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Abstract—Cyber-physical systems depend on sensors to make
automated decisions. Resonant acoustic injection attacks are al-
ready known to cause malfunctions by disabling MEMS-based
gyroscopes. However, an open question remains on how to move
beyond denial of service attacks to achieve full adversarial
control of sensor outputs. Our work investigates how analog
acoustic injection attacks can damage the digital integrity of a
popular type of sensor: the capacitive MEMS accelerometer.
Spoofing such sensors with intentional acoustic interference
enables an out-of-spec pathway for attackers to deliver chosen
digital values to microprocessors and embedded systems that
blindly trust the unvalidated integrity of sensor outputs. Our
contributions include (1) modeling the physics of malicious
acoustic interference on MEMS accelerometers, (2) discovering
the circuit-level security flaws that cause the vulnerabilities by
measuring acoustic injection attacks on MEMS accelerometers
as well as systems that employ on these sensors, and (3) two
software-only defenses that mitigate many of the risks to the
integrity of MEMS accelerometer outputs.

We characterize two classes of acoustic injection attacks
with increasing levels of adversarial control: output biasing
and output control. We test these attacks against 20 models
of capacitive MEMS accelerometers from 5 different manu-
facturers. Our experiments find that 75% are vulnerable to
output biasing, and 65% are vulnerable to output control. To
illustrate end-to-end implications, we show how to inject fake
steps into a Fitbit with a $5 speaker. In our self-stimulating
attack, we play a malicious music file from a smartphone’s
speaker to control the on-board MEMS accelerometer trusted
by a local app to pilot a toy RC car. In addition to offering
hardware design suggestions to eliminate the root causes of
insecure amplification and filtering, we introduce two low-
cost software defenses that mitigate output biasing attacks:
randomized sampling and 180◦ out-of-phase sampling. These
software-only approaches mitigate attacks by exploiting the
periodic and predictable nature of the malicious acoustic
interference signal. Our results call into question the wisdom
of allowing microprocessors and embedded systems to blindly
trust that hardware abstractions alone will ensure the integrity
of sensor outputs.

*Corresponding faculty author.

1. Introduction

With the proliferation of motion-driven applications
and Microelectromechanical systems (MEMS) technologies,
MEMS accelerometers have been widely used in cyber-
physical systems, such as implantable medical devices, au-
tomobiles, avionics, and even critical industrial systems [1],
[2], [3], [4], [5], [6]. These systems deploy layers of soft-
ware that abstract away hardware details to collect and
analyze data provided by sensors, and then autonomously
react to sensor data in real time. The software assumes that
the underlying hardware is behaving according to specifi-
cation, and the common practice is to inherently trust the
output from sensors. After years of effort towards encour-
aging better security practices in software, developers are
becoming more diligent in hardening software to security
vulnerabilities, but fewer methodologies exist in the sensor
hardware domain.

It is already known that acoustic interference can
cause denial of service (DoS) attacks against MEMS gy-
roscopes [7]. Building upon this previous knowledge, our
paper questions current assumptions about the integrity of
sensory data, and specifically explores the data integrity
of MEMS accelerometers with a focus of answering the
following questions: (1) How can an adversary achieve fine
grained control over a sensor’s output? (2) How well will
system software cope with untrustworthy measurement of
motion? (3) How could sensors be designed differently
to eliminate the integrity issues? (4) What can be done
to protect legacy sensors? Answering these questions is
challenging yet critical to securing cyber-physical systems,
and the learned insights can guide future design choices
and methodologies to mitigate security risks introduced by
deploying MEMS sensors in cyber-physical systems.

MEMS accelerometers have a sensing mass, connected
to springs, that is displaced when the sensor is accelerated.
Acoustic waves propagate through the air, and exhibit forces
on physical objects in their path. If the acoustic frequency
is tuned correctly, it can vibrate the accelerometer’s sensing
mass, altering the sensor’s output in a predictable way.
To systematically analyze the vulnerabilities of MEMS ac-
celerometers, we model the impact of acoustic interference
on the sensor’s entire architecture, including both the sens-
ing mass and signal conditioning components. We identify
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two problematic components in the signal conditioning path
of typical MEMS accelerometers (i.e., insecure low-pass
filters and insecure amplifiers) that lead to two types of
adulterated outputs: fluctuating measurements and constant
measurements. These two components not only explain the
root cause of DoS attacks [7] but also enable us to design
two additional attack classes: sensor output biasing and
output control that permit increasing levels of adversarial
control over the output of MEMS accelerometers. Of the
20 models of accelerometers we tested, our experiments
show that 75% are vulnerable to output biasing attacks
(i.e., insecure low pass filters enable false fluctuating output
measurements under acoustic interference), and 65% are
vulnerable to output control attacks (i.e., insecure amplifiers
enable false constant output measurements under acoustic
interference). At the software system level, our experiments
demonstrate the ease of injecting acoustic interference into
an Android smartphone’s accelerometer to take control of an
app that drives an RC car. We also demonstrate a proof of
concept end-to-end acoustic attack by injecting 3,000 steps
per hour into a Fitbit. The results confirm our concerns that
system software does not adequately validate the integrity
of sensory data—blindly trusting the output of sensors by
default.

Defending against malicious acoustic interference by
applying acoustic dampening materials to sensors was pre-
viously investigated [7], [8]. Other defense mechanisms
exist to thwart sensor-spoofing attacks in scenarios where
the actuator and sensor operate in tandem [9]. Other com-
mon approaches to deal with signal interference include
averaging or filtering. All of these techniques are either
impractical (increases packaging size), not applicable (the
sensor must operate with an actuator in a closed loop
system), or insufficient (cannot filter out all interference)
in defending against all proposed acoustic injection attacks.
Therefore, we offer two types of defenses: (1) hardware
solutions, whereby the acoustic injection attacks can be
eliminated if the MEMS sensors are designed with security
in mind, i.e., each component on the signal conditioning
path is chosen with larger operation parameters, and (2)
software solutions for retroactively protecting vulnerable
MEMS accelerometers already deployed in various devices
and systems. We evaluate our software defense mechanisms
on vulnerable MEMS accelerometers showing that output
biasing attacks can be mitigated.

Hardware vulnerabilities in MEMS accelerometers ex-
pose attack vectors that can compromise the integrity of
the autonomous decision making path of cyber-physical sys-
tems. Our contributions address security concerns in MEMS
accelerometers:

• We model the adversarial physics of acoustic injec-
tion attacks on MEMS accelerometers and identify
hardware constraints on the signal conditioning path
that lead to adulterated sensor outputs.

• We design two types of component-level attack
classes: output biasing and output control that ex-
ploit independent hardware design flaws in MEMS

Figure 1. Functional Diagram of Capacitive MEMS Accelerometer
based on [10], [11]. When accelerated, the displacement of the mass
creates an electrical signal due to a change in capacitance. The measured
acceleration, s(t), relates to the displacement of the mass, d(t), according
to Newton’s second law of motion, F = m · a, and Hooke’s law,
F = −ks · d.

accelerometers. We test our attacks on 20 different
MEMS accelerometer models and show that 75%
are vulnerable to output biasing attacks, and 65%
are vulnerable to output control attacks. We also
demonstrate a proof of concept, end-to-end, acous-
tic attack on two vulnerable systems pertaining to
health, wellness, and the Internet of Things.

• We suggest hardware design practices that can in-
crease the difficulty required to successfully mount
an acoustic injection attack. We propose and mea-
sure the effectiveness of two low-cost software de-
fenses that mitigate acoustic injection attacks: ran-
domized sampling and 180◦ out-of-phase sampling.

2. Background

In this work, we focus on a specific accelerometer:
the capacitive MEMS accelerometer. Capacitive MEMS ac-
celerometers are traditionally implemented using a variable
capacitive structure [10], [11], as shown in Figure 1, and are
manufactured using MEMS technology: a process by which
micro-mechanical structures are machined into integrated
circuit (IC) packages along with other electrical components.
These sensors measure acceleration using the displacement
of a mass connected to springs. This displacement is trans-
lated to a continuous voltage signal. In accordance with
Newton’s second law of motion, F = m·a, and Hooke’s law,
F = −ks · d, the acceleration voltage signal is: a = −ksd

m .
Additional processing is required for the electrical ac-

celeration signals to interface with components external to
the accelerometer, e.g. microprocessors. Figure 2 illustrates
a typical design of the signal conditioning path in a MEMS
accelerometer [10]. Prior to digitization via an Analog-to-
Digital Converter (ADC, component D in Figure 2), analog
signal are typically amplified (component C in Figure 2) and
low-pass filtered (LPF, component D in Figure 2). Like any
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Figure 2. Typical architecture of the signal conditioning path in a
MEMS accelerometer based on [10]. The change in capacitance measured
by a sensing mass (Fig. 1) is converted to a voltage, amplified, filtered,
and digitized. Without stage D aliasing can occur, enabling output biasing
attacks. Signal clipping at C can introduce a DC component into the
acceleration signal, enabling output control attacks.

circuit component, the amplifier and ADC have limitations.
Amplifiers have upper and lower bounds; when the input
signal exceeds these bounds, signal clipping occurs, and
abnormal acceleration readings are reported. Likewise, the
ADC has requirements that must be met. According to the
Nyquist sampling theorem, a minimum sampling rate is re-
quired to avoid misinterpreting an analog signal represented
in digital form, also known as signal aliasing. Therefore, it
is common practice to place an LPF prior to an ADC, to
filter out high frequency signal components and enforce the
Nyquist requirement.

