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Abstract (stored data item) is often not known in advance. In addi-
tion, because multiple users could update the same piece
Plutus is a cryptographic storage system that enablesafedata, a third user may from time-to-time update “the
cure file sharing without placing much trust on the filmessage” before it reaches its eventual recipient. Stored
servers. In particular, it makes novel use of cryptograptdata must be protected over longer periods of time than
primitives to protect and share files. Plutus features highiypical message round-trip times.
scalable key management while allowing individual usersMost existing secure storage solutions (either encrypt-
to retain direct control over who gets access to their filesa-wire or encrypt-on-disk [40]) require the creators of
We explain the mechanisms in Plutus to reduce the nusiata to trust the storage server to control all users’ access
ber of cryptographic keys exchanged between userstbthis data as well as return the data intact. Most of these
using filegroups, distinguish file read and write accesgorage systems cater to single users, and very few allow
handle user revocation efficiently, and allow an untrustegcure sharing of data any better than by sharing a pass-
server to authorize file writes. We have built a prototypgord.
of Plutus on OpenAFS. Measurements of this prototypeTnis paper introduces a new secure file systehtus

show that Plutus achieves strong security with ove_rhe@,qich strives to provide strong security even with an un-
comparable to systems that encrypt all network traffic. yrysted server. The main feature of Plutus is that all data
is stored encrypted and all key distribution is handled in
. a decentralized manner. All cryptographic and key man-
1 Introduction agement operations are performed by the clients, and the
server incurs very little cryptographic overhead. In this
As storage systems and individual storage devices thesaper we concentrate on the mechanisms that Plutus uses
selves become networked, they must defend both agatgsrovide basic filesystem security features — (1) to de-
the usual attacks on messages traversing an untrusted@&-and prevent unauthorized data modifications, (2) to
tentially public, network as well as attacks on the storefifferentiate between read and write access to files, and
data itself. This is a challenge because the primary pg) to change users’ access privileges.
pose of networked storage is to enable easy sharing opjytys is an encrypt-on-disk system where all the key
data, which is often at odds with data security. management and distribution is handled by the client. The
To protect stored data, it is not sufficient to use traoﬁdvantage of doing this over existing encrypt-on-wire sys-
tional network security technigues that are used for seciffims is that we can (1) protect against data leakage attacks
ing messages between pairs of users or between cligfishe physical device, such as by an untrusted adminis-
and servers. Thinking of a stored data item as simplyttor, a stolen laptop, or a compromised server; (2) al-
message with a very long network latency is a misleadipgy users to set arbitrary policies for key distribution (and
analogy. Since the same piece of data could be readiR¥refore file sharing); and (3) enable better server scala-
multiple users, when one user places data into a shakgfly because most of the computationally intensive cryp-
storage system, the eventual recipient of this “messagggraphic operations are performed at end systems, rather

than in centralized servers.
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legroups [40], which aggregates keys for multiple filetp securing data on a single untrusted file server, the ideas
shows that the number of keys that any individual needsuld be generalized for a set of replicated file servers.
can be kept manageable.
Instead of encrypting and decrypting files each timg >  Trysted client machine
they are exchanged over the network, Plutus pre-computes
the encryption only when data is updated; this is a mdgsers must trust their local machine. This is, however,
scalable solution as the encryption and decryption cosglificult to guarantee: providing for a secure program ex-
distributed among separate users and never involves &ggtion environment in an untrusted computing platform
server. is an open problem. Some previous work aims to securely
We have built a prototype of Plutus in OpenAFS [37monitor loaded applications [48] or provide partitioned
This enhancement to OpenAFS retains its original acc&§$ual machines to isolate vulnerabilities [10, 48, 50].
semantics, while eliminating the need for clients to trust
servers. Measurements on this prototype show that strgng  |_azy revocation
security is achievable with clients paying cryptographic
cost comparable to that of encrypt-on-wire systems, aRtytus allows owners of files to revoke other people’s
servers not paying any noticeable cryptographic overheHghts to access those files. Following a revocation, we
Since the cryptographic overhead is shifted completely@gsume that it is acceptable for the revoked reader to read
the clients, the server throughput is close to that of natiyemodified or cached files. A revoked reader, however,
OpenAFS. Note that these modifications have no impageSt not be able to read updated files, nor may a revoked
on the way end applications access files; they change offfjter be able to modify the files. Settling for lazy revoca-
the way users set sharing permissions on files. tion trades re-encryption cost for a degree of security. We
The rest of the paper is organized as follows. Sectiorfborate on lazy revocation in Section 3.4.
describes our threat model and assumptions. Section 3
presents the mechanisms and design of Plutus. Sectidh.4 Key distribution
describes a number of subtle attacks that remain possible

and outlines potential solutions, and Section 5 descrid¥€ @ssume that users authenticate each other to obtain rel-
protocols for creating, reading and writing files, and ré&vant keys to read and write data on the disk via a secure
voking users. Section 6 describes the implementation di{tgnnel —we do not introduce new authentication mech-

usage of Plutus, and Section 7 evaluates the prototype. $0MmS in this paper. Furthermore, all these exchanges

discuss related work in Section 8 and conclude in S&{€ carried out on-demand; if users want to read/write a
tion 9. file, they contact the file owner (or possibly other read-

ers/writers) to obtain the relevant key. Keys are never
broadcast to all users.

