We acknowledge the
dynamic nature of science, and recognize that it is possible
that the types of questions that researchers need to answer
may change substantially. For this reason, we feel that it
would be beneficial to characterize the nature of the dif-
ferences between the questions that health researchers ask.

Additionally, it would be compelling to determine the ex-
tent to which it is possible to define a framework that would
enable the formulation of all of these different questions.
The framework would have to allow for the computation of
solutions to these questions through a process of finding so-
lutions to a series of more basic “’bulding block” questions.

The second of these limitations is that the existence of
doubly homomorphic encryption schemes was just recently
demonstrated, and issues surrounding their implementation
have not yet been fully explored. For this reason, it would
be important to determine what common statistical ques-
tions require the existence of a doubly homomorphic encryp-
tion scheme as opposed to singly homomorphic encryption
schemes like those assumed for the most part in the above
section (Section 4). It would also be important to know how
often these problems requiring the stronger property arise in
research using telemetry. In other words it would be helpful
to determine the impact of a double homomorphic property
on the expressibility of a system like HICCUPS.

6.2 The Case against Strict CPU Metrics
In order to emphasize the fact that we believe that fu-

ture systems designed with purposes similar to HICUPPS
should not solely be evaluated with computational perfor-
mance metrics, we note that in fact the overhead added by
computing aggregates on encrypted data is minimal in com-
parison to other aspects such as communication costs. To
do this, let us compare the following scenarios for computing
aggregates on medical telemetry.

• Current Practice: With the current infrastructure,
researchers and manufactures acquire statistical data
by accessing patients’ medical data directly. This sce-
nario requires that all relevant data be gathered and
aggregated under the management of one institution.

In the current situation, the manufacturers query the
patients frequently and collect all the patients data.
On the other hand, the researchers must submit their
requests to manufacturers or doctors to obtain the sta-
tistical data—potentially taking months to access ag-
gregated data.

• Distributed aggregation without privacy: An
improvement to the above system would result from
the distribution of the workload among caregivers. A
manufacturer or researcher submits a request for an
aggregate to a designated aggregator. This aggrega-
tor broadcasts the manufacturer’s request to all of the
caregivers. Each caregiver computes the sub-aggregate
of his patients’ medical data and sends back one sin-
gle value to the aggregator. Finally, the aggregator
needs to combine these sub-aggregates into one aggre-
gate value that will be returned to the manufacturer
or researcher. The designated aggregator could be the
manufacturer itself, one of the caregivers, or an exter-
nal entity.

An estimate of the time that is required to compute
an aggregate under this scenario is made up of: the
time needed to submit the request to the aggregator;
the time needed to broadcast the request to the care-
givers; the time caregivers need to compute the sub-
aggregate value; the time needed to transmit and pro-
cess the data from all the caregivers; and finally, the
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time needed to compute and return the aggregate value
to the manufacturer or researcher. If we assume that
the caregivers work in parallel, then the time required
to compute the sub-aggregates can be assumed to be
the maximum time needed by any one caregiver.

• HICCUPS :

In practical terms, the hypothetical performance of
HICCUPS differs from the distributed aggregation sce-
nario mentioned above in that: each sub-aggregate
computed by the caregivers is encrypted using, first,
the researcher’s or manufacturer’s public key and then
using the aggregator’s public key. Additionally, the
aggregator would have to be chosen randomly for each
request.

While we believe that speed of computation should not be
a primary metric of quality, a practical system should not
require excessive computation (e.g., weeks) to accomplish
aggregation.

In order to estimate the computation overhead added by
HICCUPS, we compare the time overhead of our protocol
to the second scenario. There are essentially four pieces of
overhead: the time that it takes to perform two encryptions
of a single value; the time that is needed by the aggregator
to decrypt the first layer of encryption; and the time that
is needed to perform k operations on encrypted data, where
N is the number of caregivers. By operations on encrypted
data we mean, for example, additions on a group of ellip-
tic curve points. Therefore, the performance of HICCUPS
can be estimated by calculating the encryption overhead and
adding it to the performance time of the distributed aggre-
gation scenario above.

HICCUPS could be implemented using a variety of en-
cryption schemes. For the purposes of this hypothetical eval-
uation, we will refer to only two of the more commonly used
encryption schemes that have the homomorphic property.
These schemes are RSA and ElGamal based on ECC.