Both analog and digital accelerometers are available on
the market. Analog accelerometers output the analog signals
from the amplifier directly, while digital sensors typically
contain an LPF and ADC. We use an analog sensor to help
us understand how acoustic waves interact with the sensing
mass–spring structure.

3. Threat Model

We assume the goal of an attacker is to hijack the control
of the systems that are driven by acceleration sensor data.

Attack Scope. Access controls to sensor data have
tightened because of privacy concerns raised by previous
research [12], [13], [14], [15], [16]. Thus, we assume that at-
tackers can neither directly access the digitized sensor read-
ings nor physically touch the sensors. Instead, we assume
attackers exploit vulnerabilities by emitting nearby acoustics
to affect the integrity of sensor data, i.e., analog signals on
the signal conditioning path before being digitized.

Sensor Access. Although we assume attackers do not
gain physical access to a specific targeted device containing
a MEMS accelerometer, we do allow an adversary to gain
access to a substantially identical device to study acoustic
attack capabilities. In our attacks, we do not assume the
more powerful adversary such as a lunch-time attack where
an adversary has temporary physical access. However, we
assume the attacker is able to reverse engineer a sample
device to extract the exact model of MEMS accelerometer
and profile the accelerometer’s behavior under different
acoustic frequencies and amplitudes. This leads to a key
question to the success of the attacks: to what extent will
two instances of the same device behave in a similar way
when they are subjected to the same acoustic signals?

Figure 3. Acoustic Interference Disturbs Acceleration Measurements.
True acceleration and acoustic interference can both displace the mass,
creating electrical acceleration signals. The measured acceleration, ŝ(t), is
a linear combination of true acceleration, s(t), and acoustic acceleration,
sa(t).

Speaker Access. We assume that the attacker is able
to induce sound in the vicinity of the victim device, at
frequencies in the human audible to ultrasonic range (2–
30 kHz). This can be done by applying the sound externally,
or by playing sounds from speaker in the vicinity of the
target sensors. This might be done via means of remote
software exploitation (e.g., remotely affecting the multime-
dia software in a phone or a car) or by a drive-by ditty
where a user is tricked into playing malicious music either
by email or a web page with autoplay audio enabled. The
attacker is also able to synthesize any shape, i.e., varying
amplitude and phase, of acoustic signal within the stated
frequency range.

4. Attack Modeling

Acoustic attacks are possible because capacitive MEMS
accelerometers use the displacement of a mass as a proxy
for measuring acceleration. Figure 3 shows the MEMS
component of a typical accelerometer. When the sensing
mass is displaced, an electrical signal is generated, ŝ(t).
Primarily, the mass is displaced by forces resulting from
true acceleration (i.e., physical motion). However, forces
from acoustic pressure waves can also displace the mass.
Because of this, we denote electrical acceleration signals
generated by true acceleration: s(t), and those generated
by acoustic interference: sa(t). Using these representations,
we model how acoustic interference impacts the electrical
acceleration signals generated by MEMS accelerometers,
and validate our model. Then, we describe the goal of
acoustic injection attacks and provide an overview of the
challenges of conducting these attacks.

4.1. Modeling Acoustic Effects on Accelerometers

We develop a model for how an electrical acceleration
signal, generated by a capacitive MEMS accelerometer, is
distorted by acoustic noise. We model the measured accel-
eration as a linear combination of the true acceleration and
acoustic acceleration. Namely, for a true acceleration signal
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Figure 4. Experimental Setup for Evaluating our Model of Electrical
Acceleration Signal Generation. The accelerometer is simultaneously
subjected to both a 70 Hz vibration (true acceleration) and to 2.9 kHz
acoustic noise (to generate acoustic acceleration). Note: a modification
of this setup, removing the vibrating platform, is used for experiments in
Sections 5–8.

s(t), and the acoustic acceleration signal sa(t), the measured
acceleration signal ŝ(t) is:

ŝ(t) =s(t) +A1 · sa(t) (1)

A1 is the attenuation of the acoustics in transit to the target
device. For an acoustic frequency Fa, played at amplitude
A0, and phase φ, the acoustic acceleration generated is
modeled as sa(t) = A0 · cos(2πFat + φ). Therefore the
measured acceleration is:

ŝ(t) =s(t) +A1A0 · cos(2πFat+ φ) (2)

Evaluating the Model. We evaluate the model, in Equa-
tion 2, with the experimental setup shown in Figure 4. An
analog MEMS accelerometer, the ADXL337, was placed on
top of a vibration platform vibrating at 70 Hz, simulating an
example of true acceleration on the sensor. An off-the-shelf
tweeter speaker [17] was suspended 10 cm above the sensor
to decouple the sensor from mechanical vibrations emanat-
ing from the speaker. The output of the sensor was sampled
by an Arduino microcontroller’s ADC at a sampling rate of
7 kHz. The samples were logged by a computer connected
to the Arduino. The experimental setup was placed inside an
acoustic isolation chamber to avoid external noise. Outside
the chamber, a commodity audio amplifier [18] amplified a
2.9 kHz acoustic signal that was supplied to the speaker. To
allow visual distinction between the true acceleration and
acoustically stimulated acceleration, the acoustic signal was
on/off modulated at 0.5 Hz.

Results. Figure 5a depicts the 70 Hz sinusoidal phys-
ical vibration signal input to the vibrating platform. Fig-
ure 5b shows the sinusoidal, on–off modulated, acoustic
interference signal input to the speaker. Figure 5c depicts
the acceleration signal measured when the acoustic noise
is played in conjunction with the 70 Hz vibration. The
measured acceleration is a linear combination of the true
acceleration and artificial acoustic acceleration, supporting
our model.

4.2. Maximizing the Acoustic Disturbance

The goal of an attacker is to maximize the acoustic
disturbance on MEMS accelerometers, or maximize the

Figure 5. Acceleration Signal Generation Model. a) A 70 Hz sinusoidal
mechanical vibration signal stimulates true acceleration. b) A sinusoidal,
on–off modulated, acoustic interference signal stimulates acoustic acceler-
ation. c) Using the experimental setup in Fig. 4, a MEMS accelerometer
subjected to both mechanical vibrations (true acceleration) and acoustic
interference (acoustic acceleration) outputs an acceleration signal that is a
linear combination of the stimuli signals shown in (a) and (b). Note that
all plots are in the time domain.

attenuation coefficient, A1, in our model. The attenuation
coefficient, A1, is a function of acoustic frequencies. Physics
allows the attacker to achieve the maximum acoustic distur-
bance by exploiting a mechanical property of a vibrating
mass–spring system — resonance. Vibrating these systems
at their resonant frequencies achieves maximum displace-
ment of the mass, i.e., A1 = 1. To substantially displace the
sensing mass using acoustics, the acoustic frequency must
match the mechanical resonant frequency of the sensor. For
the previous experiment, 2.9 kHz was the resonant frequency
of the ADXL337.

5. Acoustic Attack Building Blocks

Based on our model, it seems plausible an attacker may
use acoustics to spoof output measurements from MEMS
accelerometers, and tamper with systems that utilize such
sensors. However, there are several challenges:

• Process Variation: The attacker can obtain a dif-
ferent instance of the exact model of accelerom-
eter to determine its resonant frequency. How do
resonant frequencies of MEMS accelerometers vary
with process variation? Or is the resonant frequency
characteristic of each model similar?

• Controlling the Artificial Acceleration: As our
model shows, acceleration signals resulting from
acoustic interference are of the same frequency as
the acoustic waves that created them. How do the
artificial acceleration signals get distorted or re-
moved by downstream signal conditioning compo-
nents? How can an attacker leverage the predictabil-
ity of acoustic acceleration to achieve fine grained
control over an accelerometer’s output?

• Altering the Behavior of Software through Ac-
celerometers: How can an attacker influence the
behavior of software that takes input from an ac-
celerometer?
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Figure 6. Examples of Signal Distortion from Hardware Deficiencies: A) An ideal MEMS accelerometer filters out all high frequency interference at its
low pass filter (LPF), removing all acoustically generated acceleration signals. B) An accelerometer with an insecure LPF does not fully suppress acoustic
acceleration signals and the digital output measurements are sinusoidally fluctuating. C) An insecure amplifier asymmetrically clips high amplitude acoustic
acceleration signals, introducing a DC component into the amplified signal. The DC component is not removed by the LPF. However, the LPF removes
the high frequency components present in the sharp corners of the clipped signal, resulting in a low-frequency, low-amplitude signal with non-zero DC
offset. The digitized measurements are mostly constant and shifted.