2 Threat model
2.5 Traffic analysis and rollback
This section discusses the assumptions and threat model ) i L
of Plutus. This paper will use the terminology introduceff® 90 not address the issue of traffic analysis in this pa-

previously [40] withowners(create data)eaders(read per; that |s: we do not make any explicit attempt to obfus-
data),writers (write and possibly read data), asdrvers cate users’ access patterns. However, Plutus does support
(store data) options to encrypt filenames, and encrypts all I/O requests

to the server. Recently SUNDR [32] introduced the notion
o of a rollback attack, wherein an untrusted server tricks a
2.1 Untrusted servers and availability user into accepting version-wise inconsistent or stale data

relative to other users. We defer the discussion of rollback
In Plutus, we trust servers to store data properly, but Btection to a future work [15]

to keep data confidential. While a server in Plutus may
attempt to change, misrepresent, or destroy data, clients
will detect the malicious behavior. 3 Design

Cryptography alone, however, cannot prevent destruc-
tion of data by a malicious server. Replication on multiple an encrypted file system, we need techniques to (1)
servers can ensure preservation of data even when mdifferentiate between readers and writers; (2) prevent de-
of the servers are malicious. Systems such as BFS [tfuction of data by malicious writers; (3) prevent known
Farsite [1], OceanStore [25], PASIS [17], PAST [12], anplaintext attacks with different keys for different files; (4)
S4 [47] address techniques for secure availability througgvoke readers and writers; and (5) minimize the num-
replication. Though, in this paper, we restrict our focuser of keys exchanged between users. The following core
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mechanisms together achieve these functions: filegroupilegroups uniquely identify all keys that a user needs
lockboxes, keys, read-write differentiation, lazy revoc#e perform an operation on a file. This filegroup informa-
tion, key rotation, and server-verified writes. tion can be located together with the rest of the meta-data
about the file, for instance, in the UNIX FFS inode (re-
placing the group and mode bits), or by adding an entry in
the disk vnode in AFS [43].

Plutus groups files (not users) irfitegroupsso that keys ~ On the downside, using the same key to encrypt mul-
can be shared among files in a filegroup without cortiple files has the disadvantage that the same key en-
promising security. Filegroups serve as a file aggregationypts more data, potentially increasing the vulnerability
mechanism to prevent the number of cryptographic keysoaknown plaintext and known ciphertext attacks. How-
user manages from growing proportional to the numbever, this is not an issue if these keys are actuallyfitbe

of filest. Aggregating keys into filegroups has the obeckboxkeys, and the real file encryption keys are differ-
vious advantage that it reduces the number of keys tleat for different files. The lockbox can then securely hold
users need to manage, distribute, and receive. This is tive different keys; Section 3.3 explains further.

portant if users have to perform all key management andrilegroups also complicate the process of revoking
distribution themselves. Key aggregation is also necesers’ access to files because now there are multiple files
sary to support semi-online users: as in today’s systernist the revoked user could have access to. It is tempting
Plutus assumes that users are frequently online, but notalsimplify revocation of users by having one key per file.
ways. This means that we need an easy mechanism tdTledugh this scheme is seemingly more secure (losing a
an owner share a group of related files, so that the otlkey compromises one file only), managing these keys is a
user may be able to access the related files even whendhallenge. At best they can be organized into some sort
owner is not online. Additionally, as described in Se®f hierarchy such that the users have to keep fewer keys
tion 3.2, we associate a RSA key pair with each filegrougecurely, but this clearly resembles filegroups. Plutus’ so-
If files were not aggregated and each file had its own kition for this problem is discussed in more detail in Sec-
pair, from the measurements in Section 7, each create tign 3.4.

eration would incur a 2.5 seconds latency to generate the

RSA key pair — in comparison, it takes 2.9 seconds to e§|-

crypt/decrypt a 20M file with 3DES. 2 Keys

With filegroups, all files with identical sharing atgigyre 1 jllustrates the different objects in Plutus, and how
tributes are grouped in the same filegroup and are pgierent keys operate on them. Here we describe the
tected with the same key. This exploits the fact that evepyctyres; later sections discuss these design decisions in
though a user typically owns and accesses many files, fire detail. Every file in Plutus is divided into several
number of equivalence classes of files with different shajipcks, and each block is encrypted with a unique sym-
ing attributes is small; this enables multiple files to shaggatric key (such as a DES key), calledila-block key
the same set of keys. . The lockbox, based on ideas in Cepheus [13], holds the

Using filegroups dramatically reduces the number gfe_p|ock keys for all the blocks of the file and is read and
keys that a user needs to keep track of and the numbegpften by file-lockboxkeys. File-lockbox keys are sym-
keys users must obtain from other users. In the contexiQéic keys and are given to readers and writers alike. Al-
the sharing semantics of current UNIX file systems, if tW@natively, Plutus could use a single file-block key for all
files are owned by the same owner, the same group, jiskks of a file and include an initialization vector. File-
have the same permission bits, then they are authorizgd,ox keys are the same for all the files in a filegroup.
for access by the same set of users. All such files coyfiyrger to ensure the integrity of the contents of the files,
logically be placed in the same filegroup, and encryptgryptographic hash of the file contents is signed and ver-
with the same key. , , ified by a public-private key pair, which we céille-verify

In general there is no relation between the directory hiaysandfile-sign keysThe file-sign keys are the same for
erarchy and the files in a filegroup, though it may be somgr the files in a filegroup. As an optimization, a Merkle

times convenient to define filegroups based on the sejgkh tree [34] is used to consolidate all the hashes, with
files in one directory (which is, for instance, how AFgpy the root being signed.

defines access rights). Specifically, two encrypted filesypike files, which are encrypted at the block level, en-
from two different directories may belong to the same fjog of directories are encrypted individually. This allows
legroup. Thus, filegroups can be viewed as an invisiigs server to perform space management without involv-
overlay on the directory structure. ing the clients, such as allocating inodes and performing
1A previous study [40] mistakenly attributes the filegroup concept@fSCk after a crash. Also, this allows users to browse di-
Cepheus [13] instead of itself. rectories and then request the corresponding keys from

3.1 Filegroups and lockboxes
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Figure 1: Keys in Plutus. The keys are all highlighted in bold and are linked to the objects that they operate on using
bold lines. Dashed lines indicate object pointéite-name keysan encrypt the names of files in directories. Aninode
contains the names of the filegroup that the file belongs to, anfilélyeoup-name kegan encrypt filegroup names.

