Embedded Security

EECE 5698-08: Special Topics:

Cyber-Physical Security of IoT Systems in the Age of Al

Lecture 2: Threat Modeling

Prof. Kevin Fu

September 8, 2025

https://spqrlab1.github.io/emsec/

Today's Learning Goals

- How to proactively and methodically reason about embedded security with threat modeling
- How to read a research paper
- Lab safety

Pop Quiz

Write your name on paper

Pop Quiz: Pick two of A, B, and C

Which two are NOT the four questions in Shostack's Four-Question Framework for Threat Modeling?

- **A)** What assets do we have? What are the threats? How can we mitigate them? Did we verify the fixes?
- **B)** What are we working on? What can go wrong? What are we going to do about it? Did we do a good job?
- **C)** What could fail? What threats exist? How severe are they? Who is responsible?

Last Time: Security is a Negative Property of a System

- Confidentiality
- Integrity
- Availability
- Authentication
- Non-repudiation
- ...
- What isn't a security property?
 - Encryption: mechanism to provide confidentiality and sometimes, but not always, integrity and authentication
 - Hashing and blockchains (they are mechanisms, not properties, often misused)
 - Digital signatures and message authentication codes: mechanisms to provide authentication
- Not orthogonal! :-(

What is Threat Modeling?

- A systematic approach to identifying and mitigating security risks
- Anticipate potential threats before they occur
- Why bother? Identify design and implementation issues early.

Why Threat Modeling Matters

- Prevent security vulnerabilities
- Reduce costs by addressing risks early
- Improve system design and user trust

Key Principles

- Identify assets
- Understand potential threats
- Prioritize based on risk impact

The Four Key Questions for Threat Modeling

- 1. What are we working on?
- 2. What can go wrong?
- 3. What are we going to do about it?
- 4. Did we do a good job?

The Process of Threat Modeling

- 1. Define scope and context
- 2. Identify potential threats
- 3. Evaluate and prioritize risks
- 4. Mitigate and validate

Question 1: What Are We Working On?

- Identify assets and components
- Define trust boundaries
- Use structured diagrams to clarify system design

Identifying Assets

- Examples: Data, devices, and processes.
- Importance: Assets drive the scope of threat modeling.

Question 2: What Can Go Wrong?

 Attack Trees: Explore paths an attacker might take

Kill Chains: Analyze stages of an attack

STRIDE (more on this later)

Identifying Threats: Methods

- Raw brainstorming
- Historical analysis
- Leveraging frameworks

Attack Trees

- Inspired by Fault Trees, but for security
- Top-down approach: Map attacker actions and outcomes
- Helps identify weak points in systems
- Use for prioritizing threats and mitigation strategies
- Pro: forces writing of assumptions
- Con: Can never be complete, adversary adapts

Attack Tree Example

Credit: https://www.schneier.com/academic/archives/1999/12/attack_trees.html

STRIDE Framework

- Spoofing.
- Tampering.
- Repudiation.
- Information Disclosure.
- Denial of Service.
- Elevation of Privilege.

Question 3: What Are We Going to Do About It? Risk Management

- 1. Eliminate
- 2. Mitigate
- 3. Accept
- 4. Transfer

Risk Evaluation and Prioritization

- Likelihood
- Impact
- Mitigation costs
- Probability

Validation and Review

- Test mitigations
- Update model as systems evolve

Mitigation Strategies

- Secure coding standards
- Encryption and access control
- Regular vulnerability assessments

Question 4: Did We Do a Good Job? (Evaluation methods)

- Internal reviews
- Security assessments and red teaming
- Updating models based on field feedback

Metrics and Evaluation

- Prioritize threats by likelihood and impact or exploitability, not probability
- Use scoring systems like DREAD or CVSS
 - Common Vulnerability Scoring System (CVSS): method used to supply a qualitative measure of severity.
 - But what can go wrong with CVSS?

Common Challenges

- Complexity of systems
- Lack of stakeholder involvement
- Evolving threat landscape

Tools for Threat Modeling

- Microsoft Threat Modeling Tool
- OWASP Threat Dragon
- IriusRisk Platform

Threat Modeling Summary

- Threat modeling helps identify, prioritize, and mitigate risks
- Incorporate it early and iteratively in your projects

How to Read a Paper

- √ Read critically
- √ Read creatively
- √ Take notes

It's trivial to find flaws in a paper; it's hard to find the hidden gems.

- √ Comprehend the core thesis
- √ Compare with related work
- X Trash the work

2. How to Read a Paper

Jon Crowcroft, Cambridge
Based on CCR Article by Keshav (Waterloo)

http://www.cl.cam.ac.uk/~jac22/talks/jon-cfip.ppt

Stand on the Shoulders of Giants

And do not stand on their toes

You read other papers so that

- You are learning what papers are like
- You are current in the field
- You may be writing survey (literature review)
- You want to find what to compare with
- We propose a 3 pass reading approach

- Structural overview of paper
 - Read abstract/title/intro
 - Read section headings, ignore bodies
 - Read conclusions
 - Scan references noting ones you know

Pass 1 output

- You can now say
 - Is this a system, theory or simulation paper (category defines methodology)
 - Check system measurement methodology
 - Check expressiveness/fit for purpose of formalism
 - Check simulation assumptions
 - What other papers/projects relate to this?
 - Are the assumptions valid?
 - What are the key novel contributions
 - Is the paper clear?
- Takes about 5 minutes
- 95% of reviewers will stop at pass 1 :-(
 - See Section 3 of this (on writing papers)

- Check integrity of paper
 - · Look at figures/diagrams/exes/definitions
 - Note unfamiliar references
 - Do not check proofs yet
- Takes around 1 hour
- You should be able to summarise the paper to someone else now
- If it is unclear, you may need to pasuse overnight

- Virtually re-implement the paper
 - Challenge all assumptions
 - Think adversarially about experiments, proofs, simulation scenarios
 - Takes 4-5 hours
- You should be able to reconstruct paper completely now

Reading batches of papers

- E.g. for literature survey excercise
 - pick topic (hot or cold), and search on google scholar or citeseer for 10 top papers
 - Find shared citations and repeated author names - key papers (look at citation count/ impact too)
 - Go to venues for these papers and look at other papers

Homework and Next

- Homework:
 - ➡Before Monday's lecture, read "On the Importance of Checking Cryptographic Protocols for Faults" by Boneh et al., EuroCrypt 1997
 - Discuss the topic freely on Piazza; use your new paper reading skills
- Next:
 - Thursday: Your first in-lab exercises!
 - Monday lecture: Refresher on signals and systems