Assuming a linear model of acceleration signal gen-
eration, this section predicts the impacts of downstream
signal conditioning hardware on the digital representation
of these signals. Our experiments show that because of se-
curity deficiencies in an accelerometer’s signal conditioning
hardware, digitized acoustic acceleration measurements may
manifest themselves in two ways: fluctuating acceleration
as if the chip is under high vibration and constant shifted
acceleration as if the chip is on a launching rocket. These
two types of falsified output will serve as the building blocks
for the full-fledged attacks.

5.1. Signal Conditioning Hardware Deficiencies

The two critical hardware components typically included
in a MEMS accelerometer’s signal conditioning path are: an
amplifier and a low pass filter (LPF), components C and D
in Figure 2 respectively.

In an ideal case — when the amplifier and LPF work
perfectly — any injected acoustic acceleration signals are
removed by the signal conditioning hardware before being
digitized and do not pass through to end systems, as show
in Figure 6a. However, in reality these components have
physical limits. Specifically, each accelerometer has a limit
regarding the maximum amplitude and frequency of accel-
eration it can measure. Exceeding these limits distorts their
acceleration measurements.

Low Pass Filter. To prevent high frequency noise from
contaminating ADC samples, designers typically include an
analog LPF before the ADC (component D in Figure 2).
An ideal analog LPF filters out all frequencies above a
designated cutoff frequency, Fcutoff, while passing all fre-
quencies below. To enforce the Nyquist requirement, LPFs

are designed to only pass frequencies which are half that of
the ADC’s sampling rate, Fs, i.e., Fcutoff =

1
2Fs. However,

in practice, it is impossible to manufacture an LPF that
passes all frequencies up to Fcutoff (e.g., exactly half the
sampling frequency) and completely blocks all frequencies
above Fcutoff. Instead, there is a range of frequencies around
Fcutoff which are attenuated but not completely removed.
Acoustic acceleration signals can be affected by the LPF in
one of two ways:

1) Insecure LPF: The accelerometer’s LPF is de-
signed with a cut-off frequency that is either above,
or too close to the resonant frequency of the sensor.
The sinusoidal acoustic acceleration signal, whose
frequency matches the accelerometer’s resonant fre-
quency, is not completely attenuated by the LPF. It
slips through to the ADC where it is usually under-
sampled, as shown in Figure 6b.

2) Secure LPF: The acoustic acceleration signal’s
frequency is well above the cut-off frequency of
the LPF and is completely attenuated.

Acoustic acceleration signals directly correspond to the
acoustic frequency which generated them (Section 4.1). If
the LPF is insecurely designed (1) the false output acceler-
ation measurements will be sinusoidally fluctuating.

Amplifier. Ideally, the input range of the amplifier is
large enough to handle any signal the sensing mass can
produce. In reality, the amplifier is typically chosen to cope
with the maximum specified acceleration. This exposes an
attack surface. Resonant acoustic interference can displace
the sensing mass enough to create a high amplitude acceler-
ation signal that exceeds the dynamic range of the amplifier.
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Thus, acoustic acceleration signals can be potentially be
distorted. We classify two types of amplifiers:

1) Insecure Amplifier: Previous research has shown
MEMS accelerometers to report false measure-
ments when signal clipping occurs from exceeding
the dynamic range of its amplifier [10], [19], [20].
The causality stems from the introduction of a DC
component into the output signal of the saturated
amplifier, as illustrated in Figure 6c. This DC
component is not removed by the LPF, however,
the sharp clipped edges, i.e., the high frequency
components, are attenuated. Additionally, when the
accelerometer’s LPF is securely designed, i.e., the
cutoff frequency is much lower than the resonant
frequency, the non-clipped portion of the acoustic
acceleration signal is also attenuated. Given the
construction of the amplifiers [20], clipping can be
asymmetrical, and what slips through to the ADC
resembles a low-amplitude sinusoid with non-zero
DC offset. The digital output measurements are
mostly constant and non-zero, as reported by [10].

2) Secure Amplifier: When the unamplified accel-
eration signal is within the dynamic range of the
amplifier, clipping does not occur. The acceleration
signal remains undistorted.

In summary, under resonant acoustic interference the
sensor may report three types of measurements: true mea-
surements and two types of falsified measurements. The
false sensor measurements are due to insecurities in hard-
ware components, as shown in Figure 6:

A) True Measurements: The accelerometer’s ampli-
fier tolerates the high amplitude acceleration signals
generated under resonant acoustic interference, i.e.,
no signal clipping occurs. The accelerometer’s res-
onant frequency is much greater than the LPF’s cut-
off frequency. The LPF attenuates high frequency
acoustic acceleration signals.

B) Fluctuating False Measurements: No signal clip-
ping is observed at the amplifier. The LPF does
not completely attenuate high frequency acoustic
acceleration signals. Acoustic acceleration signals
are under-sampled by the ADC.

C) Constant Shifted False Measurements: Signal
clipping occurs at the amplifier introducing a non-
zero DC component into the amplified signal. A se-
curely designed LPF passes DC signals and blocks
high frequency signals. A mostly constant, non-
zero, signal is sampled by the ADC.

Recall that acoustic acceleration is only generated when
the sound waves displace the sensing mass, i.e., when
the acoustic frequency matches the resonant frequency of
the sensing structure. Only then will fluctuating (2) and
constant (3) false measurements be observed. Conversely,
resonant frequencies can be identified when accelerometers
exhibit these phenomena. We test 40 widely used MEMS

accelerometers to experimentally demonstrate the above be-
haviors MEMS accelerometers exhibit when their acoustic
resonant frequencies are played.

5.2. Finding Resonant Frequencies

A sensor at rest should measure constant acceleration of
0 g along the X and Y axes and 1 g along the Z axis, account-
ing for gravity. At a given frequency, if output measurements
deviate from normal, i.e., they are fluctuating or constantly
shifted, that frequency is considered a resonant frequency.
By sweeping an acoustic frequency range and acquiring
several acceleration measurements at each frequency, both
scenarios can be observed. Fluctuating measurements are
observable by calculating the standard deviations of multiple
samples at each frequency. Constant shifted measurements
are observable by calculating the means of multiple samples
taken at each frequency.

We survey 40 widely used MEMS accelerometers: 2
instances each of 20 different models from 5 different
manufacturers, including both analog and digital sensors, to
determine their resonant frequencies. A frequency where the
standard deviation or mean deviates from normal by at least
0.1g, less than 5% of the typical noise margin, is classified
a resonant frequency of that accelerometer model.

5.3. Experimental Setup

Our experimental setup is identical to the setup in
Figure 4, absent the vibrating platform. All 40 MEMS
accelerometers (both digital and analog) were attached to
a table. The experiments were conducted in an acoustic
isolation chamber to avoid external acoustic effects. Each
sensor was oriented to experience 0 g along the X and Y axes
and 1 g along the Z axis, due to gravity. Outside the chamber,
a commodity audio amplifier [18] amplified single frequency
acoustic signals generated by a function generator. The am-
plifier drove an off-the-shelf tweeter speaker [17] inside the
acoustic chamber. The speaker was suspended 10 cm above
the sensor to decouple the sensor from mechanical vibra-
tions emanating from the speaker. All digital accelerometers
were connected via a serial peripheral interface (SPI) or
inter-integrated circuit (I2C) bus to an Arduino microcon-
troller running a driver program. Analog accelerometers
were sampled using the Arduino’s ADC. While at rest,
each accelerometer was subjected to single tone acoustic
frequencies from 2 kHz–30 kHz, at 50 Hz intervals. At each
frequency interval, 256 acceleration readings were acquired
along all possible axes at a sampling rate of at least 400 Hz.
As a baseline, 256 acceleration readings were also acquired
without sound. All acceleration samples were logged by
a Python script running on a computer connected to the
Arduino microcontroller.

To determine the resonant frequencies, the speaker was
operated near its maximum amplitude, around 110 dB Sound
Pressure Level (SPL). To ensure that the speaker produced
all sounds at similar SPL, we validated the speaker’s fre-
quency response using a measurement microphone with a
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Figure 7. Effects of Acoustic Interference at Different Frequencies on the Behavior of Accelerometer Output Measurements. Peaks in either standard
deviation (dotted red) or mean (solid blue) indicate the acoustic interference caused the accelerometer to generate false acceleration measurements. Acoustic
frequencies where false measurements are observed are mechanical resonant frequencies of that accelerometer. Peaks in standard deviation indicate the
accelerometer has an insecure LPF (Fig. 6b), resulting in sinusoidally fluctuating false measurements. Peaks in mean indicate the accelerometer has an
insecure amplifier (Fig. 6c), resulting in constant shifted false measurements. The axis of acceleration displayed in each plot is in each respective legend.
The mean plots are normalized to the value of acceleration when the accelerometer was at rest (0 g if along X or Y axis; 1 g if along Z axis).

frequency response of 4 Hz–100 kHz [21]. The speaker’s
frequency response was relatively flat (at 110 db SPL) across
its entire range, from 1.8 kHz to 30 kHz.

5.4. Results

The means and standard deviations of the 256 raw data
samples taken at each frequency interval are plotted in
Figure 7. Of the 20 sensor models we tested, 15 exhibited
standard deviation spikes of at least 0.1g and 13 experienced
mean spikes of at least 0.1g. We observe the following from
these results:

1) Both instances of the same sensor model behaved
identically. Therefore, the results of only a single
instance of each sensor model is shown in Figure 7.