The header contains the Merkle hash tree. The leaves of the hash tree are lockboxes contdiitenlgldlck keys

which are encrypted with thile-lockbox key The signature of the root is computed and verified usinditeesign
keyandfile-verify key respectively.

the file’'s owner. The filegroup and owner informatiokeys for differentiated read/write access was mentioned
is located in the inode, as in the case of UNIX. Tha the work on securing replicated data [49], the design
names of files and filegroups can be encrypted with thpped short of finding a cryptosystem to implement it.
file-name keyand filegroup-name keyrespectively. En-  Note that though the file-verify key is same as the pub-
crypting the names of files and filegroups protects agaitistkey in a standard public-key system, it is not publicly
attacks where the malicious user can glean informatidisseminated. Owners of files issue the file-verify key
about the nature of the file. only to those they consider as authorized readers; simi-
All the above described keys are generated and da-is the case with the file-sign key.
tributed by the owners of the files and filegroups. In In our implementation, we use RSA for the sign/verify
addition, currently in Plutus, readers and writers camperations. Then only the readers and writers kiiéw
(re)distribute the keys they have to other users. Plutus {the RSA modulus). The file-verify ke, is not a
tentionally avoids specifying the protocols needed to alew-exponent prime number (it has to be greater than
thenticate users or distribute keys: these are independ®nt* [6]). Writers get(d, N), while readers gete, V).
of the mechanisms used to secure the stored data and can

be chosen by individual users to match their needs. 3.4 Lazy revocation

3.3 Read-write differentiation In a large distributed system, we expect revocation of
users to happen on a regular basis. For instance, accord-
One of the basic security functions that file systems supg to seven months of AFS protection server logs we
port is the ability to have separate readers and writersofotained from MIT, there were 29,203 individual revo-
the same file. In Plutus, this cannot be enforced by thations of users from 2,916 different access control lists
server as it itself is untrusted; instead we do this by tfeounting the number of times a single user was deleted
choice of keys distributed to readers and writers. Fildom an ACL). In general, common revocation schemes,
lockbox keys themselves cannot differentiate readers anath as in UNIX and Windows NT, rely on the server
writers, but can do so together with the file-sign and filehecking for users’ group membership before granting ac-
verify key pairs. The file-sign keys are handed to writeress. This requires all the servers to store or cache infor-
only, while readers get the file-verify keys. When updatration regarding users, which places a high trust require-
ing a data block, a writer recomputes the Merkle hash treent on the servers and requires all the servers to maintain
over the (current) individual block hashes, signs the raibiis authentication information in a secure and consistent
hash, and places the signed hash in the header of the filanner.
Readers verify the signature to check the integrity of theRevocation is a seemingly expensive operation for
blocks read from the server. Though using public/privagacrypt-on-disk systems as it requires re-encryption (in
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Plutus, re-computing block hashes and re-signing rantre, the sequence of keys must have the following prop-
hashes as well) of the affected files. Revocation also grties:

troduces an additional overhead as owners now need t,(% Only the owner should be able to generate the next

glcsstr:)kiurtsvgi\;\/tilgiyrs]gg duigr;a Ttgl:g:tézz Ster::eunghziﬂagé version of the key from the current version. This is
9  they to prevent anyone from undoing the revocation.

implemented with minimal overhead to the regular user%) An authorized reader should be able to generate all

sharing those files. . .
: . previous versions of the key from the current ver-
To make revocation less expensive, one can delay re- . o ,
sion. Then readers maintain access to the files not

encryption until a file is updated. This notion of lazy re- et re-encrvoted. and readers mav discard previous
vocation was first proposed in Cepheus [13]. The idea is yetr ypted, y P
versions of the key.

that there is no significant loss in security if revoked read-

ers can still read unchanged files. This is equivalent to then Plutus, each reader has only the latest set of keys.

access the user had during the time that they were autiiriters are directly given the newest version of the keys,

rized (when they could have copied the data onto floppince all file encryptions always occur with the newest set

disks, for example). Expensive re-encryption occurs ory keys. The owners could also do the new-key distribu-

when new data is created. The meta-data still needs tdiba non-interactively [14], without making point-to-point

immediately changed to prevent further writes by revokednnections to users.

writers. We discuss subtle attacks that are still possible inTo assist users in deciding which keys to use, each key

Section 4. has a version number and an owner associated with it.
A revoked reader who has access to the server will stiach file has the owner information, and the version num-

have read access to the files not changed since the ud#fsof the encryption key embedded in the inode. Note

revocation, but will never be able to read data updattitht this serves only as a hint to readers and is not required

since their revocation. for correctness. Readers can still detect stale keys when
Lazy revocation, however, is complicated when multihe block fails to pass the integrity test.

ple files are encrypted with the same key, as is the cas@&ext we will describe how we achieve key rotation for

when using filegroups. In this case, whenever a file géite-lockbox keys and file-sign/file-verify keys.

updated, it gets encrypted with a new key. This causes

filegroups to get fragmented (meaning a filegroup coud.1 Rotating file-lockbox keys

have more than one key), which is undesirable. The next , ) i

section describes how we mitigate this problem: briefi§/'eNever a user's access is revoked, the file owner gener-

we show how readers and writers can generate all the s a hew version of the file-lockbox key. For this discus-

vious keys of a fragmented filegroup from the current ke?\'/?/:éIre;iegg?z;fst?ﬁevﬁg??/;?igﬁ fflilli-llc(;((::lﬁz)%i kkeg; :;2;

the current key by exponentiating the current key with the
3.5 Key rotation owner’s private keyd, N): K,.; = K mod N. This
. L way only the owner can generate valid new file-lockbox
The natural way of doing lazy revocation is to generat
new filegroup for all the files that are modified.following Au.thorized readers get the appropriate version of the
a revocation and then move f|I_es to th|§ new filegroup fife-lockbox key as follows. (Figure 2 illustrates the rela-
files get re-encrypted. This raises two issues: a) thereﬁb% between the different file-lockbox key versions.) Let

an increase in the number of keys in the SyStem foIIoww&gbe the current version of the file-lockbox key that a user
each revocation; and b) because the sets of files that

re-encrypted following successive revocations are not re-

ally contained within each other, it becomes increasingly® If w = v then the reader has the right file-lockbox

hard to determine which filegroup a file should be moved key to access the file.