We use the data provided by Gupta et al. [17] to estimate
the time overhead of HICCUPS due to security in compar-
ison to the second scenario. As Table 1 shows, a manu-
facturer or researcher would need to tolerate only a delay in
order of 100 milliseconds in order to protect the security and
privacy of patients data. Moreover, the addition operation
is about 0.59 µseconds and 0.71 µseconds for ECC-160 and
ECC-224 bits respectively [7].

7. RELATED WORK
Related work on secure aggregation includes research on

information disclosure for queries on encrypted data, ap-
plications of homomorphic encryption to electronic voting,
and advances in understanding the theoretical limits of ho-
momorphic encryption.

7.1 Queries on Encrypted Data
Earlier in this paper we discussed that an alternative ap-

proach to computing aggregates on encrypted data could
be to enable queries on encrypted data that return a list of
records. This approach differs from the one suggested in this
paper. For example Song et al. [30] and Shi et al. [29] have
explored different mechanisms for allowing authorized users
to share data and store private information on untrusted
servers.

We would like to emphasize the difference between in-
formation disclosure and cryptographic aggregation. That
is, in the scenario portrayed in this paper, medical teleme-
try should remain private across caregiver institutions, and
therefore approaches like the ones cited above may not be
appropriate for this application. However, if researchers de-
termine that information disclosure is necessary we believe
that the following aspects should be considered:

1. A solution to a query must be based on a precise def-
inition of a de-identified row. In particular, it should
be clear which fields, such as name and national identi-
fication numbers, should not be disclosed in any given
row.

2. A solution to a query must protect the origin of any
given row. That is, the probability of determining
which caregiver provided any given row must be neg-
ligible.

3. A solution to a query should provide a proper model for
performing information leakage analysis. It is conceiv-
able, for example, that multiple crafted queries could
be combined to increase the probability of determining
the origin of a given row.

7.2 Other Homomorphic Encryption Applica-
tions

Homomorphic encryption has been highly studied since
its introduction by Rivest et al. [26]. Their paper proposed
the idea of being able to compute on encrypted data without
the need to decrypt. The goal was to design cryptosystems
in such a way that the encryption operation commuted with
the operations on plaintexts. In other words, the desired
property was to be able to construct an encryption scheme
such that you would obtain the same result by multiplying
two plaintexts and then encrypting the result, or, by first
encrypting two plaintexts and then multiplying their corre-
sponding ciphertexts.

Castelluccia et al. have shown that it is possible to com-
pute aggregates such as averages, variances and standard
deviations in a scenario similar to the one described, using
only a single homomorphic operation [6]. However, due to
the resource constraints of sensor networks, their work uses
symmetric key cryptography which imposes a different set
of requirements than those in this work. For instance, ag-
gregation in sensor networks is hierarchical as opposed to
the one-layer aggregator in HICCUPS.

In the case that giving access to de-identified records is
necessary, there should be a precise definition of what this
practice entails. It may not be sufficient to eliminate clearly
identifiable fields in a record, such as name and national
identification numbers. Techniques such as the ones used
in mixnets could also be employed. Additionally, models of
information leakage, such as the one given by Xia et al. in
their recent proposal for a voting system [31], must be given.
These models are necessary to provide a formal analysis of
the privacy leaked by releasing de-identified records.

The research problem addressed by our HICCUPS design
shares similar goals with electronic voting designs. Both sys-
tems aim to protect user (patient vs. voter) privacy while
providing aggregated result of the private data (statistical
function vs. count). However, the solutions for voting sys-
tems cannot be easily applied to the telemetry systems be-
cause of two major differences of the problems: (1) The
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Table 1: Estimated overhead added by HICCUPS for performing a simple aggregation with 100 caregivers
with 1000 records each. The table shows the overheads using four different primitives: securely equivalent
RSA-1024 and ECC-160, as well as RSA-2048 and ECC-224.

Protocol RSA-1024 ECC-160 RSA-2048 ECC-224
Time Overhead 901.309 ms 380.66 ms 5786.611 ms 527.431 ms

constraints of voting systems (voter privacy and result ver-
ifiability) are believed to be self-contradictory. This is not
the case in telemetry systems. (2) While the voting system
requires only one fixed query (counting), it is not feasible to
require medical researchers to completely fix their queries.