2) Resonant frequencies can fall in a range, not only
a single frequency.

3) Several sensors have multiple resonant frequencies.
4) Several sensors have resonant frequencies which

result in all combinations of constant shifted mea-
surements (mean spike) and/or fluctuating measure-
ments (standard deviation spike).

5) Most sensors that were not affected by acoustic
interference are physically larger than sensors that

were affected. This indicates the MEMS feature
size may affect its susceptibility to acoustic inter-
ference.

In summary, acoustic resonant frequencies stimulate MEMS
accelerometers to output false measurements that are either
fluctuating or constantly shifted.

6. Controlling Accelerometer Output

Although the ultimate goal of an adversary is to control
a sensor-driven autonomous system, an intermediate goal
is to demonstrate direct control of the digital time series
data output by a sensor. Thus, we ask the following ques-
tion: Given a function that represents the desired sensor
output signal, how does one design acoustic interference
to mimic said function? In this section, we show how to
utilize the predictability of both types of false measurements
(fluctuating or constant) to control the time series output of
a sensor. Our key contribution is the identification of two
distinct classes of acoustic injection attacks, output biasing
and output control attacks based on controlling fluctuat-
ing or constant false measurements, respectively. Table 1
summarizes our results on the extent to which sensors are
vulnerable to what attack.
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TABLE 1. ACCELEROMETER RESONANT FREQUENCIES: UNDER RESONANT ACOUSTIC INTERFERENCE, AN OUTPUT BIASING ATTACK CLASS

INDICATES A SENSOR’S FALSIFIED MEASUREMENTS FLUCTUATE (INSECURE LPF) WHILE AN OUTPUT CONTROL ATTACK CLASS INDICATES

CONSTANT FALSIFIED MEASUREMENTS ARE OBSERVED (INSECURE AMPLIFIER). TWO INSTANCES OF EACH SENSOR WERE TESTED.

Model Type Typical Usage Resonant Frequency (kHz) Amplitude (g)∗ Attack Class‡
X Y Z X Y Z

Bosch - BMA222E Digital Mobile devices, Fitness 5.1–5.35 – 9.4–9.7 1 B – BC
STM - MIS2DH Digital Pacemakers, Neurostims – – 8.7–10.7 1 – – BC
STM - IIS2DH Digital Anti-theft, Industrial – – 8.4–10.8, ... 1.2 – – BC
STM - LIS3DSH Digital Gaming, Fitness 4.4–5.2 4.4–5.6 9.8–10.2 1.6 BC BC BC
STM - LIS344ALH Analog Antitheft, Gaming 2.2–6.6 2.2–5.7 2.2–5.6 0.6 B B B
STM - H3LIS331DL Digital Shock detection – – 11–13, ... 5.2 – – BC
INVN - MPU6050 Digital Mobile devices, Fitness 5.35 – – 0.75 BC – –
INVN - MPU6500 Digital Mobile devices, Fitness 5.1, 20.3 5.1–5.3 – 1.9 BC C –
INVN - ICM20601 Digital Mobile devices, Fitness 3.8, ... 3.3, ... 3.6, ... 1.1 BC BC BC
ADI - ADXL312 Digital Car Alarm, Hill Start Aid 3.2–5.4 2.95–4.75 9.5–10.1 1.3 B B BC
ADI - ADXL337 Analog Fitness, HDDs 2.85–3.1 3.8–4.4 – 0.8 B B –
ADI - ADXL345 Digital Defense, Aerospace 4.4-5.4 3.1–6.8 4.4–4.7 7.9 BC BC B
ADI - ADXL346 Digital Medical, HDDs 4.3–5.1 6.1 4.95, ... 1.75 B B B
ADI - ADXL350 Digital Mobile devices, Medical 2.5–6.3 2.5–4 2.5–6.8 1.8 B B B
ADI - ADXL362 Digital Hearing Aids 4.2–6.5, ... 4.3–6.5, ... 4.5–6.5 1.4 BC BC BC
Murata - SCA610 Analog Automotive – – – – – – –
Murata - SCA820 Digital Automotive 24.3 – – 0.13 C – –
Murata - SCA1000 Digital Automotive – – – – – – –
Murata - SCA2100 Digital Automotive – – – – – – –
Murata - SCA3100 Digital Automotive 7.95 – 8 0.15 C – C

∗ Amplitude is taken as the maximum false output measurement observed. – Experiments found no resonance
‡ B = Output Biasing Attack; C = Output Control Attack (Red Highlight) ... Additional ranges of resonance elided
STM = STMicroelectronics; ADI = Analog Devices; INVN = InvenSense

Figure 8. Examples of Signal Aliasing. A) Sampling a 5 kHz analog signal
at 1.5 kHz results in a 500 Hz signal alias. B) A 1.5 kHz sampling rate
applied to a 4.5 kHz (integer multiple) analog signal yields a constant DC
(0 Hz) alias.

6.1. Output Biasing Attack

The output biasing attack utilizes sampling deficiencies
at the ADC and gives an adversary control over the ac-
celerometer’s output for several seconds. This attack pertains
to accelerometers that experience fluctuating false measure-
ments at their resonant frequencies due to insecure LPFs
(Figure 6b). To perform an output biasing attack, an adver-
sary must accomplish two goals:

1) Stabilize fluctuating false measurements into con-
stant measurements by shifting the acoustic reso-
nant frequency to induce a DC alias at the ADC.

2) Reshape the desired output signal by modulating
it on top of the acoustic resonant frequency.

Figure 9. Examples of Amplitude and Phase Modulation (AM and
PM). A) Amplitude modulation (AM) encodes the information signal in
the envelope of the carrier. AM acoustic interference can only spoof either
all positive or negative acceleration. B) Phase modulation (PM) encodes
the information signal in the phase of the carrier. Unlike AM, PM allows
an attacker to utilize the full range of the carrier, and therefore spoof both
positive and negative acceleration signals.

The first step can be accomplished through signal aliasing.
The second step can be realized with signal modulation.

Signal Aliasing. Aliasing is the misinterpretation of an
analog signal caused by digitizing it with an inadequate
sampling rate. According to the Nyquist sampling theorem,
an analog signal with maximum frequency component Fmax

must be sampled at a minimum rate of 2 · Fmax to avoid
signal aliasing. Figure 8a illustrates aliasing with a 5 kHz
sinusoid and a sampling rate of 1.5 kHz. Reconstructing this
signal from the digital samples results in a 500 Hz aliased
signal. When the frequency of the analog signal is an integer
multiple of the sampling frequency, a constant DC (direct
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Figure 10. Spelling WALNUT: Output Biasing Attack on Sensors with
Inaccurate ADCs. We demonstrate the output biasing attack can control
the X-axis acceleration signals of the A) ADXL350 and B) ADXL345
accelerometers for over a second, spoofing the sensor to spell out “WAL-
NUT”. This attack leverages a security-flaw in the low pass filters of
specific accelerometers. Each accelerometer was positioned with the Z-
axis aligned with gravity, so the X-axis output should have measured 0 g.
Sensors with inaccurate ADCs cause the acoustically stimulated accelera-
tion signal to inconsistently alias to varying almost-DC signals, hence the
WALNUT signal is slightly distorted.

current, 0 Hz) alias is encountered. Figure 8b illustrates this
phenomenon with a 4.5 kHz sinusoid sampled at 1.5 kHz.

Signal Modulation. Signal modulation is used to trans-
mit arbitrary information signals over another carrier signal.
Here we focus on amplitude and phase modulation, which
utilize constant frequency carrier signals. Assume a sinu-
soidal carrier signal fc(t) = A · sin(2πtf + φ), with t the
time, f the frequency, and φ a constant phase offset:

1) Amplitude Modulation (AM) consists of varying
the amplitude, A, of the carrier signal over time
according to the amplitude of the information signal
being transmitted. The amplitude, A, becomes a
time-domain function, A(t), resulting in the modu-
lated signal: SAM = A(t)·sin(2πtf+φ). Figure 9a
illustrates amplitude modulating a square wave on
top of a sinusoidal carrier frequency, fc.

2) Phase Modulation (PM) consists of varying the
phase, φ, of the carrier signal over time according
to the amplitude of the information signal being
transmitted. The phase φ becomes a time-domain
function, φ(t), resulting in the modulated signal
SPM (t) = A · sin(2πtf + φ(t)). Figure 9b illus-
trates phase modulating a square wave on top of a
sinusoidal carrier frequency, fc.

Biasing the Output. Here we explain the two steps
of the output biasing attack: 1) stabilize fluctuating false
measurements by producing a DC alias of the acoustic
acceleration signal, and 2) modulate the desired accelerom-
eter output signal over the acoustic resonant frequency. We
demonstrate the output biasing attack by spoofing a MEMS
accelerometer to output a signal spelling “WALNUT”.