to when it is re-encrypted. We address the first issue bye If w < v then the reader has an older version of the

relating the keys of the involved filegroups. To address key and needs to request the latest file-lockbox key

the second issue, we set up the keys so that files are al- from the owner.

ways (re)encrypted with the keys of the latest filegroup; e If w > v then the reader needs to generate the older

then since keys are related users need to just remember version of the file-lockbox key using the following

the latest keys and derive previous ones when necessary. recursion. IfK,, is the file-lockbox key associated

We call the latter procedey rotation with versionw, thenK,,_; = K¢ mod N, where
There are two aspects of rotating the keys of a filegroup (e, N) is the owner’s public key. Readers can recur-

a) rotating file-lockbox keys, and b) rotating file-sign and  sively generate all previous file-lockbox key from the

file-verify keys. In either case, to make the revocation se- current key.



Appears in the Proceedings of the 2nd Conference on File and Storage Technologies (FAST'03). pp. ?—? (31 Mar -2
Apr 2003, San Francisco, CA). Published by USENIX, Berkeley, CA

i"iti='| key lat.l.n:lr.ltiah Znd mlar:r.ian 3I.d.|.lr\lar.tiah
] L 1 1
K§ (mod 1) K¢ (medll) kg (mod 1)

owhel
Ko K, K2 K3
izadei
I\'f (mod 1T ) I(; (med 1T ) I\'; (mod 1T )

Figure 2: Key rotation for file-lockbox keys. Using RSA, an owner can rotate dkdprward. Users can only rotate
keys backwards in timge, N) is the owner’s public key angl, V) is the owner’s private key

In the above protocol, we use RSA encryption aspaevious version file-verify key&d,,, N,,), foru < v as
pseudorandom number generator; repeated encryptiofollows. They first rotate the sedd, backwards to get the
not likely to result in cycling, for otherwise, it can be usedeedk,,, as described in the previous section. They read
to factor the RSA modulud/ [33]. Though we use RSA (and verify) the modulusV,, from the file header. They
for our key rotation, the property we need is that there been use the procedure described above to determjine
separate encryption and decryption keys, and that the fsem N,, and K.
guence of encryptions is a pseudorandom sequence witfihe reason for changing the modulus after every revo-
a large cycle; most asymmetric cryptosystems have thagion is to thwart a subtle collusion attack involving a
property. reader and revoked writer — if the modulus is fixed to, say

Though this scheme resembles Lamport’s passwa¥d, a revoked writer can collude with a reader to become
scheme [27], our scheme is more general. Our scheagalid writer (knowinge,, d,, and N' allows them to
provides for specific users (owners) to rotate the key fdactor N’, and hence compute the new file-sign key).
ward, while allowing some other users (readers) to rotate

keys backwards. 3.6 Server-verified writes

The final question we address is how to prevent unautho-
rized writers from making authentic changes to the persis-
By using the file-lock box key generated above as a setght store. Because the only parties involved in the actual
we can bootstrap the seed into file-sign and file-verifyrite are the server and the user who wishes to write, we
keys as follows. Let the versiarfile-sign key bee,,, N,,) need a mechanism for the server to validate writes.
and the corresponding file-verify key bé,, N,,). In Plu- In traditional storage systems, this has been accom-
tus IV, is stored in file’s header in the clear, signed by thgtished using some form of an access control list (ACL);
owner to protect its integrity. Note that all files in the filethe server permits writes only by those on the ACL. This
group with the same version have the same valuéVfar requires that the ACL be stored securely, and the server
When a user is revoked, the owner picks a new RSithenticates writers using the ACL.
modulusN,,, and rotates the file-lockbox key forward to In Plutus, a file owner stores a hash of a write token
K, . Using the latest seelif,,, owners and readers generstored on the server to validate a writer. This is semanti-
ate the file-verify key as follows. Given the se&d, ¢, cally the same as a shared password.
is calculated by usind(, as a seed in a pseudo-random Suppose a filenamg is not encrypted. The owner of
number generator. The numbers output are added¥p the file creates a write-verification key,, as the write
and tested for primality. The first such number is chosérsken. ThenF and the hash of the write tokeR][ K],
ase,. The conditions that, > /N, ande, is a prime are stored on the server in the file’s inode.
guarantee thajcd(e,, #(N,)) = 1[28], makingitavalid  Upon authentication, writers get the write tokéf,
RSA public key. (Notice that the latter test cannot be pdrom the owner. When writers issue a write, they pass
formed by readers because they do not kigdw, )). The the token to the server. To validate the write, the server
pair (e,, N,) is the file-verify key. can now computdé/[K,] and compare it with the stored
Owners generate the corresponding RSA privatekeyvalue. Readers cannot generate the appropriate token be-
and use it as the file-sign key. Since writers never havecause they do not know(,,. The token is secure since
sign any data with old file-sign keys, they directly get thiae hash value is stored only on the server. Optionally the
latest file-sign keyd,,, N, ) from the owner. If the writers server can cache the hashed write tokens to speed up write
have no read access, then they never get the seed, andwaification.
is hard for them to determine the file-verify key from the One problem with the above scheme is that from
file-sign key. H[K,], anyone can learn useful structural information
Given the current version seéd],, readers can generatesuch as which files belong to which filegroup even when

3.5.2 Rotating file-sign and file-verify keys
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the filegroup name is encrypted. This is undesirable givpresents the possible attacks classified into those that a re-
that storage system itself can be stolen and it does moked reader could mount, or those that a revoked writer
do any authentication of the readers. Such attacks carcbald mount. In each case, the attacker may act alone or
thwarted by replacind? [K,,] with H[K,,, F'] and the fi- in collusion with the server. The attacks that writers can
legroup name withf [K,, F|, whereK, is the filegroup- mount depend upon whether an unsuspecting reader has
name key. the updated keys or not.