Homomorphic encryption schemes have been successfully
applied to voting schemes [25]. As was briefly mentioned,
the problem of aggregating votes has some similarities to the
problem of computing aggregates with medical data. How-
ever, the desired properties and the conditions pose different
problems, as discussed in Section 4. For example, the prob-
lem of generating ballots, aggregating votes individually and
allowing individual verifications may impose a non-negligible
overhead for computing queries on a regular basis. Also, ho-
momorphic encryption has been used in the implementation
of universal re-encryption for mixnets [15].

There have been attempts to provide privacy-preserving
systems for sharing medical data. In one of the most recent
attempts, Au and Croll proposed a privacy-preserving cen-
tralized e-health system to provide access to health record
data from medical databases distributed across various clin-
ics and hospitals [1]. However, in the related field of vot-
ing, Jefferson et al. [20] exposed some of the privacy risks
introduced by a centralized system, such as the voting sys-
tem studied in their work [19]. Furthermore, Sahai sug-
gested that the existence of an efficient and practical se-
mantically secure public key encryption scheme that is also
algebraically homomorphic, would enable minimally inter-
active distributed data-mining and secure computation [28].

7.3 Theoretical Advancements
Goldwasser and Micali introduced the term semantic se-

curity when they were defining the first probabilistic cryp-
tosystem [13]. This notion of security was needed to formal-
ize the fact that deterministic cryptosystems are not secure
against chosen ciphertext attacks. That is, if a deterministic
encryption scheme is used, then it is possible that an eaves-
dropper observing several messages may be able to detect
ciphertexts coming from identical messages. This first prob-
abilistic system, proposed by Goldwasser and Micali [14] was
a homomorphic encryption system that, while impractical,
served as the basis for many other homomorphic encryption
systems. This implies that the highest security level cannot
be reached by a deterministic homomorphic cryptosystem.
Even further, Boneh and Lipton showed that any determin-
istic algebraically homomorphic cryptosystem can be broken
in sub-exponential time [5].

Homomorphic encryption does not provide the nonmal-
leability security requirement. For a cryptosystem to be non-
malleable it is necessary that given a ciphertext c = E(m),
it should be hard for an adversary to create a ciphertext
c′ = E(m′) such that a relationship between m′ and m
can be established. It is clear that homomorphic encryption
schemes do not satisfy this property since a relationship be-

tween m′ and m would be given by the homomorphic prop-
erty. For a formal discussion on this, refer to Dolev et al. [8,
9]. Bellare et al. [2] showed that if a cryptosystem does not
provide the nonmalleability security requirement, then cho-
sen plaintext indistinguishability IND-CPA is the strongest
requirement that may be satisfied by it. In fact, there are
homomorphic encryption schemes that satisfy IND-CPA, for
example Elgamal [11] and Pallier [25] cryptosystems.

The highly desirable properties of homomorphic encryp-
tion made it an important topic of research. Various cryp-
tosystems have been designed to exploit the homomorphic
property for a single operation. The question of the exis-
tence of a fully homomorphic cryptosystem, i.e. one that
commutes with both addition and multiplication efficiently,
was an open problem until recently. Craig Gentry proved
that it is possible to create a fully homomorphic encryption
using lattices [12].

The work of Boneh et al. [4] presents a homomorphic en-
cryption scheme that allows the evaluation of 2-DNF for-
mulas on encrypted boolean variables. The defined encryp-
tion function supports addition and one multiplication. The
same technique can be used in our paper to enhance the
system capabilities for researchers and manufacturers.

The assumption of having honest majority of caregivers
made in our paper can be relaxed by applying the tech-
niques from the work of Ishai et al. [18]. Their work proposes
several solutions to perform secure arithmetic computation
with no honest majority.

8. CONCLUSION
Our research examines the use of homomorphic encryp-

tion to make aggregated information contained in medical
data sets more available to clinical researchers and device
manufacturers while preserving patient privacy. We ques-
tioned the need to release completely de-identified records
to solve this problem as suggested by Gostin and Nass [24].
Our work focuses on a enabling an aggregation of the med-
ical telemetry across different caregivers. The preliminary
design of HICCUPS uses homomorphic encryption to al-
low researchers to obtain statistical information while pre-
serving the data privacy of individuals. The paper gives an
overview of the design of the system and several examples of
common aggregation functions that can be computed using
homomorphic properties. We believe that expressibility of
aggregation functions will serve as a more important metric
of system quality than absolute running time in the con-
text of delay-tolerant processing of medical data. We hope
that the discussion of HICCUPS will help us prepare for its
implementation and measurement.
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