Step 1) Converting the fluctuating false measurements
into constant false measurements is accomplished by in-
ducing a DC alias of the acceleration signal at the ADC

Figure 11. Spelling WALNUT: Output Biasing Attack on Sensors with
Accurate ADCs. We demonstrate the output biasing attack can control
the X-axis acceleration signals output from the A) ADXL337 and B)
LIS344ALH accelerometers for over 5 seconds, spoofing the sensor to spell
out “WALNUT”. This attack leverages a security-flaw in the low pass filters
of specific accelerometers. Each accelerometer was positioned with the Z-
axis aligned with gravity, so the X-axis output should have measured 0 g.
Given an insecure LPF, sensors with accurate ADCs are more vulnerable
than those with inaccurate ADCs because an attacker can more easily guess
the sampling phase when it is stable, hence the WALNUT signal is less
distorted than in Fig. 10

(Figure 8b). A DC alias of a periodic analog signal is
observed if the analog signal’s frequency is an integer mul-
tiple of the sampling frequency, Fsamp. An accelerometer’s
ADC sampling rate, Fsamp, is fixed. The sampling times at
discrete intervals k, can be denoted tk = k · 1

Fsamp
. Given

the resonant frequencies of a MEMS accelerometers are
often not a single frequency, but a range, an attacker can
find a small frequency deviation fε such that the acoustic
frequency Fa = Fres + fε is still within the resonance
zone. Selecting Fa in a way that it is an integer multiple
of the sampling rate, Fsamp, results in a DC alias, shifting
the output of the sensor to a constant value. Therefore, if
Fa = Fres + fε = N · Fsamp where N ∈ {1, 2, 3...}, the
measured acceleration signal is then:

ŝ(tk) =s(tk) +A1 · sa(tk)
=s(tk) +A1A0 · cos(2πFatk + φ)

=s(tk) +A1A0 · cos(2πNk + φ)

=s(tk) +A1A0 · cos(φ)
(3)

For example, if the resonant frequency and sampling rate
are Fres = 3280Hz, Fsamp = 150Hz, one can select the
deviation to be fε = 20Hz, such that Fa = 3280 + 20 =
3300 = 22 · Fsamp, to achieve a DC-aliased time series
output.

Step 2) The attacker employs either amplitude or phase
modulation techniques to further shape the output signal
of the accelerometer. Regarding output biasing attacks, PM
allows an attacker to use the full amplitude of the carrier
frequency to modulate the desired signal, where AM utilizes
only the upper or lower half of the carrier signal (Figure 9).
An attacker must use PM to stimulate an acceleration signal
that has both negative and positive components.
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Limitations. Note that an attacker can control the acous-
tic interference phase φ in a relative, but not absolute
manner. They can increase or decrease the phase, but always
relative to the sampling phase, φsamp, which they do not
control or know. Hand tuning φ to be synchronized with
φsamp requires feedback from the accelerometer under at-
tack. Figure 8b illustrates that the maximum bias amplitude
is reached when samples are taken at the peaks of the
acoustically stimulated acceleration signal. The less φsamp

drifts over time, the more stable the attack. With some
sensors, it is possible to tweak Fa so that the DC-aliased
output is maintained for up to 30 seconds.

Evaluation. We evaluated the output biasing attack on
all sensors that yielded fluctuating output measurements at
their resonant frequencies (standard deviation spikes in Fig-
ure 7). The same experimental setup shown in Figure 4 was
used, absent the vibrating platform. The acoustic interfer-
ence frequency was adjusted around the resonant frequency,
specific to each sensor, until the fluctuating measurements
stabilized. Using a function generator, a piecewise-linear
signal spelling “WALNUT” was modulated over the acoustic
resonant frequencies.

Results — Sensors with an Inaccurate ADC. Fig-
ure 10 illustrates the output biasing attack on two digital
accelerometers with inaccurate ADCs, the ADXL350 and
ADXL345. Spoofed acceleration signals, spelling “WAL-
NUT”, with peak-to-peak amplitudes of 10 g, were achieved
for 1–2 seconds. These accelerometers, and all digital ac-
celerometers tested, had inaccurate ADCs that did not take
samples at precise time intervals, i.e. φsamp fluctuates. This
limits an attackers ability to achieve control over a sensor’s
output for more than 1–2 seconds. Note that PM was used to
output the “WALNUT” signal on the ADXL350, while AM
was used on the ADXL345. As a result, the spoofed accel-
eration ranges from -5 g to 5 g using PM on the ADXL350,
while the ADXL345 only sees acceleration in the positive
range, 0 g to 10 g. AM can either spoof all positive or all
negative acceleration, since only the upper or lower envelope
of the AM carrier signal is utilized.

Results — Sensors with an Accurate ADC. Fig-
ure 11 illustrates the output biasing attack on two ana-
log accelerometers interfaced with accurate ADCs, the
ADXL337 and LIS344ALH. Spoofed acceleration signals
spelling “WALNUT”, with peak-to-peak amplitudes of 1 g,
were achieved on both sensors for tens of seconds. These
analog accelerometers were interfaced with accurate ADCs
that took samples at precise time intervals. This made it
easier to maintain a consistent DC-aliased output signal for
several tens of seconds. PM was used to attack both sensors,
simply to yield the highest peak-to-peak amplitude possible.
Note how the spoofed acceleration signals on sensors with
accurate ADCs compares to the spoofed signals on sensors
with inaccurate ADCs (Figure 11 vs. 10).

6.2. Output Control Attack

The output control attack gives an adversary indefinite
full control of an accelerometer’s output. This attack is

Figure 12. Spelling WALNUT: Output Control Attack. We demonstrate
the output control attack achieving full indefinite control over the X-axis
acceleration signals of the a) MIS2DSH and b) MPU6500 accelerometers,
spoofing the sensor to spell out “WALNUT”. Each accelerometer was
positioned with the Z axis aligned with gravity, so the X axis output should
have measured 0 g. This attack leverages a security-flaw in the amplifier
of specific accelerometers. The attacker does not need to know anything
about the sampling regime of the ADC, hence the WALNUT signal is the
least distorted compared with Figs. 10 and 11.

applicable to accelerometers that exhibit constant shifted
false measurements at their resonant frequencies due to
insecure amplifiers (Figure 6c). No signal aliasing at the
ADC is needed, since the false output measurements are
already stable and constant. This allows an adversary to
control the acceleration output indefinitely. To perform an
output control attack, an adversary need accomplish one
goal: reshape the desired sensor output signal by modulating
it over the resonant frequency.

Controlling the Output. Achieving fine grain control
over a sensor’s output requires using amplitude modulation.
Amplitude modulation modulates the amplitude of clipping
at the amplifier, which is effectively demodulated by the
LPF. Regardless of the ADC’s sampling regime, an attacker
has full control over the sensor’s output. With PM, the
amplitude of clipping does not change. Hence, AM yields
a more effective attack.

Evaluation. We evaluated the output control attack on
all sensors that demonstrated constant false output measure-
ments (mean spikes in Figure 7). The same experimental
setup shown in Figure 4 was used, absent the vibrating
platform. A signal spelling “WALNUT” was amplitude
modulated over each sensor’s acoustic resonant frequency.

Results. Figure 12 illustrates the chosen output attack on
two accelerometers tested, the MIS2DSH and MPU6500.
Spoofed acceleration signals, spelling “WALNUT” with
peak-to-peak amplitudes of up to 1 g were achieved on
both sensors. Note how stable the acoustically stimulated
output signal is compared with the signals spoofed by output
biasing attacks in Figures 10 and 11.

7. Attacking Embedded Devices

The ultimate goal of an attacker is to leverage accelerom-
eter hardware vulnerabilities to stealthily control software
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TABLE 2. ACCELEROMETER RESONANT FREQUENCIES INSIDE
SMARTPHONES. THE ACCELEROMETER’S RESONANT FREQUENCY

SLIGHTLY SHIFTS WHEN IS MOUNTED INSIDE A PHONE.

Device Model Resonant Frequency (kHz) Amplitude (g)X Y Z
MPU6500

Sensor Only
5.1, 20.3 5.1–5.3 None 1.9

Galaxy S5 5.25–5.55 5.35 None 2
Galaxy Note 3 5.3–5.4 None None 0.4

running on embedded devices. Embedded software applica-
tions often assume trustworthy input from accelerometers to
make automated or closed-loop decisions. We demonstrate
two system-level attacks using acoustic injection: (1) con-
trolling a smartphone application that drives an RC car by
playing a malicious music file on the phone, and (2) con-
trolling a Fitbit fitness tracker to earn financial rewards by
playing tones from an external speaker. Unlike our previous
experiments, there is no external speaker for the smartphone
attack. Instead, our attack uses the built-in speaker in the
smartphone to play a music file that hijacks control of the
accelerometer’s output. We refer to this special subclass of
vulnerability as a self-stimulation attack when a vulnerable
system overtly co-locates a transmitter near a sensor by
design—making standoff distances effectively zero meters.