The write token used above is similar to the capabilities|f a system uses lazy revocation, we can prevent re-
used in NASD [19] and many systems before [29]. Howoked readers from accessing data that has been updated.
ever capabilities in general are given out by a centralizeidwever to prevent them from accessing data that has not
server whereas write tokens are generated by individibalen updated, we would need some form of “read veri-
file owners and are given to writers in a distributed mafieation” — verification of read privileges on each read
ner. access, analogous to write-verification. If this verifica-

The benefit of this approach is that it allows an urtion were done by the storage server then the reader could
trusted server to verify that a user has the required aot get to the data alone, but could do so in collusion
thorization, without revealing the identity of the writer tavith the server. To prevent this attack, the file must be
the server. The scheme also makes it easy for the serveetencrypted, re-encrypting just the lockbox would be in-
manage the storage space by decoupling the informatsufficient.
required to determine allocated space from the data itselfThe problem with revoked writers is more severe.
Though the actual data and (possibly) filenames and fifgain, we can prevent revoked writers from updating data
group names are encrypted and hidden, the list of physibglverifying each write. But if this verification is done by
blocks allocated is visible to the server for allocation d¢he server — as in server-verified writes — the system is
cisions. subject to an attack by a revoked writer colluding with the

There are several file systems such as Cedar [18], Eerver to make valid modifications to data. The only way
phant [41], Farsite [1], Venti [38], and Ivy [36], whichto prevent this would be to broadcast the changed key to
treat file data as immutable objects. In a cryptograplad users aggressively . Otherwise, a revoked writer will
storage file system with versioning, server-verified writedways be able to create data that looks valid and cheat
are less important for security. Readers can simply chogaasuspecting) readers who have not updated their key.
to ignore unauthorized writes, and servers need worryFrom the above discussion, it should be clear that lazy
only about malicious users consuming disk space. In n@gvocation is always susceptible to attacks mounted by re-
versioning systems, a malicious user could corrupt a go@sked users in collusion with the server, unless a third
file, effectively deleting it. (trusted) party is involved in each read and write access.

Finally, the server could mount the following attack,
. . which we consider very difficult for the system to handle.
4 Security analysis In aforking attack[31], a server forks the state of a file
between users. That is, the server separately maintains
This section explores the set of attacks that remain p@gs updates for the users. The forked users never see each
sible and explains how to adapt Plutus to thwart these giher's changes, and each user believes its state reflects re-
tacks. We also argue that some of the remaining attaglgy. A higher level Byzantine agreement protocol, which
can never be handled within the context of our systemjgtpotentially expensive, might be necessary to address
any reasonable additional cost. this issue [11]. Recently Magies and Shasha [32] in-

In decreasing order of severity, an attacker may:  troduced the notion diork consistencynd a protocol to

. ) achieve it. Though their scheme does not prevent a fork-
(a) write new data with a new key ing attack, it makes it easier to detect.
(b) write new data with an old key
(c) write old data with an old key; that is, revert to an old

version 5 Protocols
(d) destroy data
(e) read updated data We now summarize the steps involved in protocols for
(f) read data that has not yet been updated. creating, reading and writing as well as revoking users.

We would like to remark again that all the keys and to-
These attacks can be prevented by some combinatiokefis in these protocols are exchanged between owners
the following mechanisms: change the read/write verificand readers/writers via a secure channel with a session
tion token (T), re-encrypt the lockbox with a new key (L)key — for instance, mutual authentication based on pass-
and re-encrypt the file itself with a new key (D). Table tords. However, file data is not encrypted over the wire,



Appears in the Proceedings of the 2nd Conference on File and Storage Technologies (FAST'03). pp. ?—? (31 Mar -2
Apr 2003, San Francisco, CA). Published by USENIX, Berkeley, CA

[ Users | Key freshness| Collusion [None] D | L [ LD [ T | TD [ TL [ TLD |
alone f f f - - - — —
revoked readey old keys w/server | cdf | c,df| cdf| c,df| cdf| cd | cdf| cdf
old kevs alone c,bd|cbd|cbd|cbd| - - - -
. y w/ server | ¢,b,d | c,bd| c,b,d| ¢c,b,d| c,b,d]| c,b,d| c,b,d| ¢c,b,d
revoked writer
updated keys alone n/a n/a d d n/a | nla - -
w/ server n/a n/a d d n/a n/a d d

Table 1: Attacks tabulated against what is changed following a revocation. The heading row presents different choices
in the component that is changed following a revocation: the read/write verification token is changed (T), the file’'s
lockbox is changed (L), or the file itself is re-encrypted with a new key (D). The entries in the table correspond
to the most serious attack that can be mounted, the letter code corresponding to those described in the main text.
“n/a” indicates an impossible combination — such as readers having updated keys but files not being re-encrypted or
lockboxes not changed. A “—" is used to denote that no attack is possible.

but only integrity-protected with the session key. of the file using the corresponding file-block keys,
and stores the encrypted blocks with the lockbox in

1. Initialize filegroup: To initialize a filegroup, auser  he server. The server uses the write-token, provided
generates a pair of dual keys (file-sign and file-verify 1, 6 \yriter at this time, to authorize the write. The

keys) for signing and verifying the contents of filesin  \yijter then sends the entire Merkle hash tree in the
the filegroup. The user also generates the symmetric o4y to the server: the hash tree includes the root

file-lockbox key. hash, signed with the file-sign key.