7.1. Packaging Effects on Resonant Frequencies

Attacking an accelerometer buried in an embedded de-
vice raises an important question: Does the packaging
change the acoustic resonant frequency at all? Here we
demonstrate that packaging an accelerometer inside an em-
bedded device only slightly alters its resonant frequencies.
We analyzed two different smartphones with the same
MEMS accelerometer model (MPU6500): the Samsung
Galaxy S5 and Galaxy Note 3. We evaluated the acoustic
vulnerabilities of accelerometers inside the phones using
the same experimental setup we used for evaluating sen-
sors (Figure 4), minus the vibrating platform. Each phone
reported real time acceleration data via an Android applica-
tion (Wireless IMU) that transmitted the data over a UDP
stream to a nearby computer, rather than through an Arduino
microcontroller. Table 2 summarizes the results of our ex-
periments, and compares our results with the results from
attacking the sensor alone. Evidently, the acoustic resonant
frequency of an accelerometer mostly stands apart from its
packaging, though the amplitude of acoustic acceleration can
be attenuated by packaging.

7.2. Smartphone Controlled RC Car

To demonstrate the self-stimulation attack on the smart-
phone we attempted to hijack control of a smartphone
application that makes use of the phone’s accelerometer
to pilot a wireless RC car. Numerous inexpensive RC
cars are controlled with smartphone applications. These
applications allow users to tilt the phone in the direction

Figure 13. Smartphone Attacking its own Accelerometer to Control
an RC Car. An Android phone runs an application that controls an RC
car based on the phones orientation, measured by its internal MEMS
accelerometer. Simultaneously, a malicious audio file is playing over the
phone’s speaker, mounting an output control attack on the phone’s ac-
celerometer. The RC car is essentially piloted by the audio file.

they want to steer the car. This functionality employs the
phone’s MEMS accelerometer. The accelerometer measures
the phone’s physical orientation in relation to gravity. The
application translates this information into digital commands
that are sent to the car via WiFi or Bluetooth. The goal is to
use the phone’s speaker to spoof acceleration measurements
that would trigger the RC car application to send commands
to the car — commanding the car to go forwards, backwards,
and to stop. This notion of an application (playing music)
contaminating the behavior of another application (steering
an RC car) running simultaneously violates basic Android
data and privilege separation principles. This attack demon-
strates a unique write side channel.

Evaluation. The experimental setup is shown in Fig-
ure 13. An RC car, Samsung Galaxy S5 smartphone, and
computer were all placed on the same local area network.
The Samsung Galaxy S5 phone contains an MPU6500 ac-
celerometer, a sensor that is vulnerable to the output control
attack. The phone ran three Android applications from the
Google Play store: 1) RC car controlling application (i-
Spy Toys), 2) accelerometer monitoring application (Wire-
less IMU), and 3) an application that played audio files
(WavePad Audio Editor). The car controlling application
polled the orientation state of the accelerometer and sent
digital commands to the car over a TCP connection. The
accelerometer monitoring application sent UDP packets with
accelerometer measurements to the computer in real time.
The audio application played a malicious WAV file that had
been pre-loaded on the phone.

The RC car application monitors and reacts to X-axis
acceleration. When the user tilts the phone flat or upright,
i.e. the X-axis acceleration is 0 g or 1 g respectively, the
application sends forward or backwards commands to the
car. When the phone is approximately at a 30◦ angle, the
X-axis acceleration is 0.3 g and the application sends stop
commands to the car.

Results. The phone was placed in an upright position
(X-axis aligned with gravity). The malicious WAV file con-
tained an AM acoustic interference signal designed to drive
the car forward and backward, shown in Figure 14a. The
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Figure 14. Controlling an RC Car with an Output Control Attack
on a Samsung Galaxy S5. A smartphone controlled RC car reacts to
commands its given over WiFi. The car behaves according to the phone’s X-
axis orientation towards gravity. The amplitude modulated acoustic signal
in (A) is used to mount an output control attack that controls the phone’s
accelerometer output. The false acceleration measurements (B) trick the
application to send forward/stop/backward commands to the RC car.

acoustic interference was played over the phone’s speaker.
Figure 14b shows the X-axis acceleration spoofed by the
malicious audio file, and how the RC car reacted.

7.3. Free Fitbit Rewards

Several companies, including Walgreens and Higi, in-
centivize people to exercise by offering rewards programs
that tether to their personal fitness tracking wristbands and
monitor their daily physical activity. These fitness tracking
wristbands use accelerometer driven pedometers [1] to count
the number of steps the user takes over the course of a day.
Rather than exploiting software vulnerabilities to spoof step
counts [22], we demonstrate how one can spoof approx-
imately 3,000 steps an hour on a Fitbit One [23] fitness
tracker using acoustic interference and earn free rewards.

We opened a Higi.com account and tethered a Fitbit One
device to the account. Using a similar setup as shown in
Figure 4, absent the vibrating platform, acoustic interference
at the resonant frequency of the Fitbit’s accelerometer was
played for approximately 40 minutes. No signal aliasing or
modulation was needed as simply spoofing fluctuating false
measurements was sufficient to register thousands of false
steps. We were able to register 2,100 steps in that time
and earn 21 rewards points on Higi.com without walking
a single step. Due to ethical considerations, we have not
claimed any of these rewards and have notified the respective
manufactures about such flaws.

8. Defending Against Acoustic Attacks

Acoustic attacks exploit security vulnerabilities in the
hardware components of MEMS accelerometers. Going for-
ward, building secure sensors may eradicate this acoustic
threat vector. However, vulnerable MEMS accelerometers
are currently already deployed in many devices and sys-
tems. In this section we provide both hardware design
suggestions and software defense mechanisms to increase the

TABLE 3. EFFECTIVENESS OF DEFENSE MECHANISMS IN
THWARTING THE ACOUSTIC ATTACKS.

Defense Mechanism Output Biasing Output Control
Secure LPF & Amplifier � �
Acoustic Dampening Materials � �
Randomized Sampling �
180o Out-of-Phase Sampling �

difficulty of mounting acoustic injection attacks on MEMS
accelerometers. Table 3 summarizes the effectiveness of
each suggestion and mechanism in thwarting each proposed
attack. It is important to note that though some of the
defenses we propose may not completely eradicate acoustic
vulnerabilities, they will certainly increase the exploitation
difficulty for the adversary.

8.1. Hardware Design Suggestions

Both kinds of acoustic injection attacks, output bias-
ing and output control, exploit hardware deficiencies in
the signal conditioning components. Specifically the LPF,
amplifier, and mechanical sensing structures of MEMS ac-
celerometers are negatively impacted by resonant acous-
tic interference (Figure 6). Designing these components to
better tolerate acoustic interference would make MEMS
accelerometers resilient to our attacks.

Secure Low Pass Filter. Output biasing attacks leverage
signal aliasing at the ADC to control the accelerometer’s
output, a capability that should be suppressed by low pass
filtering the analog acceleration signal prior to digitization.
Low pass filters are designed to pass low frequency signals
while blocking high frequency signals. They have three
important frequency ranges: 1) pass band, 2) transition
band, and 3) stop band. The pass band does not block
any frequencies in its range. Frequencies in the transition
band are increasingly attenuated, and frequencies in the stop
band are completely blocked. The frequency that marks the
transition point between the pass band and transition band
is known as the cutoff frequency, Fcutoff.

A properly designed analog LPF should have a cut-off
frequency of less than half of the ADC sampling rate, i.e.,

Fcutoff =
Fsamp

2 , to prevent signal aliasing. The sampling
rates of most accelerometers we analyzed were less than
1.5 kHz, implying the maximum frequency acceleration sig-
nal they could accurately measure was less than 750 Hz.
Most accelerometers also exhibited resonant frequencies
greater than 2.5 kHz. Three scenarios explain why the LPFs
we encountered in the sensors we analyzed do not always
filter out high frequency acoustic interference:

1) No LPF Exists: Designers did not include an LPF
in the signal conditioning path at all (unlikely).

2) Signal Clipping at the Amplifier: The amplifier
was not securely designed to account for high am-
plitude acoustic noise, causing signal clipping to be
observable. Signal clipping introduces a DC com-
ponent into the output signal which slips through
the LPF.
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3) Resonant Frequency Lies in the LPF’s Tran-
sition Band: the resonant frequency of the ac-
celerometer lies within the LPF’s transition band.
As a result, the LPF does not fully attenuate the
acoustic interference.

The solution to scenario 1 (though this scenario is
unlikely) is straightforward: add an LPF. The solution to
scenario 2 is discussed in the following section. Lastly,
scenario 3 is the most difficult to address. Designing an
LPF that has a transition band that does not overlap the
accelerometer’s resonant frequency can be accomplished
in three ways: 1) lower the cutoff frequency, 2) narrow
the transition band, or 3) design the mass-spring sensing
structure to exhibit a higher resonant frequency.

All three have different limitations. The first lowers the
frequency limit of vibrations an accelerometer can measure.
The second requires adding many extra components, eventu-
ally for little to no added benefit. Finally, the last is possible
but requires stiffening the spring and losing sensitivity [24].

Secure Amplifier. Output control attacks leverage signal
clipping at the amplifier to introduce a DC component into
the acceleration signal which slips through any subsequent
LPF. This is prevented in two ways:

1) More Tolerant Amplifier: Design an amplifier
that can accept the large amplitude inputs that are
generated under acoustic interference.