2. Create file: First, the owner selects a filegroup for 5. Revoke user: To revoke a user from accessing files
the new file. If there is no appropriate filegroup  in a filegroup, the owner generates the next version of
the owner initializes one and uses the corresponding the file-sign, file-verify, and file-lockbox keys. The
keys (file-sign, file-verify, and file-lockbox keys) for - gwner then labels all files in the filegroup as need-
this file. The owner also generates a write token and  jng re-encryption. If the revoked user is a writer, the
sends it to the server so that the server can verify all  quner changes the write-tokens in all the files of the
writes to this file. fi|egr0up as well.

3. Read file: A reader first obtains the name of the
owner and the filegroup of the file he wishes to a
cess, possibly after browsing the file system. T
reader then checks if the version of the keys she r1gging the protocols and ideas discussed in Section 3, we

cached is greater then the version of the keys u ave designed Plutus and developed a prototype usin
to encrypt the file (which is stored in the heade?g g P P yp 9

in which case she does a key rotation to get thepenAFS [37]. In this section, we describe the architec-

right version key. Otherwise, the reader gets the Ié?—re and the prototype of Plutus in detail.

est version key from the owner after appropriate au- )
thentication (via a secure channel). The reader th@nl ~ Architecture of Plutus

fetches the encrypted blocks of th_e desirgd file fromgure 3 summarizes the different components of Plu-
the server, opens the lockboxes with the file-lockbgXs ang where (server side or client side) they are im-
key, retrleves_ f"’?'?"’c" keys from th_e IOCk_bOX’ ar‘Blemented. Both the server and the clients have a network
decrypts the individual blocks. The integrity of theomnonent, which is used to protect the integrity of all
root hash (of the Merkle tree) provided by the servefassages. In our implementation we protect the integrity
is f|r.st ver!fled by using the _flle-venfy key. To vern‘yof packets in the AFS RPC using HMAC [4]. Addition-
the integrity of the data, this root hash is comparegy, some messages such as those initiating read and write
against the root hash obtained by recomputing &, ests are encrypted. A 3DES session key, exchanged
Merkle hash tree using the file blocks retrieved from part of the RPC setup, is optionally used to encrypt
the server. these packets. The identities of all entities are established
4. Write file: The writer obtains the latest version fileusing 1024 bit RSA public/private keys.
lockbox key and file-sign key, possibly from the The server has an additional component that validates
owner if it is not cached. The writer then genemrites. As described in Section 3.6, this component com-
ates the file-block keys, encrypts individual blockgutes the SHA-1 hash of write tokens to authorize writes.

Implementation
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Figure 3: Architecture of Plutus.

This hashed token is passed on to the server, when tinethe server, and is shipped to the client, when the corre-

file is created, and is stored in the file’s vnode (UNIX insponding file is opened. On the client side, when blocks

ode extension in AFS). Storing the token in the vnode iare updated, the respective new hashes are spliced into the

stead of the directory simplifies write verificatiorOwn- tree. Then, the root hash is recomputed and signed when

ers change the stored token using a special ioctl call. the cache is to be flushed to the server. At this time, the
Most of the complexity of the implementation is at theew tree is also sent back to the server.

client-side. We extended the OpenAFS kernel module by

adding a key cache per user and a component to hargllﬁ Prototype

file data encryption and decryption. The key cache hold$

all keys used by the user, including file keys and idefyy puilding the Plutus prototype, we have made some
tity keys (users’ and servers’ public keys). Currently aodifications to the protocols to accommodate nuances
the encryptions and decryptions are done below the AGSAFS. However, these modifications have little impact
cache; that is, we cache clear-text data. By doing thj the actual evaluation reported in the next section. For
we encrypt (decrypt) file contents only when it is beingistance, currently AFS's RPC supports only authentica-
transmitted to (received from) the server. The alternati¥gn of the client by the server through a three step proce-
of caching encrypted data would mean that each pariiglre. Recall that in Plutus design, the server never needs
read/write would incur a block encryption/decryption, &g authenticate a client. We use only the last two steps of
would multiple reads/writes of the same block. We exhjs interface to achieve reverse authentication (i.e., client
pect this to incur a substantial cryptographic overhead. Qfthenticating server) and session key exchange. To do
course, caching unencrypted data opens up a security Yhils we need the server's public key, which can be suc-
nerability on shared machines. cinctly implemented with self certifying pathnames [30],
The other components of the client — revocation and kgyus securely binding directories to servers.
exchange — are implemented in user space. These compGhe prototype uses a library that was built from the
nents interact with the key cache through an extensioncigptographic routines in GnuPGP, with the following
AFS’s ioctl interface. The same client-server RPC integhoice of primitives: 1024-bit RSA PKCS#1(version
face is used for all inter-client communication. 15)3 for pub”c/priva’[e key encryption’ SHA-1 for hash-
Files are fragmented, and each fragment (blocks of siag and 3DES with CBC with Cipher Text Stealing [45]
4 KB) is encrypted independently with its own file-blockor file encryption.
(3DES) key. This 3DES key is kept in the fragment’s lock-
box together with the length of the fragment. The hashes
of all the fragments are arranged in a Merkle hash trég, Performance evaluation
and the root signed (1024 bit RSA) with the file-sign-key.
The leaves of the tree contain the lockbox of the corrgrthe preceding sections, we analyzed protocols of Plutus
sponding fragment. The tree is kept in a “shadow fileffom a security perspective. We now evaluate Plutus from

2A similar problem was encountered in the context of storing inodes 3For better security guarantees, RSA-OAEP is required; see Shoup’s
and small files together [16]. proposal [46] for more details.
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a performance perspective. In particular, we evaluate tlants to revoke another user’s permission to read/write
design and the prototype of Plutus using (a) a trace frdites in the owner’s filegroup. We use these parameters to
a running UNIX system, and (b) synthetic benchmarksvaluate the overhead of performing a revocation, both in
Using (a), the trace statistics, we argue the benefits oftérms of carrying out the operations immediately follow-
legroups and the impact of lazy revocation. By measuriimgy a revocation, and re-distributing the updated keys to
the overhead of Plutus using (b), synthetic benchmarksher users. In the case of revoking a reader, the time spent
we argue that though there is an overhead for the encripmediately following a revocation is the time required to
tion/decryption, Plutus is quite practical; in fact, it commark all files in the filegroup as “to be re-encrypted.” In

pares favorably with SFS. the case of revoking a writer this is the time to change the
write verification key of all the files in the filegroup. For
7.1 Trace evaluation the system we traced, if a user revokes another user, this

would involve marking 4,800 files to be re-encrypted, on
The trace that we use for evaluation is a 10-day comerage, and about 119,000 files, maximum. When a user
plete file system trace (97.4 million requests, 129 Gfgeader or writer) is revoked, other users (readers/writers)
data moved and 24 file systems) of a medium-sized workeed to be given the updated key. Our evaluation shows
group using a 4-way HP-UX time-sharing server attachetht this number is typically very small: 2 on average and
to several disk arrays and a total of 500 GB of storageémost 11 in the worst case.
space. This represents access to both NFS filesystems that
the server exported, and accesses to local storage at the
server. The trace was collected by instrumenting the kér2 ~ Cryptographic cost

nelto log all file system calls at the syscall interface. Since

this is above the file buffer cache, the numbers shown wifiole 4 presents the impact of encryption/decryption on

be pessimistic to any system that attempts to optimize K&Rd and write latency. These are measurements of the

usage on repeated access. cryptog_raphic cogt that inclgdgs write verification, data
encryption, and wire-transmission overheads. These were
. System User done using code from Plutus’ cryptography library on a
Key sharing mean ‘ max | mean ‘ max 1.26 GHz Pentium 4 with 512 MB memory. In this evalu-
key/file 1.700] 9.200] 900 | 41,100 ation, we used 4 KB as the size of the file fragment (cor-
key/filegroup| 11 57 6 23 responding to that of the prototype). As in the prototype,

for data encryption, we used 1,024-bit RSA with a 256-bit
Table 2: Using fi|egr0ups to aggregate keys_ file-verify key for reading and a 1,019-bit file-sign key for
writing and 3DES CBC/CTS file-block key for bulk data
encryption.

Owners incur a high one time cost to generate the

Table 2 presents the number of keys distributed amoggd/write key pair; this is another reason why aggre-
users. We classified all the user-ids in the system injating keys for multiple files using filegroups is benefi-
System (such as root, bin, etc.) and User (regular usetgdl. Though the write verification latency is negligible
The first row represents the number of keys that needié® writers and owners, if we choose to hide the identities
be distributed if a different key is used for each file in thef filegroups, then we pay an additional cost of decrypt-
system; the second row represents the number of keys ggrit. The time spent in transmitting the Merkle hash tree
tributed if filegroups are used. In this evaluation, we us@@pends on the size of the file being transmitted. In Plu-
the (mode bits, owner, group) tuple to define filegroupgs, block hashes are computed over 4 KB blocks, which
The table presents numbers for both the maximum nugntribute to about 1% overhead in data transmission.
ber of keys distributed by any user, and the mean nUMor |arge files, the block encryption/decryption time
ber of keys distributed (averaged across all users who d§gminates the cost of writing/reading the entire file.
tributed at least one key). The table demonstrates the bf:ﬁough Plutus currently uses 3DES as the block cipher,

efit of using filegroups clearly: the maximum number gfom Dai's comparison of AES and 3DES [9], we expect
keys distributed is reduced to 23, which is easy to mag3x speedup if AES were used.

age. Note that even this is a pessimistic evaluation as it
assumed aold key cache

OVERHEAD OF REVOGATION 7.3 Benchmark evaluation

KEYS AND FILEGROUPS

Table 3 presents parameters of the traced system thaVeéé-used a microbenchmark to compare the performance
fect the overhead of performing a revocation. In this conf Plutus to native OpenAFS and to SFS [30]. The micro-
text we focus on the case where the owner of a filegrobpnchmark we used is modeled on the Sprite LFS large
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User System
Highest| Second| Mean | Highest | Second| Mean

number of files | 119,000| 101,200| 4,800 | 1,561,000| 94,000 | 29,800

total bytes 17GB | 11GB | 0.6 GB| 29GB 14GB | 1.3GB
number of readers 5 4 1.2 27 22 54
number of writers 6 5 0.7 15 14 1.7

Parameters

Table 3: Parameters of the system that affect revocation. These are statistics indicating the number of files in a single
filegroup owned by a user, the total size of all these files, the number of other users who have read permission to at least
one of these files, and the number of other users who have write permission to at least one of these files. The number
of readers and writers were determined by considering the accesses in the 10-day trace, while the static information
was gathered by considering a snapshot of the filesystem taken at the end of the 10 days. The table separates statistics
for regular users and system users.

| File system operation| Crypto operation | Crypto cost | Incurred by [ Frequency \

Filegroup creation RSA key generatiop 2500 ms owner per filegroup
Block hash 0.11 ms writer per 4 KB block
File write Block encrypt 0.59 ms writer per 4 KB block
Merkle root sign 28.5ms writer per file
Write verify 0.01 ms server per file
Block hash 0.11 ms reader per 4KB block
File read Block decrypt 0.61ms reader per 4 KB block
Merkle root verify 8.5 ms reader per file
Message encrypt 0.01 ms all per 100 byte message
Wire integrity Message decrypt 0.01 ms all per 100 byte message
Message hash 0.003 ms all per 100 byte message

Table 4: Cryptographic primitive cost. This table lists the cost of the basic cryptographic primitives, and the file
systems operations where they are incurred. The root signature and verification is done only once per file read or
write, irrespective of the size of the file. Wire integrity is needed only for messages, not for file contents.

file benchmarks. These involve reading and writing mukl¢hich is known to have a throughput about 14 times that
tiple 40 MB files with sequential and random accesses.of 3DES [9]. This leads us to believe that if Plutus were

We used two identically configured machines, as in tReodified to use ARC4 or AES, it would compare well
previous section, connected with a Gigabit ethernet liniith SFS.
In all these experiments we restarted the client daemonlNote that this experiment is a pessimistic comparison
before reading/writing any file. We present the mean of@¢tween Plutus and the other two encrypt-on-wire sys-

Table 5 presents the results of this evaluation. First eessing data from the same server, Plutus would provide

table shows that the overhead of Plutus is primarily,d etter server throughput because the server does not per-
. . . form much crypto. This would translate to lower average

pendent on the choice of block cipher used. For |nstan1:eHencies for PIutus

it takes 5.9s to decrypt 40MB with 3DES, which is abouf '

75% of the average sequential read latency. Thus Plutus

with no-crypto is faster than that with DES, whichis il§  Rel|ated work

turn faster than with 3DES.