2) Pre-filter Amplifier Inputs: Filter acoustic reso-
nant frequencies prior to the amplifier with another
LPF or band-stop filter.

The first solution is potentially limited by size, power,
and cost. The larger the amplifier circuitry, the more power
and chip area it consumes. These increase sensor cost and
decrease deployability. The second solution, which some
designs do employ [10], is limited by the cost of adding
more components, but may not increase power consumption.

Acoustic Dampening Materials. Attenuating acoustic
waves before they penetrate sensor packaging can prevent
acoustic acceleration signals from being generated at all.
Surrounding accelerometer ICs with acoustic dampening
materials, such as synthetic foam [7], [8], can shield it
from acoustic noise. The limitation here is size: acoustic
dampening foam takes up space, a scarce resource in most
embedded systems.

8.2. Software Defense Mechanisms

Redesigning hardware to tolerate acoustic interference
is not an option for accelerometers already deployed in the
field. For a subset of these sensors we provide two different
defense mechanisms that can be implemented in software
and deployed as firmware updates: randomized sampling
and 180◦ out-of-phase sampling. These solutions are only
capable of preventing output biasing attacks, where acoustic
acceleration signals have not been distorted by amplifier
clipping. They work by eliminating an attacker’s ability
to achieve a DC signal alias at the ADC. Each defense

Figure 15. Example of Randomized and 180◦ Out-of-Phase Sampling:
A) Sampling at random times within the resonant frequency period pro-
hibits an attacker’s ability to control sensor outputs with DC aliasing. B)
Taking 2 samples 180◦ out-of-phase, with respect to the resonant frequency,
will yield samples symmetric around the true acceleration value. Averaging
the samples, in both mechanisms, cancels out the disturbance.

mechanism takes advantage of the requirement that only
acoustic resonant frequencies can displace the sensing mass,
and that these frequencies are known at design time. For
that reason, we consider only sensors that exhibit false
fluctuating measurements under acoustic interference. Both
solutions assume the device has control over the sampling
regimes of its sensors, i.e., they employ analog sensors and
software controlled ADCs (several microcontrollers allow
software to trigger the ADC to take a sample [25]).

Randomized Sampling. Randomized sampling elim-
inates the predictability of an ADC’s sampling regime.
Instead of setting an ADC to sample at a fixed interval,
randomized sampling adds a random amount of delay to
the beginning of each sampling period. This prevents an
attacker from tuning the resonant frequency to induce a DC
alias, i.e., step 1 (stabilize) of the output biasing attack (Sec-
tion 6.1). Randomized sampling intentionally amplifies the
effect of having an inaccurate ADC. Computing a moving
average over several samples then smooths the fluctuating
measurements.

An adversary performing an output biasing attack sta-
bilizes the fluctuating false acceleration measurements by
tuning the acoustic frequency such that it is an integer
multiple of the sampling frequency (Equation 3). Defeating
this attack, we add random delay, tdelay, to the sampling

time, tk, s.t. tdelay is uniformly distributed in [0, 1
Fres

]. Recall
that the acoustic frequency Fa is close to the resonant
frequency: Fa ≈ Fres. Therefore, setting the sampling times
t∗k = tk + tdelay results in a symmetrical distribution of
ŝ(tk) over a full cycle of acoustically stimulated acceleration
measurements, cos(2πFatk + φ).

Figure 15a illustrates the concept of randomized sam-
pling. The resulting distribution of ŝ(tk) is not uniformly
distributed over [s(tk)−sa(tk), s(tk)+sa(tk)], but rather it
is symmetric around the value of true acceleration, s(tk).
Hence, computing a moving average of several samples
filters out periodic acoustic acceleration but not true accel-
eration. Randomized sampling does not destroy valid peri-

15

Authorized licensed use limited to: University of Michigan Library. Downloaded on August 04,2022 at 23:37:31 UTC from IEEE Xplore.  Restrictions apply. 



Figure 16. Randomized Sampling: Both periodic (red dotted line) and
randomized sampling (solid blue line) are employed on ADCs interfaced
to two analog accelerometers, the ADXL337 and LIS344ALH. Simultane-
ously, output biasing attacks were crafted on both sensors to induce artificial
square wave output signals. The bogus square wave acceleration signals are
attenuated by deploying randomized sampling.

odic acceleration signals, i.e. vibrations within [0,
Fsamp

2 ],
because in most cases, the maximum frequency of true
acceleration is much smaller than the resonant frequency.

Some MEMS accelerometers exhibit multiple resonant
frequencies. For these sensors, the random delay added to
the sampling time, tdelay, should be uniformly distributed

in [0, 1
Flcm

], where Flcm is the least common multiple of

all resonant frequencies exhibited by the device. No matter
what resonant frequency the attacker uses, ŝ(tk) remains
symmetrically distributed around the true acceleration value.

180◦ Out-of-Phase Sampling. One hundred eighty de-
gree out-of-phase sampling attenuates acceleration signals
with frequencies around a given sensor’s resonant fre-
quency. It acts as a simple band-stop filter in software.
An ADC performing out-of-phase sampling takes two sam-
ples at a 180◦ phase delay with respect to the resonant
frequency Fres. Namely, two samples are taken at times
tk, tk + tdelay where tdelay = 1

2·Fres
. The true acceleration

measurement value is then computed by taking the average:
sk = 1

2 (s(tk) + s(tdelay)). Figure 15b illustrates the out-of-
phase sampling concept.

Following step 1 (stabilize) of the output biasing attack
(Section 6.1), an adversary chooses an acoustic frequency
approximately equal to the resonant frequency, Fa ≈ Fres.
Out-of-phase sampling is analogous to a notch filter around
the resonant frequency range. Given an acoustic acceleration
signal, sa(tk):

sa(tk + tdelay) =A0A1cos(2πFa(tk + tdelay) + φ)

=A0A1cos(2πFatk + π + φ)

=− sa(tk)

(4)

Stated otherwise, the value of two samples of acousti-
cally stimulated acceleration taken 180◦ out-of-phase are
opposites. Assuming the maximum frequency of the true
acceleration signal, s(t), is much smaller than the resonant
frequency, then s(t) will be the same across two out-of-
phase samples while the acoustically stimulated accelera-

Figure 17. 180◦ Out-of-Phase Sampling: Both periodic (red dotted line)
and 180◦ out-of-phase (solid blue line) sampling are employed on ADCs
interfaced to two analog accelerometers, the ADXL337 and LIS344ALH.
Simultaneously, output biasing attacks were crafted on both sensors to
induce artificial square wave output signals. The bogus square wave ac-
celeration signal is attenuated by deploying out-of-phase sampling.

tion, sa(t), is not. Namely, s(tk) ≈ s(tk + tdelay) and
sa(tk) = −sa(tk + tdelay). Averaging the out-of-phase
samples yields:

1

2
(ŝ(tk) + ŝ(tk + tdelay)) ≈

1

2
(2s(tk) + 0) = s(tk) (5)

The measured acceleration signal after averaging is approx-
imately the same as the true acceleration signal s(t).

Implementation & Evaluation. Both sampling mech-
anisms assume software can control the sampling regimes
of the sensors, i.e. an analog sensor sampled by software
controlled ADCs. We demonstrate randomized sampling
and out-of-phase sampling on two analog accelerometers,
the ADXL337 and LIS344ALH, interfaced to ADCs em-
bedded in the Arduino microcontroller. We use the same
experimental setup described in Figure 4, without the vi-
brating platform. For randomized sampling, the ADC was
programmed to add a random delay, tdelay, at the beginning
of each sampling cycle according to the resonant frequency
of the respective accelerometer. Conversely, for out-of-phase
sampling the ADC was configured to take two samples at
exactly 1/Fres seconds apart. Output biasing attacks were
performed to create bogus square wave acceleration signals
on both sensors. Figures 16 and 17 show the effectiveness of
random and out-of-phase sampling, respectively, vs. normal
periodic sampling at filtering out the maliciously spoofed
square waves.

9. Related Work

Attacking and defending systems at the analog sensor
and actuator layer can be classified as analog cybersecurity.
Acoustic injection attacks represent one type of attack in the
analog cybersecurity quiver. Analog cybersecurity owes its
heritage to research in the side channel analysis and fault
injection attack communities that grew from research on
smartcard security in the 1990s [26]. Most recently, Shoukry
et al. [9] develop a sensor authentication scheme, called
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PyCRA, to thwart attacks on sensor–actuator systems. They
categorize analog cybersecurity attacks into sensor spoof-
ing and eavesdropping attacks, and offer ways to identify
spoofed signals. From there they are able to subtract spoofed
signals from the perceived signals to recover the original
sensor measurements. As Shin et al. point out [27], PyCRA
makes assumptions about an adversary’s capabilities and can
be defeated when these assumptions are violated. In contrast
to PyCRA, we offer techniques to eliminate the attacker’s
ability to spoof sensor measurements to begin with.