Second, Plutus performs as well as (if not better thadpst file systems including those in MS Windows, tra-
the other two encrypt-on-wire systems. In these compditional UNIX systems, and secure file systems [19,
isons it is important to compare systems that use block 22, 30] do not store files encrypted on the server. Of
phers with similar security properties. In particular, theourse, the user may decide to encrypt files before stor-
performance of Plutus with DES is slightly better thaage but this overwhelms the user with the manual en-
that of OpenAFS with fcrypt as the cipher: the fcryptryption/decryption and sharing the file with other users
cipher is similar to DES. Though Plutus with 3DES is while trying to minimize the amount of computation.
about 1.4 times slower than SFS, the latter uses ARO4js is precisely the problem that Plutus addresses.
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Read Write
seq | rand | seq [ rand

w/ 3DES cipher| 7.84s| 7.78s| 7.92s| 8.13s

File systems| Crypto options

Plutus w/ DES cipher | 4.58s| 4.54s| 4.27s| 4.79s
w/o crypto 1.39s| 1.51s| 1.59s| 2.64s
OpenAFS w/o wire-crypto| 1.28s| 1.31s| 1.57s| 1.67s

w/ wire-crypto | 4.66s| 4.90s| 5.34s| 5.43s
SFS w/ crypto 5.55s| 5.30s| 4.47s| 7.21s

Table 5: Performance of Plutus, OpenAFS (version 1.2.8) and SFS (version 0.7.2) accessing 40 MB files with random
and sequential access. The crypto option for Plutus indicates the cipher used for block encryption; the OpenAFS
crypto option indicates whether it uses wire-crypto or not; SFS uses wire-crypto. OpenAFS uses fcrypt [3] for block
encryption whereas SFS uses ARC4 [23]. The version of Plutus w/o crypto still performed all the operations required
to manage and maintain the Merkle hash tree; the results indicate that this overhead is small.

Though MacOS X and Windows CIFS offer encrypte8.2  Untrusted servers

disks, they do not allow group sharing short of sharing a . .
password. One way to recover from a malicious server corrupting the

persistent store is to replicate the data on several servers.
In the state machine approach [26, 44], clients read and
write data to each replica. A client can recover a corrupted
8.1 Secure file systems file by contacting enough replicas. The drawback to this
method is that each replica must maintain a complete copy
the data.
Rabin’s Information Dispersal Algorithm divides a file
to several pieces, one for each replica [39]. While the
gregate space consumed by all the replicas is minimal,

In encrypt-on-disk file systems, the clients encrypt all d‘la-f
rectories and their contents. The original work in this
area is the Cryptographic File System (CFS) [5], whidR
used a single key to encrypt an entire directory of fil .
and depended on the underlying file system for authori 9° system does no_t prevent or detect corrupyon.

tion of writes. Later variants on this approach include Alon et al. describe a storage system resistant to cor-

TCFS [8], which uses a lockbox to protect only the keyguption of data by half of the servers [2]. A client can

and Cryptfs [51]. Cepheus [13] uses group-managed |O£E'_cover from integrity—damaged files as long as a thresh-
boxes with a centralized key server and authorizationoeﬁj number of servers remain uncorrupted.

the trusted server. SNAD [35] also uses lockboxes and

introduces several alternatives for verifying writes. T .

SIRIUS file system layers a cryptographic storage file SEQ- Conclusion

tem over heterogenous insecure storage such as NFS_ﬁQd has introduced | f i hi
Yahoo! Briefcase [21]. IS paper has introduced novel uses of cryptographic

o primitives applied to the problem of secure storage in
Encrypt-on-wire file systems protect the data from aghe presence of untrusted servers and a desire for owner-
versaries on the communication link. Hence all commysanaged key distribution. Eliminating almost all require-
nication is protected, but the data is stored in plaintexents for server trust (we still require servers not to de-
Systems that use encryption on the wire include NASsQroy data — although we can detect if they do) and keep-
(Networked Attached Storage) [20], NFS over IPSec [24}q key distribution (and therefore access control) in the
SFS (Self-Certifying File System) [30], iSCSI [42], anhands of individual data owners provides a basis for a se-
OpenAFS with secure RPC. cure storage system that can protect and share data at very
In these systems the server is trusted with the data daugie scales and across trust boundaries.
meta-data. Even if users encrypt files, the server knowsThe mechanisms described in this paper are used as
the filenames. This is not acceptable if the servers are boilding blocks to design Plutus, a comprehensive, secure,
trustworthy, as in a distributed environment where servensd efficient file system. We built a prototype implemen-
can belong to multiple administrative domains. On thation of this design by incorporating it into OpenAFS,
positive side, this simplifies space management becaase measured its performance on micro-benchmarks. We
it is easy for the server to figure out the data blocks thetiowed that the performance impact, due mostly to the
are in use. A comprehensive evaluation of these systetost of cryptography, is comparable to the cost of two pop-
appear in a previous study [40]. ular schemes that encrypt on the wire. Yet, almost all of
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Plutus’ cryptography is performed on clients, not servefd0] C. Dalton and T. Choo. Trusted linux: An operating
so Plutus has superior scalability along with stronger se-
curity.
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