Spoofing Analog Sensors. Earlier sensor spoofing at-
tacks focus on the system level, manipulating a system’s
behavior by altering a sensor’s environmental perception.
In the unmanned aerial vehicle (UAV) space, Son et al.
[7] demonstrate intentional acoustic interference on MEMS
gyroscopes in drones, causing the them to crash. Davidson
et al. [28] spoof optical flow sensors on UAVs with intense
light to control their lateral motion. In the medical device do-
main, Park et al. [29] utilize intentional infrared interference
to trigger medical infusion pumps to over deliver medicine
to patients. Foo Kune et al. [30] show how carefully crafted
electromagnetic interference (EMI) can be injected into sig-
nal digitization circuitry inside implantable medical devices
to control the delivery of pacing and defibrillation shocks. In
the automotive area, Shoukry et al. [31] demonstrate how to
deliver false readings to anti-lock braking systems (ABS) via
the magnetic wheel speed sensors using EMI. Lastly, Yan et
al. spoof various Tesla autopilot subsystems with intentional
ultrasonic and EMI interference to cause safety critical
malfunctions. Rather than separately analyzing individual
systems that utilize sensors for analog vulnerabilities, our
work takes a fundamental approach: exploring the analog
vulnerabilities of the sensors themselves for the purpose of
defending the systems that employ them.

Intentional and Unintentional Interference. Engineer-
ing researchers undergo great efforts to design robust sys-
tems that are resilient to interference, including electromag-
netic and acoustic. Boneh et al. demonstrate how computa-
tional faults induced by interference can break cryptographic
protocols [26]. Consequently, understanding the potential
threats of interference on systems, devices, and sensors is vi-
tal. Giri et al. classify intentional EMI threats into categories
of frequency range, level of sophistication, and effects on
targeted systems [32]. Delsing et al. explore the vulnerability
of sensor networks to intentional EMI [33]. The effects of
unintentional and intentional EMI on implantable medical
devices have also been investigated [30], [34], [35]. Dean
et al. and Castro et al. characterize the effects of high
power acoustic noise on MEMS gyroscopes [36], [37], [38],
and Soobramaney and Castro et al. develop mechanisms to
mitigate acoustic interference on MEMS gyroscopes using
acoustic dampening materials [8], [38]. Soobramaney also
demonstrates a defense mechanism that utilizes a modified
gyroscope to respond to only acoustic interference to cancel
the interference signal from the true signal [8]. To the best
of our knowledge, we are the first to demonstrate how
intentional acoustic interference on MEMS accelerometers
can be leveraged to control their output.

Information Leakage. Information leakage from phys-
ical properties, or side-channels, of computing systems are
also relevant to analog cybersecurity. Recent studies show
that gyroscopes and accelerometers can leak personal infor-
mation [12], [13], [14], [15], [16]. Michalevsky et al. show
that gyroscopes in smart-phones can be used as a micro-
phone to eavesdrop on conversations [16]. Marquardt et al.
demonstrate that smart-phone accelerometers leak enough
information to infer keystrokes from a nearby keyboard [12].
Similarly, Owusu and Aviv show smart-phone accelerometer
information leakage can be leveraged to infer user touch-
screen gestures and key presses to leak passwords and PIN
codes to unlock phones [14], [15]. Dey et al. found that pro-
cess variation in accelerometers yields a unique fingerprint
that can uniquely identify a device [13]. These efforts are
a reminder that physical attacks on analog sensors render
securing data integrity, authentication, and confidentiality
between sensors and microprocessors challenging.

10. Conclusion

Because MEMS accelerometers use displacement as a
proxy for measuring acceleration, malicious acoustic inter-
ference at resonant frequencies can damage the integrity of
a sensor’s digital outputs. Our work models the physics of
acoustic injection attacks on MEMS accelerometers, val-
idated by measuring the outputs of sensors subjected to
our acoustic interference. Our experiments show that subtle
hardware security flaws in amplification and filtering circuits
of the signal conditioning path represent the fundamental
root causes of the vulnerabilities. These pervasive security
flaws lead to two unusual classes of sensor vulnerabilities:
output biasing and output control. In our acoustic tests of 20
accelerometer models from 5 manufacturers, we found 75%
are vulnerable to output biasing attacks and 65% vulnerable
to output control attacks. We also demonstrate proof-of-
concept end-to-end attacks with physical consequences. In
terms of compromising data integrity, we show how to inject
fake steps into a Fitbit fitness tracker to earn financial re-
wards. In terms of affecting control systems, we accomplish
a self-stimulating attack whereby we play malicious music
files from a smartphone’s speaker to control an app that
drives an RC car. To reduce the risks of attacks on the in-
tegrity of MEMS accelerometers, we recommend hardware
design suggestions to increase the security of amplifiers and
filters and mitigate acoustic attacks on the next generation of
sensors. For sensors already deployed in the field, we offer
two low-cost software defense mechanisms to prevent output
biasing attacks: randomized sampling and 180◦ out-of-phase
sampling. Our software defense mechanisms can protect all
accelerometers vulnerable to output biasing attacks, but not
output control attacks.
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[11] M. Andrejašic, “MEMS accelerometers,” University of Ljubljana,
Tech. Rep., 2008, http://mafija.fmf.uni-lj.si/seminar/files/2007 2008/
MEMS accelerometers-koncna.pdf.

[12] P. Marquardt, A. Verma, H. Carter, and P. Traynor, “(sp) iPhone:
decoding vibrations from nearby keyboards using mobile phone ac-
celerometers,” in Proc. ACM CCS, 2011.

[13] S. Dey, N. Roy, W. Xu, R. R. Choudhury, and S. Nelakuditi, “Accel-
Print: Imperfections of accelerometers make smartphones trackable,”
in NDSS, 2014.

[14] E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang, “ACCessory:
password inference using accelerometers on smartphones,” in ACM
HotMobile, 2012.

[15] A. J. Aviv, B. Sapp, M. Blaze, and J. M. Smith, “Practicality of
accelerometer side channels on smartphones,” in Proc. ACSAC, 2012.

[16] Y. Michalevsky, D. Boneh, and G. Nakibly, “Gyrophone: Recognizing
speech from gyroscope signals,” in Proc. USENIX Security Sympo-
sium, 2014.

[17] Pyramid Car Audio, “Tw28 bullet horn
tweeter,” http://www.pyramidcaraudio.com/sku/TW28/
300-Watt-Aluminum-Bullet-Horn-in-Enclosure-wSwivel-Housing.

[18] Yamaha Corporation, “R-S201 Receiver User Manual.”

[19] J. J. Rychcik, J. E. Vandemeer, and M. L. Shaw, “Characterizing input
saturation in low-g accelerometers,” 2002, http://archives.sensorsmag.
com/articles/0502/68/main.shtml#ref1.

[20] Analog Devices, “Avoiding op amp instability problems in
single-supply applications,” Analog Devices, Tech. Rep., 2001,
http://www.analog.com/media/en/analog-dialogue/volume-35/
number-1/articles/avoiding-op-amp-instability-problems.pdf.

[21] National Instruments Inc., “G.R.A.S. 46BE 1/4” CCP Free-field
Standard Microphone Set,” http://www.ni.com/pdf/manuals/G.R.A.S.

46BE.pdf.

[22] M. Rahman, B. Carbunar, and M. Banik, “Fit and vulnerable: Attacks
and defenses for a health monitoring device,” arXiv 1304.5672, 2013.

[23] FitBit, “FitBit One,” https://www.fitbit.com/one.

[24] J. Voldman, “Case study: A capacitive accelerometer,” in Open-
CourseWare, 2013.

[25] Texas Instruments, “Tiva TM4C129XNCZAD microcontroller data
sheet (Rev. B),” June 2014, http://www.ti.com/lit/ds/symlink/
tm4c129xnczad.pdf.

[26] D. Boneh, R. A. DeMillo, and R. J. Lipton, “On the importance of
checking cryptographic protocols for faults,” in EUROCRYPT, 1997.

[27] H. Shin, Y. Son, Y. Park, Y. Kwon, and Y. Kim, “Sampling race:
Bypassing timing-based analog active sensor spoofing detection on
analog-digital systems,” in Usenix WOOT, 2016.

[28] D. Davidson, H. Wu, R. Jellinek, V. Singh, and T. Ristenpart, “Con-
trolling UAVs with sensor input spoofing attacks,” in Usenix WOOT,
2016.

[29] Y. Park, Y. Son, H. Shin, D. Kim, and Y. Kim, “This ain’t your dose:
Sensor spoofing attack on medical infusion pump,” in Usenix WOOT,
2016.

[30] D. Foo Kune, J. Backes, S. S. Clark, D. Kramer, M. Reynolds, K. Fu,
Y. Kim, and W. Xu, “Ghost talk: Mitigating EMI signal injection
attacks against analog sensors,” in IEEE Symp. on Security & Privacy,
2013.

[31] Y. Shoukry, P. Martin, P. Tabuada, and M. Srivastava, “Non-invasive
spoofing attacks for anti-lock braking systems,” in International
Workshop on Cryptographic Hardware and Embedded Systems, 2013.

[32] D. Giri and F. Tesche, “Classification of intentional electromagnetic
environments,” IEEE Trans. Electromagnetic Compatibility, 2004.

[33] J. Delsing, J. Ekman, J. Johansson, S. Sundberg, M. Bäckström,
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